
Division of Agricultural Bioinformatics

ICAR-Indian Agricultural Statistics Research Institute

Library Avenue, PUSA, New Delhi - 110012
https://iasri.icar.gov.in/

उच्च संकाय प्रशिक्षण कें द्र

Centre of Advanced Faculty Training

Course Coordinator

Course Co-Coordinator

Course Co-Coordinator

:

:

:

Dr. Sudhir Srivastava

Ms. Sneha Murmu

Ms. Soumya Sharma

पाठ्यक्रम समन्वयक
पाठ्यक्रम सह-समन्वयक
पाठ्यक्रम सह-समन्वयक

:

:

:

डा सुधीर श्रीवास्तव

सुश्री से्नहा मुममू

सुश्री सौम्या शमाू

संदर्भ संहिता
Reference Manual

कम्प्यूटेिनल जीवववज्ञान और कृवि में इसके अनुप्रयोग

Computational Biology and its Applications in

Agriculture

https://iasri.icar.gov.in/

TGTHT
20 rat, 2023 fAd, 1.374..7I 4..

FOREWORD

ICAR-IASRI is a premier Institute of relevance in Statistical Sciences (Statistics, Computer
Applications and Bioinformatics) and their judicious fusion in agricultural sciences for enriching
quality of agricultural research and informed policy decision making. Ever since its inception in 1930,
as a small Statistical Section of the then Imperial Council of Agricultural Research, the Institute has
grown in stature and made its presence felt both nationally and internationally. The Institute has been

very actively pursuing advisory service that has enabled the institute to make its presence felt both in
National Agricultural Research and Education System (NARES) and National Agricultural Statistics
System (NASS). The Institute has taken a lead in creating a high-end statistical computing environment
in NARES.

Computational biology enables handling of large omics data by developing algorithms, computational
tools and methods using data-analytical, mathematical modeling, and computational simulation
techniques. It is essential that sound tools and techniques be adopted for biological data analysis. The

training programmes organized by the Institute are very useful in understanding the advances in
computational biology and agricultural bioinformatics to the researchers.

The training programme Computational Biology and its Applications in Agriculture has been

especially designed to drive the maximum academic advantage through interaction with faculty
members and fellow participants. I am sure that the knowledge assimilated from this training
programme will enable the participants to have better understanding of computational biology and
bioinformatics, which will also benefit them in handling and analyzing the biological data by using
appropriate tools and software.

The course contents are intertwining of theory and application. The topies are covered under different
modules: (1) Basics of Computational Biology [Introduction to Linux; Python/ Perl/ R Programming

Languages; Methods/Tools/Software/Databases
Bioinformatics], (2) Computational Methods for NGS Data Analysis [NGS Data Pre-processing;
Genome Assembly and Annotation; Analysis of Transcriptomics, Metagenomics and Non-coding
RNA Data; Genome-Wide Association Studies and Genomic Selection), and (3) Tools and Techniques

for Proteomics Data Analysis [Protein Structure Prediction and Docking; Molecular Dynamics and

Simulation; Proteomics Expression Data Analysis].

relevant to Computational Biology and

The faculty for this course comprises of eminent scientists well established in the field of
Bioinformatics/ Computational Biology/ Agricultural Statistics/ Computer Applications/

Genomics and other disciplines. The lecture notes given in the reference manual provide an exposition

of the subject. I hope that the reference manual will be quite useful to the participants. I take this
opportunity to thank the entire faculty for doing a wonderful job. I wish to complement Course
Coordinator, Dr. Sudhir Srivastava and Course Co-coordinators, Ms. Sneha Murmu and Ms. Soumya
Sharma of this training programme, for bringing out this valuable document in time. We look forward

to suggestions from every corner in improving this reference manual.

(Rajender Parsad)
Director, ICAR-IASRI

New Delhi
February 20, 2023

15

P

P

5

PREFACE

The ICAR-Indian Agricultural Statistics Research Institute is a premier Institute in the disciplines of

Agricultural Statistics, Computer Applications and Bioinformatics in the country. The Institute has

been engaged in conducting research, teaching and organizing training programmes in Agricultural

Statistics with special emphasis on Experimental Designs, Sampling Techniques, Statistical Genetics,
Forecasting Techniques, Bioinformatics and Computer Applications. The Institute has been very
actively pursuing advisory service that has enabled the institute to make its presence felt both in

National Agricultural Research and Education System (NARES) and National Agricultural Statistics
System (NASS). The Institute has taken a lead in developing Statistical Software Packages useful for

Agricultural Research.

There is an ever-increasing demand to be trained and sensitized with recent developmentsin
the field of computational biology and agricultural bioinformatics. Recent breakthroughs in high-
throughput genomics have resulted in barrage of omics data. One of the challenges in analyzing and

interpreting Omics data is gleaning relevant insights from large, high-dimensional data sets from

multiple sources. Computational biology addresses these challenges by developing algorithms,
computational tools and methods using data-analytical, mathematical modeling, and computational
simulation techniques. The aim of the training programme is to deliver the concepts of computational
tools and techniques for omics data analysis in agriculture to the participants. This would help them

in upgrading their capabilities in research, teaching and training.

The training focus on the databases, algorithms and computational techniques involved in the

analysis of genomics, transcriptomics, metagenomics, and proteomics data. Special emphasis has

been laid on concepts, issues and solutions related to computational biology and agricultural

bioinformatics. Various lectures were included in this training programme: Super-Computing Facility

ASHOKA; Basics of Linux and Python/ Perl/R Programming Languages; Biological Databases;
Sequence and Phylogenetic Analysis; SNP and SSR Mining; Introductio
Genome Assembly and Annotation; Analysis of Transcriptomics, Metagenomics and Non-coding
RNA Data; Genome-Wide Association Studies and Genomic Selection; Protein Structure Prediction
and Docking; Molecular Dynamics and Simulation; Proteomics Expression Data Analysis; Post-

to NGS Data Analysis;

Translational Modifications.

We would like to take this opportunity to thank the faculty of the Institute who spared their
valuable time in making this course meaningful and successful that helped in bringing out this

manual in time. We are also thankful to the various ICAR Institutes, National Research Centres,

Bureaus and State Agricultural Universities for deputing their employees in this training programme.

We are grateful to Dr. Rajender Parsad, Director, ICAR-IASRI and Dr. Monendra Grover, Head,
Division of Bioinformatics, ICAR-IASRI for their valuable guidance and making all necessary

facilities available for smooth conduct of the course. We are thank ful to each one who supported

directly or indirectly for preparing this training manual.

m

(Sudhir Srivastava)
Course Coordinator

(Sneha Murmu)
Course Co-Coordinator

(Soumya Sharma)
Course Co-Coordinator

CONTENTS

S. No. TOPIC Page No.

1. Bioinformatics in Agriculture – Challenges and Opportunities 1-18

2. ASHOKA: Functioning and Activities 19-25

3. Basics of Linux 26-36

4. Perl Programming for Bioinformatics 37-46

5. Introduction to Python Programming 47-69

6. Introduction to R for Bioinformatics 70-95

7. Overview of Biological Databases 96-103

8. Sequence analysis 104-121

9. Phylogenetic analysis 122-133

10. Introduction to NGS Data Analysis 134-138

11. Genome Assembly 139-145

12. Genome Annotation 146-157

13. Hands-on Session for Genome Annotation 158-168

14. Transcriptomic Data Analysis 169-174

15. Hands-on Session for Transcriptomic Data Analysis 175-178

16. Genomic Selection 179-187

17. Genome Wide Association Studies 188-193

18. Hands-on Session for GWAS 194-204

19. DNA Signature based SNP and SSR Mining 205-214

20. Analysis of Non-Coding Sequencing Data 215-219

21. Overview of Metagenomics Data Analysis 220-226

22. Metagenomics Data Analysis using QIIME 227-231

23. MG-RAST for Metagenomics Analysis 232-241

24. Statistical Analysis of Metagenomics Data 242-258

25. Protein Structure Prediction and Molecular Docking 259-278

26. Molecular Dynamics and Simulation 279-287

27. An Introduction to Proteomics Data Analysis 288-293

28. Over-view of Post-Translational Modifications 294-299

1

Bioinformatics in Agriculture – Challenges and Opportunities
Anil Rai

Introduction

Bioinformatics is the field of science in which biology, computer science, and information

technology merge to form a single discipline. It is the emerging field that deals with the

application of computers to the collection, organization, analysis, manipulation, presentation,

and sharing of biologic data to solve biological problems on the molecular level. According

to Frank Tekaia, bioinformatics is the mathematical, statistical and computing methods that

aim to solve biological problems using DNA and amino acid sequences and related

information.

Fig. 1: Concepts of Bioinformatics

The term bioinformatics was coined by Paulien Hogeweg in 1979 for the study of informatic

processes in biotic systems. The National Center for Biotechnology Information (NCBI,

2001) defines bioinformatics as: "Bioinformatics is the field of science in which biology,

computer science, and information technology merge into a single discipline. There are

three important sub-disciplines within bioinformatics: the development of new algorithms

and statistics with which to assess relationships among members of large data sets; the

analysis and interpretation of various types of data including nucleotide and amino acid

sequences, protein domains, and protein structures; and the development and implementation

of tools that enable efficient access and management of different types of information.”

Bioinformatics is a scientific discipline that has emerged in response to accelerating demand

for a flexible and intelligent means of storing, managing and querying large and complex

biological data sets. The ultimate aim of bioinformatics is to enable the discovery of new

biological insights as well as to create a global perspective from which unifying principles

in biology can be discerned. Over the past few decades rapid developments in genomic and

other molecular research technologies and developments in information technologies have

combined to produce a tremendous amount of information related to molecular biology.

At the beginning of the genomic revolution, the main concern of bioinformatics was the

2

creation and maintenance of a database to store biological information such as nucleotide

and amino acid sequences. Development of this type of database involved not only design

issues but the development of an interface whereby researchers could both access existing

data as well as submit new or revised data (e.g. to the NCBI,

http://www.ncbi.nlm.nih.gov/). More recently, emphasis has shifted towards the analysis of

large data sets, particularly those stored in different formats in different databases.

Ultimately, all of this information must be combined to form a comprehensive picture of

normal cellular activities so that researchers may study how these activities are altered in

different disease states. Therefore, the field of bioinformatics has evolved such that the most

pressing task now involves the analysis and interpretation of various types of data,

including nucleotide and amino acid sequences, protein domains, and protein structures.

Origin & History of Bioinformatics

Over a century ago, bioinformatics history started with an Austrian monk named Gregor

Mendel. He is known as the “Father of Genetics". He cross-fertilized different colors of

the same species of flowers. He kept careful records of the colors of flowers that he cross-

fertilized and the color(s) of flowers they produced. Mendel illustrated that the inheritance

of traits could be more easily explained if it was controlled by factors passed down from

generation to generation.

After this discovery of Mendel, bioinformatics and genetic record keeping have come a long

way. The understanding of genetics has advanced remarkably in the last thirty years. In 1972,

Paul Berg made the first recombinant DNA molecule using ligase. In that same year,

Stanley Cohen, Annie Chang and Herbert Boyer produced the first recombinant DNA

organism. In 1973, two important things happened in the field of genomics:

1. Joseph Sambrook led a team that refined DNA electrophoresis using agarose gel, and

2. Herbert Boyer and Stanely Cohen invented DNA cloning. By 1977, a method for

sequencing DNA was discovered and the first genetic engineering company, Genetech

was founded.

During 1981, 579 human genes had been mapped and mapping by in situ hybridization

had become a standard method. Marvin Carruthers and Leory Hood made a huge leap in

bioinformatics when they invented a method for automated DNA sequencing. In 1988, the

Human Genome Organization (HUGO) was founded. This is an international organization of

scientists involved in Human Genome Project. In 1989, the first complete genome map

was published of the bacteria Haemophilus influenza.

The following year, the Human Genome Project was started. In 1991, a total of 1879 human

genes had been mapped. In 1993, Genethon, a human genome research center in France

produced roduced a physical map of the human genome. Three years later, Genethon

published the final version of the Human Genetic Map which concluded the end of the first

phase of the Human Genome Project.

Bioinformatics was fuelled by the need to create huge databases, such as GenBank and

EMBL and DNA Database of Japan to store and compare the DNA sequence data erupting

from the human genome and other genome sequencing projects. Today, bioinformatics

embraces protein structure analysis, gene and protein functional information, data from

patients, pre-clinical and clinical trials, and the metabolic pathways of numerous species.

http://www.ncbi.nlm.nih.gov/

3

Importance

The greatest challenge facing the molecular biology community today is to make sense of the

wealth of data that has been produced by the genome sequencing projects. Cells have a central

core called nucleus, which is storehouse of an important molecule known as DNA. They are

packaged in units known as chromosomes. They are together known as the genome. Genes are

specific regions of the genomes (about 1%) spread throughout the genome, sometimes

contiguous, many times non-contiguous. RNAs similarly contains informations, their major

purpose is to copy information from DNA selectively and to bring it out of the nucleus for its

use. Proteins are made of amino acids, which are twenty in count (researchers are debating on

increasing this count, as couple of new ones are claimed to be identified).

The gene regions of the DNA in the nucleus of the cell is copied (transcribed) into the RNA

and RNA travels to protein production sites and is translated into proteins is the Central

Dogma of Molecular Biology. Portions of DNA Sequence are transcribed into RNA. The first

step of a cell is to copy a particular portion of its DNA nucleotide sequence (i.e. gene) which

is shown in Fig 2 and Fig 3.

Fig. 2: Biological Systems

Bioinformatics, being an interface between modern biology and informatics it involves

discovery, development and implementation of computational algorithms and software tools

that facilitate an understanding of the biological processes (Fig 3.) with the goal to serve

primarily agriculture and healthcare sectors with several spinoffs.

In a developing country like India, bioinformatics has a key role to play in areas like

agriculture where it can be used for increasing the nutritional content, increasing the volume

of the agricultural produce and implanting disease resistance etc. In the pharmaceutical

sector, it can be used to reduce the time and cost involved in drug discovery process

particularly for third world diseases, to custom design drugs and to develop personalized

medicine.

4

Fig. 3: Biological Processes

Fig. 4: Information on Sequence Data

Traditionally, molecular biology research was carried out entirely at the experimental laboratory

bench but the huge increase in the scale of data being produced in this genomic era has seen

a need to incorporate computers into this research process. Sequence generation, its subsequent

storage, interpretation and analysis are entirely computer dependent tasks. However, the

5

molecular biology of an organism is a very complex issue with research being carried out at

molecular level. The first challenge facing the bioinformatics community today is the

intelligent and efficient storage of this massive data. Moreover, it is essential to provide easy

and reliable access to this data. The data itself is meaningless before analysis and it is

impossible for even a trained biologist to begin to interpret it manually. Therefore, automated

computer tools must be developed to allow the extraction of meaningful biological

information. There are three central biological processes around which bioinformatics tools

must be developed:

• DNA sequence which determines protein sequence

• Protein sequence which determines protein structure

• Protein structure which determines protein function

Fig. 5: Hypothesis-generating bioinformatics

Difference between Bioinformatics and Computational Biology

Both Bioinformatics and Computational Biology are Computers and Biology. Biologists who

specialize in use of computational tools and systems to answer problems of biology are

bioinformaticians. Computer scientists, mathematicians, statisticians, and engineers who

specialize in developing theories, algorithms and techniques for such tools and systems are

computational biologists. The actual process of analyzing and interpreting data is referred to

as computational biology. Important sub- disciplines within bioinformatics and computational

biology include:

6

• The development and implementation of tools that enable efficient access to, and

use and management of, various types of information.

• The development of new algorithms (mathematical formulas) and statistics with

which to assess relationships among members of large data sets, such as methods

to locate a gene within a sequence, predict protein structure and/or function, and

cluster protein sequences into families of related sequences

Bioinformatics has become a mainstay of genomics, proteomics, and all other *.omics

(such as phenomics) and many information technology companies have entered the business

or are considering entering the business, creating an IT (information technology) and BT

(biotechnology) convergence. A bioinformaticist is an expert who not only knows how to

use bioinformatics tools, but also knows how to write interfaces for effective use of the

tools. A bioinformatician, on the other hand, is a trained individual who only knows to

use bioinformatics tools without a deeper understanding.

Biological Databases

Biological databases are huge data bases of mostly sequence data pouring in from many

genome sequencing projects going on all over the world. They are an important tool in

assisting scientists to understand and explain a host of biological phenomena from the

structure of biomolecules and their interaction, to the whole metabolism of organisms to

understanding the evolution of species. This knowledge helps facilitate to fight against

diseases, assists in the development of medications and in discovering basic relationships

amongst species in the history of life.

The information about DNA, proteins and the function of proteins must be stored in an

intelligent fashion, so that scientists can solve problems quickly and easily using all

available information. Therefore, the information is stored in databanks, many of which

are accessible to everyone on the internet. A few examples are a databank containing protein

structures (the PDB or Protein Data Bank), a databank containing protein sequences and

their function (Swiss-Prot), a databank with information about enzymes and their function

(ENZYME), and a databank with nucleotide sequences of all genes sequenced up to date

(EMBL). Due to the current state of technology, there are large differences between the sizes

of databanks. EMBL, the nucleotides database contains many more sequences than the

number of protein structures registered in the PDB. The reason for this is that it is a lot

simpler to sequence a gene, than to find out which protein is encoded by this gene and what

its function is. Also it is more difficult to determine the structure of the protein.

Using databanks, one can perform all kinds of comparisons and search queries. If, for

example, you know a protein which causes a disease in humans, your might look into a

databank to see if a similar protein has previously been described and what this protein does

in the human body.

Using known information will make it easier and quicker to develop a drug against the

disease or a test to detect the disorder in an early stage.

The Biological data can be broadly classified as:

7

Biological Databases Information they contain

1. Bibliographic databases Literature

2. Taxonomic database Classification

3. Nucleic acid databases DNA information

4. Genomic databases Gene level information

5. Protein databases Protein

information

6. Protein families, domains Classification of proteins

and functional sites and identifying domains

7. Enzymes/ metabolic pathways Metabolic

pathways

There are many different types of database but for routine sequence analysis, the following

are initially the most important

1. Primary databases: Contain sequence data such as nucleic acid or protein.

Example of primary databases include:

Protein Databases Nucleic Acid Databases

• SWISS-PROT • EMBL

• TREMBL • Genbank

• PIR • DDBJ

2. Secondary databases: These are also known as pattern databases contain results

from the analysis of the sequences in the primary databases. Example of secondary

databases include: PROSITE, Pfam, BLOCKS, PRINTS.

Introduction to NCBI and Entrez

The web-site of National Center for Biotechnology Information (NCBI) is one of the world's

premier website for biomedical and bioinformatics research (http://www.ncbi.nlm.nih.gov/).

Based within the National Library of Medicine at the National Institutes of Health, USA,

the NCBI hosts many databases used by biomedical and research professionals. The services

include PubMed (the bibliographic database); GenBank (the nucleotide sequence database);

and the BLAST algorithm for sequence comparison, among many others. It is established

in 1988 as a national resource for molecular biology information. NCBI creates public

databases, conducts research in computational biology, develops software tools for analyzing

genome data, and disseminates biomedical information all for the better understanding of

molecular processes affecting human health and disease.

Every database has a unique identifier. Each entry in a database must have a unique identifier

EMBL Identifier (ID), GENBANK Accession Number (AC). This database stores information

along with the sequence. Each piece of information is written on it's own line, with a code

defining the line. For example, DE (description); OS (organism species); AC (accession

number). Relevant biological information is usually described in the feature table (FT).

http://www.ncbi.nlm.nih.gov/

8

Fig. 6: International Sequence Database Collaboration

The Entrez Search and Retrieval System

Entrez is the text-based search and retrieval system used at NCBI for all of the major

databases including PubMed, Nucleotide and Protein Sequences, Protein Structures,

Complete Genomes, Taxonomy, OMIM, and many others. Entrez is at once an indexing and

retrieval system, a collection of data from many sources, and an organizing principle for

biomedical information. These general concepts are the focus of this section (Fig 7.).

Fig. 7: NCBI - RDBMS

The Nucleotide Sequence Database

The GenBank sequence database is an annotated collection of all publicly available

nucleotide sequences and their protein translations. This database is produced at National

Center for Biotechnology Information (NCBI) as part of an international collaboration with

the European Molecular Biology Laboratory (EMBL) as given in Fig. 8, data library from

9

the European Bioinformatics Institute (EBI) and the DNA Data Bank of Japan (DDBJ)

given in Fig. 9. GenBank and its collaborators receive sequences produced in laboratories

throughout the world from more than 100,000 distinct organisms. GenBank continues to

grow at an exponential rate, doubling every 10 months. Release 134, produced in February

2003, and contained over 29.3 billion nucleotide bases in more than 23.0 million sequences.

GenBank is built by direct submissions from individual laboratories, as well as from bulk

submissions from large-scale sequencing centers.

Fig. 8: EMBL Nucleotide Sequence Database

Fig. 9: DNA Data Bank of Japan

10

The Bibliographic Database

PubMed is a database developed by the NCBI. The database was designed to provide

access to citations (with abstracts) from biomedical journals. Subsequently, a linking feature

was added to provide access to full-text journal articles at Web sites of participating

publishers, as well as to other related Web resources. PubMed is the bibliographic component

of the NCBI's Entrez retrieval system.

MEDLINE is NLM's premier bibliographic database covering the fields of medicine, nursing,

dentistry, veterinary medicine, and the preclinical sciences. Journal articles are indexed for

MEDLINE, and their citations are searchable, using NLM's controlled vocabulary, MeSH

(Medical Subject Headings). MEDLINE contains all citations published in Index Medicus,

and corresponds in part to the International Nursing Index and the Index to Dental Literature.

Macromolecular Structure Databases

The resources provided by NCBI for studying the three-dimensional (3D) structures of

proteins center around two databases: the Molecular Modeling Database (MMDB), which

provides structural information about individual proteins; and the Conserved Domain

Database (CDD), which provides a directory of sequence and structure alignments

representing conserved functional domains within proteins(CDs). Together, these two

databases allow scientists to retrieve and view structures, find structurally similar proteins

to a protein of interest, and identify conserved functional sites.

Computer Programming in Bioinformatics: JAVA in Bioinformatics

The geographical scattered research centres all around the globe ranging from private to

academic settings, and a range of hardware and OSs are being used, Java is emerging as a

key player in bioinformatics. Physiome Sciences' computer-based biological simulation

technologies and Bioinformatics Solutions' PatternHunter are two examples of the growing

adoption of Java in bioinformatics.

Perl in Bioinformatics

String manipulation, regular expression matching, file parsing, data format interconversion

etc. are the common text-processing tasks performed in bioinformatics. Perl excels in such

tasks and is being used by many developers. Yet, there are no standard modules designed

in Perl specifically for the field of bioinformatics. However, developers normally designed

several of their own individual modules for any specific purpose, which have become

quite popular and are coordinated by the BioPerl project.

Measuring Biodiversity

Biodiversity Databases are used to collect the species names, descriptions, distributions,

genetic information, status & size of populations, habitat needs, and how each organism

interacts with other species etc. Computer simulations models are useful to study population

dynamics, or calculate the cumulative genetic health of a breeding pool (in agriculture)

or endangered population (in conservation). Entire DNA sequences or genomes of endangered

species can be preserved, allowing the results of Nature's genetic experiment to be

remembered in silico.

11

In these days of growing human population and habitat destruction, knowledge of centers of

high biodiversity is critical for rational conservation decisions to be made. The major problem

area is that this information is largely unavailable to the decision makers. It is ironic that

most of these data are in the great museums, which are located in the cool temperate parts

of the world whereas; most of the organisms are in the warm humid parts of the world. The

data that exist are paper based. Descriptions by collectors and curators, herbarium sheets,

diagrams and photographs, and of course, pickled and preserved specimens with their

labels. If a researcher wishes to consult these data he/she has to travel to the museum in

question. For people who need a breadth of information to make decisions, this is obviously

not an option. There are two areas in biology where enormous amounts of information are

generated. One is in molecular biology which deals with base sequences in DNA and amino

acid sequences in proteins, and the other is the biodiversity information crisis.

Mathematics and computers are being used t o t a c k l e these problems with procedures

which come under the label of Bioinformatics.

Fig. 10: Biodiversity Hotspots regions

Sequence Analysis and Alignment

The most well-known application of bioinformatics is sequence analysis. In sequence analysis,

DNA sequences of various organisms are stored in databases for easy retrieval and

comparison. The well-reported Human Genome Project (Fig. 11) is an example of sequence

analysis bioinformatics. Using massive computers and various methods of collecting

sequences, the entire human genome was sequenced and stored within a structured database.

DNA sequences used for bioinformatics can be collected in a number of ways. One method

12

is to go through a genome and search out individual sequences to record and store. Another

method is to compare all fragments for finding whole sequences by overlapping the redundant

segments. The latter method, known as shotgun sequencing, is currently the most popular

because of its ease and speed. By comparing known sequences of a genome to specific

mutations, much information can be assembled about undesirable mutations such as cancers.

With the completed mapping of the human genome, bioinformatics has become very

important in the research of cancers in the hope of an eventual cure. Computers are also

used to collect and store broader data about species. The Species 2000 project, for example,

aims to collect a large amount of information about every species of plant, fungus, and animal

on the earth. This information can then be used for a number of applications, including

tracking changes in populations and biomes.

Fig. 11: Human Genome Project

With the growing amount of data, earlier it was impractical to analyze DNA sequences

manually. Nowadays, many tools and techniques are available provide the sequence

comparisons (sequence alignment) and analyze the alignment product to understand the

biology. For example, BLAST is used to search the genomes of thousands of organisms,

containing billions of nucleotides. BLAST is software which can do this using dynamic

programming, as fast as google searches for your keywords, considering the length of query

words of bio-sequences.

Sequence Alignment: The sequence alignment can be categorized into two groups i.e. global

and local alignment

Global Alignment

Input: two sequences S1, S2 over the same alphabet

Output: two sequences S’1, S’2 of equal length

13

(S’1, S’2 are S1, S2 with possibly additional

gaps)

Example:

S1= GCGCATGGATTGAGCGA u

S2= TGCGCCATTGATGACC

A possible alignment:

S’1=-GCGC-ATGGATTGAGCGA

S’2= TGCGCCATTGAT-GACC—

Local Alignment

Goal: Find the pair of substrings in two input sequences which have the highest similarity Input:

two sequences S1, S2 over the same alphabet

Output: two sequences S‟ 1, S‟ 2 of equal length

(S’1, S’2 are substrings of S1, S2 with possibly additional gaps)

Example:

S1= GCGCATGGATTGAGCGA

S2= TGCGCCATTGATGACC

A possible alignment:

S’1= ATTGA-G

S’2= ATTGATG

FASTA: In bioinformatics, FASTA format is a text-based format for representing either

nucleotide sequences or peptide sequences, in which base pairs or amino acids are

represented using single- letter codes. The format also allows for sequence names and

comments to precede the sequences. The FASTA format may be used to represent either

single sequences or many sequences in a single file. A series of single sequences,

concatenated, constitute a multisequence file. A sequence in FASTA format is represented

as a series of lines, which should be no longer than 120 characters and usually do not exceed

80 characters. This probably was because to allow for preallocation of fixed line sizes in

software: at the time, most users relied on DEC VT (or compatible) terminals which could

display 80 or 132 characters per line. Most people would prefer normally the bigger font in

80- character modes and so it became the recommended fashion to use 80 characters or less

(often 70) in FASTA lines. The first line in a FASTA file starts either with a ">" (greater-

than) symbol or a ";" (semicolon) and was taken as a comment. Subsequent lines starting

with a semicolon would be ignored by software. Since the only comment used was the

first, it quickly became used to hold a summary description of the sequence, often starting

with a unique library accession number, and with time it has become commonplace use to

always use ">" for the first line and to not use ";" comments (which would otherwise be

ignored).

>gi|5524211|gb|AAD44166.1| cytochrome b [Elephas maximus maximus]

LCLYTHIGRNIYYGSYLYSETWNTGIMLLLITMATAFMGYVLPWGQMSFWGATVIT

NLFSA

IPYIGTNLVEWIWGGFSVDKATLNRFFAFHFILPFTMVALAGVHLTFLHETGSNNPLG

LTSDS

DKIPFHPYYTIKDFLGLLILILLLLLLALLSPDMLGDPDNHMPADPLNTPLHIKPEWFL

14

FAYAI

LRSVPNKLGGVLALFLSIVILGLMPFLHTSKHRSMMLRPLSQALFWTLTMDLLTLTWI

GSQP VEYPYTIIGQMASILYFSIILAFLPIAGXIENY

 Prediction of Protein

Structure

Proteins play crucial functional roles in all biological processes: enzymatic catalysis, signaling

messengers, structural elements. Function depends on unique 3-D structure. It is easy to

obtain protein sequences but difficult to determine structure. Protein structure prediction is

another important application of bioinformatics. The amino acid sequence of a protein, the

so-called primary structure, can be easily determined from the sequence on the gene that

codes for it. In the vast majority of cases, this primary structure uniquely determines a

structure in its native environment. Knowledge of this structure is vital in understanding

the function of the protein. For lack of better terms, structural information is usually

classified as one of secondary, tertiary and quaternary structure. Protein structure prediction

is the prediction of the three-dimensional structure of a protein from its amino acid sequence

i.e, the prediction of its tertiary structure from its primary structure. Protein structures are

being determined with increasing speed. Consequently, automated and fast bioinformatics

tools are required for exploring structure–function relationships in large numbers of

proteins. These are necessary both when the function has been characterized

experimentally and when it must be predicted.

Fig. 12: Protein Structure Prediction

In the genomic branch of bioinformatics, homology is used to predict the function of a gene:

if the sequence of gene A, whose function is known, is homologous to the sequence of

gene B, whose function is unknown, one could infer that B may share A's function. In the

structural branch of bioinformatics, homology is used to determine which parts of a protein

are important in structure formation and interaction with other proteins. In a technique called

homology modeling, this information is used to predict the structure of a protein once the

structure of a homologous protein is known. One example of this is the similar protein

homology between hemoglobin in humans and the hemoglobin in legumes (leghemoglobin).

Both serve the same purpose of transporting oxygen in the organism. Though both of these

proteins have completely different amino acid sequences, their protein structures are

15

virtually identical, which reflects their near identical purposes.

Molecular Docking

Fig. 13: Protein-ligand Docking

In the last two decades, tens of thousands of protein three-dimensional structures have been

determined by X-ray crystallography and Protein nuclear magnetic resonance spectroscopy

(protein NMR). One central question for the biological scientist is whether it is practical to

predict possible protein-protein interactions only based on these 3D shapes, without doing

protein-protein interaction experiments. A variety of methods have been developed to tackle

the Protein-protein docking problem, though it seems that there is still much work to be done

in this field. We are interested in information about our DNA, proteins and the function of

proteins. Genes and proteins can be sequenced, so the sequence of bases in genes or amino

acids in proteins can be determined. This information must be stored in an intelligent fashion,

so that scientists can solve problems quickly and easily using all available information.

Therefore, the information is stored in databanks, many of which are accessible to everyone

on the internet. A few examples are a databank containing protein structures (the PDB or

Protein Data Bank), a databank containing protein sequences and their function (Swiss-

Prot), a databank with information about enzymes and their function (ENZYME), and a

databank with nucleotide sequences of all genes sequenced up to date (EMBL).

Bioinformatics in Agriculture

The most critical tasks in bioinformatics involves the finding of genes in the DNA sequences

of various organisms, developing methods to predict the structure and function of newly

16

discovered proteins and structural RNA sequences, clustering protein sequences into

families of related sequences, development of protein models, aligning similar proteins and

generating phylogenetic trees to examine evolutionary relationships. The sequencing of the

genomes of microbes, plants and animals should have enormous benefits for the agricultural

community. Computational analysis of these sequence data generated by genome

sequencing, proteomics and array-based technologies is critically important. Bioinformatics

tools can be used to search for the genes within these genomes and to elucidate their functions.

The sequencing of the genomes of plants and animals should have enormous benefits for the

agricultural community. Bioinformatics tools can be used to search for the genes within these

genomes and to elucidate their functions. This specific genetic knowledge could then be

used to produce stronger, more drought, disease and insect resistant crops and improve the

quality of livestock making them healthier, more disease resistant and more productive.

Bioinformatics in India

Studies of IDC points out that India will be a potential star in bioscience field in the coming

years after considering the factors like bio-diversity, human resources, infrastructure facilities

and governments initiatives.

Bioinformatics has emerged out of the inputs from several different areas such as biology,

biochemistry, biophysics, molecular biology, biostatics, and computer science. Specially

designed algorithms and organized databases is the core of all informatics operations. The

requirements for such an activity make heavy and high level demands on both the hardware

and software capabilities. This sector is the quickest growing field in the country. The

vertical growth is because of the linkages between IT and biotechnology, spurred by the

human genome project. The promising start- ups are already there in Bangalore, Hyderabad,

Pune, Chennai, and Delhi. There are over 200 companies functioning in these places. IT

majors such as Intel, IBM, Wipro are getting into this segment spurred by the promises in

technological developments.

17

Fig. 14: Applications and Challenges in Bioinformatics

18

References

 Benson, D.A., Karsch-Mizrachi, I. Lipman, D.J., Ostell, J. Wheeler, D.L.

(2005).GenBank. Nucleic Acids Research, 33, D34–D38.

 Bioinformatics in the 21st century (1998). A report to the research resources and

Infrastructure working group subcommittee on biotechnology national science and

Technology council white house office of science and technology policy

Bioinformatics.

 Crick F. (1970). Central Dogma of Molecular Biology. Nature, 227, 561-563.

 http://www.ncbi.nlm.nih.gov/books/nbk21101/

 Human genome project and beyond (ww.ornl.gov/hgmis/)

 Indigenous Knowledge, Bioinformatics and Rural Agriculture (2005). 9th ICABR

International Conference on Agricultural Biotechnology: ten years later, Ravello (Italy),

July 6 to July 10.

 Jayaram B. and Priyanka D. Bioinformatics for a better tomorrow. Department of

chemistry & Supercomputing facility for bioinformatics & computational biology, Indian

Institute of Technology.

 Maglott D., Ostell J., Pruitt K. D. and Tatusova T. (2005). Entrez gene: gene-centered

information at NCBI, Nucleic Acids Research, 33, D54–D58.

 Mcentyre J. and Ostell J. (2005). The NCBI Handbook. Bethesda (MD): National

Library of Medicine (US).

 McEntyre Jo, Jim O. (2002). National Center for Biotechnology Information Bethesda

(MD): National Center for Biotechnology Information (US). The NCBI Handbook.

Medicine (US), NCBI.

 Ronald M. A., Knegtel, Irwin D. Kuntz and Oshiro C. M. (1997). Molecular Docking

to Ensembles of Protein Structures. Journal of Molecular. Biology. 266, 424- 440.

 12. Wheeler, D.L., Benson, D.A., Bryant, Canese, K., Church, D.M., Edgar, R.,

Federhen, S., Helmberg, W., Kenton, D., Khovayko, O. et al. (2005). Database

resources of the National Center for Biotechnology Information: Update. Nucleic Acid

Research, 33, D39–D45.

http://www.ncbi.nlm.nih.gov/books/nbk21101/

19

ASHOKA: Functioning and Activities

K.K. Chaturvedi, U.B. Angadi and Jai Bhagwan

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Introduction

First HPC systems were vector-based systems (e.g. Cray) named ‘supercomputers’ because

they were an order of magnitude more powerful than commercial systems. The

‘supercomputer’, a large systems are just scaled up versions of smaller systems. High

performance computing can mean high flop count per processor and totalled over many

processors working on the same or related problems. This can have faster turnaround time,

more powerful system, scheduled to first available system(s) and using multiple systems

simultaneously. The HPC is any computational technique that solves a large problem faster

than possible using single, commodity systems, Custom-designed, high-performance

processors, Parallel computing, Distributed computing and Grid computing.

Parallel computing is a single system with many processors working on the common task. The

Distributed computing is configured as many systems loosely coupled by a scheduler to work

on related problems and Grid Computing is defined as many systems tightly coupled by

software and networks to work together on single problems or on related problems.

Parallel computer is a computer that contains multiple processors where each processor works

on its section of the problem and allowed to exchange information with other processors.

Two big advantages of parallel computers are performance and memory. Parallel computers

enable us to solve problems that benefit from or require, fast solution, require large amounts of

memory and both.

As per the Moore’s Law ‘predicts’ that single processor performance doubles every 18 months,

eventually physical limits on manufacturing technology will be reached as in figure 1.

Fig. 1: Moore’s Law towards performance of the system

There are two types of parallel computers by their memory model namely shared memory and

distributed memory. All processors have access to a pool of shared memory (Figure 2-A) while

each processor has its own local memory in distributed memory (Figure 2-B).

20

Fig. 2: Shared Memory and distributed memory system

Shared memory have two types of architecture i.e., Uniform memory access (UMA) and Non-

uniform memory access (NUMA). Each processor has uniform access to memory in UMA and

also called as symmetric multiprocessors, or SMPs (Figure 3-A). Time for memory access

depends on location of data in NUMA as local access is faster than non-local access but it is

easy to scale up than SMPs (Figure 3-B).

Fig. 3: Shared Memory with UMA and NUMA

The distributed memory is two types namely Massively Parallel Processor (MPP) and cluster.

MPP is tightly integrated, single system image and cluster is an individual computers connected

by specialized software and connected using interconnect network. Distributed memory is

shown in figure 4.

Fig. 4: Distributed Memory

Both types of memory systems have processors, memory and network/interconnect.

Terminology

Clock period (cp): The minimum time interval between successive actions in the processor. It

is measured in nanoseconds (~1-5 for fastest processors) which is inverse of frequency (MHz).

(A) (B)

(B) (A)

21

Instruction: An action executed by a processor, such as a mathematical operation or a memory

operation.

Register: A small and extremely fast location for storing data or instructions in the processor.

Functional Unit (FU): A hardware element that performs an operation on an operand or pair of

operations. Common FUs are ADD, MULT, INV, SQRT, etc.

Pipeline: A Technique enables multiple instructions to be overlapped during execution.

Superscalar: Multiple instructions are possible per clock period.

Flops: Floating point operations per second.

Cache: A Fast memory in the processor which keep instructions and data close to functional

units so processor can execute more instructions more rapidly.

SRAM: Static Random Access Memory (RAM). Very fast (~10 nanoseconds), made using the

same kind of circuitry as the processors, so speed is comparable.

DRAM: Dynamic RAM. Longer access times (~100 nanoseconds), but hold more bits and are

much less expensive (10x cheaper).

Memory hierarchy: The hierarchy of memory in a parallel system, from registers to cache to

local memory to remote memory.

Networks Latency: How long does it take to start sending a "message"? Measured in

microseconds.

Networks Processors: How long does it take to output results of some operations, such as

floating point add, divide etc., which are pipelined?)

Networks Bandwidth: What data rate can be sustained once the message is started? Measured

in Mbytes/sec or Gbytes/sec

Types of Clusters/Processors

Symmetric Multiprocessors (SMPs) connect processors to global shared memory using either

bus or crossbar. It provides simple programming model, but has problems with buses can

become saturated and crossbar size must increase with number of processors. Problem grows

with number of processors, limiting maximum size of SMPs. Programming models are easier

since message passing is not necessary. The techniques are auto-parallelization via compiler

options, loop-level parallelism via compiler directives, OpenMP, and pthreads.

In MPP, each processor has its own memory and is not shared globally but the processors adds

another layer to memory hierarchy (remote memory). The processor/memory nodes are

connected by interconnect network using many possible topologies. The processors must pass

data via messages so the communication overhead can be minimized. Many vendors have

custom interconnects that provide high performance for their MPP system such as Gigabit

Ethernet, Fast Ethernet, etc.

Clusters are similar to MPPs with processors and memory. The processor performance must

be maximized and memory hierarchy needs remote memory as no shared memory for message

passing to avoid the communication overhead.

Clusters are different from MPPs as commodity processors including interconnect and OS with

multiple independent systems and separate I/O systems. The advantages of clusters are

inexpensive, fastest processors first, potential for true parallel I/O and high availability while

the disadvantages are less mature software (programming and system), more difficult to

manage (changing slowly), lower performance interconnects (not as scalable to large number).

Distributed Memory Programming provides message passing using MPI, MPI-2 and

active/one-sided messages.

22

There are two types of parallelism i.e., data and task. Each processor performs the same task

on different sets or sub-regions of data in data parallelism. Each processor performs a different

task in task parallelism. Most parallel applications fall somewhere on the continuum between

these two extremes.

Example of data parallelism in a bottling plant, there are several ‘processors’, or bottle cappers,

applying bottle caps concurrently on rows of bottles.

Example of task parallelism in a restaurant kitchen, there are several chefs, or ‘processors’,

working simultaneously on different parts of different meals. A good restaurant kitchen also

demonstrates load balancing and synchronization--more on those topics later.

A common form of parallelism used in developing applications was Master-Worker parallelism

where a single processor is responsible for distributing data and collecting results (task

parallelism) and all other processors perform same task on their portion of data (data

parallelism).

According to Flynn’s Taxonomy, the computing systems are classified into the following

broad categories:

 SISD: Single Instruction and Single Data

 SIMD: Single Instruction and Multiple Data

 MISD: Multiple Instruction and Single Data

 MIMD: Multiple Instruction and Multiple Data

The purpose of High-performance computing (HPC) platform is to provide the access to the

compute resources remotely. The user can login remotely and submit compute their jobs either

from the command line or through the GUI based interface provided to them. The computing

systems are connected together through a high bandwidth data transfer and made available to

the users in a queue-based job submission system. There are many open-source and commercial

software packages installed.

At IASRI, New Delhi

The National Agricultural Bioinformatics Grid in ICAR consists of an advanced HPC

infrastructure at IASRI, New Delhi and moderate HPC facilities at the domain centres for

undertaking research in the field of agricultural bioinformatics. Clusters are collections of

computers that are connected together. The special sets of software are used to configure HPC

environment. This set up has been named as Advanced Supercomputing Hub for Omics

Knowledge in Agriculture (ASHOKA). The importance of HPC is rapidly growing because

more and more scientific and technical problems are being studied on the huge data sets which

require very high computational power as well. HPC offers environment for biologists,

scientists, analysts, engineers and students to utilize the computing resources in making vital

decisions, to speed up research and development, by reducing the execution time.

The following HPC infrastructure are set up under NAIP project NABG which are as follows

in the form of clusters, network and storage.

Types of Clusters

a. 256 Nodes Linux Based Cluster with two masters

b. 16 Nodes Windows Based Cluster with one master

c. 16 Nodes GPGPU Based Linux Cluster with one master

d. 16 Nodes Linux based SMP system

e. 16 Nodes Linux Based Cluster at each of the five domains with one master

23

Types of Networks

a. High bandwidth network with low latency (Q-logic QDR InfiniBand switch)

b. Gigabit network for cluster administration and management

c. ILO3 Management Network

Types of Storage

a. Parallel File System (PFS) for computational purpose

b. Network Attached Storage (NAS) for user Home Directory

c. Archival Storage for back up.

The hardware configuration of the Head/Master node is as follows

Server Name : HP ProLiant DL380-G7 Server

Type of Processor : Intel Xeon X5675 3.07Ghz

Number of Processors : 2

Core per Processor : 6

Total memory (RAM) : 96GB

Memory per Core : 8GB

Hard Disk : 6*600GB SAS

OS : RHEL 6.2 (Linux)

The hardware configuration of each compute node is as follows

Server Name : HP ProLiant SL390-G7 Server

Type of Processor : Intel Xeon X5675 3.07 Ghz

Number of Processors : 2

Core per Processor : 6

Total memory (RAM) : 96G

Memory per Core : 8GB

Hard Disk : 300GB SAS

OS : RHEL 6.2 (Linux)

Measuring Performance

The memory is measured in terms of bytes i.e., Kilo (210 or 103), Mega (220 or 106) , Giga (230

or 109) – Tera (240 or 1012), Peta (250 or 1015) , Exa (260 or 1018)

The computational performance is measured in Flop/s (Flop/s = floating point operations per

second) i.e., Mega Flops, Tera Flops, Peta Flops etc.

One can calculate peak performance of the cluster using standard formula i.e. Cluster

Performance = (Number of nodes) * (number of CPUs per node) * (number of cores per CPU)

* (CPU speed in GHz) * (CPU instruction per cycle)

The grid has been established using the following network diagram as in figure 5.

24

Fig. 5: Network diagram of NABG Grid

The hardware and software specifications of the SMP is as follows

Server Name : HP ProLiant DL 980 G7

Type of Processor : Intel Xeon E7- 2830 2.13GHz

Number of Processors : 8

Core per Processor : 8

Total memory (RAM) : 1.5 TB

Hard Disk : 396 GB

OS : RHEL 6.2

A switched fabric computer network communications link, is being used in HPC and

enterprise data centre with InfiniBand interconnect switch. The InfiniBand architecture

specification defines a connection between processor nodes and high performance I/O nodes

such as storage devices as in figure 6.

25

Fig. 6: InfiniBand interconnect switch

Main purpose of Ethernet network in the cluster is to provide services like cluster

management, cluster monitoring, compute node deployment and many other things in figure

7.

Fig. 7: InfiniBand interconnect switch

Different types of file system are configured for storing user’s data, running parallel jobs and

archiving the important data. There are three types of storage (i) Network Attached Storage

(NAS), (ii) Parallel File System (PFS) and (iii) Archival Storage.

The following challenges in bioinformatics are exists which essentially require the grid based

architecture.

 Protein folding & structure prediction

 Homology search

 Multiple alignment

 Genomic sequence analysis

 Gene finding

 Gene expression data analysis

 Drug discovery

 Phylogenetic inference

 Computational genomics, proteomics

 Computational evolutionary biology

26

Basics of Linux

S. B. Lal

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

The Linux operating system is basically a variant of the UNIX operating system, and Linux

has probably all that UNIX offers and more. It is a multi-user, multitasking, network operating

system which also has a user friendly Graphical User Interface (GUI).

Every desktop computer uses an operating system. The most popular operating systems are

Windows, Mac OS, UNIX, Linux.

What is an Operating System?

An operating system is the first piece of software that the computer executes when a system is

turned on. The operating system loads itself into memory and begins managing the resources

available in the computer. It provides those resources to other applications that the user wants

to run. Typical services that an operating system provides include:

A task scheduler - The task scheduler is able to allocate the execution of the CPU to a number

of different tasks. Some of those tasks are the different applications that the user is running,

and some of them are operating system tasks.

A memory manager - The memory manager controls the system’s RAM and normally creates

a larger virtual memory space using a file on the hard disk.

A disk manager - The disk manager creates and maintains the directories and files on the disk.

When a file is needed, the disk manager makes it available from the disk.

A network manager - The network manager controls all data moving between the computer

and the network.

Other I/O services manager - The OS manages the keyboard, mouse, video display, printers,

etc.

Security manager - The OS maintains the security of the information in the computer’s files

and controls who can access the computer.

An operating system normally also provides the default user interface for the system. The

standard “look” of Windows 98 includes the Start button, the task bar, etc. The Mac OS

provides a completely different look and feel for Macintosh computers.

To understand why Linux has become so popular, it is helpful to know a little bit about its

history.

Background on Linux

Linux, a UNIX-like operating system, is based on Minix and has been invented by Linus

Benedict Torvalds in 1991. The following is an excerpt of a newsgroup, called

“comp.os.minix” where Linus posted this text on 08/01/91: “...As I mentioned a month ago,

I’m working on a free version of a Minix-look-alike for AT-386 computers. It has finally

reached the stage where it’s even usable (though may not be, depending on what you want),

and I am willing to put out the sources for wider distribution. It is just version 0.02... but I’ve

successfully run bash, gcc, gnu-make, gnu-sed, compress, etc. under it.”

http://computer.howstuffworks.com/computer-memory.htm
http://computer.howstuffworks.com/microprocessor.htm
http://computer.howstuffworks.com/ram.htm
http://computer.howstuffworks.com/virtual-memory.htm
http://computer.howstuffworks.com/hard-disk.htm
http://computer.howstuffworks.com/home-network.htm
http://computer.howstuffworks.com/keyboard.htm
http://computer.howstuffworks.com/mouse.htm
http://computer.howstuffworks.com/monitor.htm
http://computer.howstuffworks.com/inkjet-printer.htm

27

Linux is a free version of UNIX that continues to be developed by the cooperative efforts of

volunteer groups of programmers, primarily on the Internet, who exchange code, report bug,

and fix problems in an open-ended environment. As a result, the world now has a powerful,

robust, and full-featured operating system that continues to change and grow.

In other words, Linux is little bit harder to manage than something like Windows, but offers

more flexibility and configuration options.

Linux is licensed under the GPL (General Public license) from the GNU organization, under

which the kernel is provided with the source code, and is available for free. As a result, Linux

is considered to be more secure and stable than closed source or proprietary systems like

Windows because anyone can analyse the source code written in the C language and find bugs

or add new features. One important point that should be noted is that even though the source is

free, anyone is allowed to sell it for profit.

Linux is known as an open source operating system and also called free software because

everything about Linux is accessible to the public and is freely available to anyone. Since the

Linux source code is available, anyone can copy, modify, and distribute this software. This

allows for various companies such as SuSE, Red Hat, Caldera and others to sell and distribute

Linux; however, at the same time, these companies must keep their Linux distribution code

open for public inspection, comment, and changes. Despite of the command-line origins of

Linux, these distributing companies are working to make the Graphical User Interface (GUI).

The GNU General Public License

To make software free, you need a license that defines the rights and the limits, that have to be

regarded by the open source developer that wants to obtain, edit and eventually redistribute

your source code. Because of that exists the GNU GPL (General Public License). Of course,

there are also other licenses, but today’s most open source programs are distributed under this

popular license.

The GNU project was started in 1984 and “GNU is recursive acronym for “GNU’s Not Unix”;

The Free Software Foundation, which stands for the freedom, the security and the protection

of free source code therefore founded this kind of license, designed to protect open source code.

GNU is also founder and maintainer of many software packages for the Linux operating

system, such as basic tools and file system software.

Is Linux Right for you?

It depends on you and what you would like to do. Linux is not an all-purpose operating system

and it would probably be more suited for some people and not so pleasing for others. If you are

a person using your computer for some entertainment at home and are satisfied with your

Windows system there are no compelling reasons for switching over to Linux, but you do have

a choice now. There are several other reasons to consider Linux. Linux is not just a simple

operating system. It is an entire server and desktop environment, equipped with add-ons, GUI

tools and interfaces, and supplementary programs.

You can use Linux at home and even in college to understand the commands and even the

internal workings of UNIX systems.

28

Distributions

When people use the name Linux they are probably referring to a particular distribution of

Linux. There are several software packages provided for Linux over the Internet but selecting

and downloading one is a complicated task not necessarily manageable for new users who want

to try out Linux. This is exactly where a distribution kicks in.

A distribution is a set of software packages that are tested and provided on CD by a company

for a small fee just like Windows. The advantages of using distributions are the support and

manuals, as well as the fact that Linux can be specialized for use in a particular area. For

example, if you would like using Linux for embedded systems a distribution may offer just the

right amount of required software, leaving out optional things like the graphical user interface.

So you get what you want instead of a general package for all users.

The mainstream distributions, which are seemingly popular, are RedHat, SuSE, Caldera and

Debian. Among these distributions RedHat seems to be most widespread.

Caldera is probably more suited for those who are already using Windows. SuSE is a German

based distribution known for its large number of bundled packages and support. Debian is

unique because its not owned by a company and it’s a non-profit volunteer-based distribution

developed solely by users.

Getting Started with Linux

Once the installation is complete, the system will reboot and start up with Linux. There are a

series of messages on the screen while booting of the system regarding the hardware enabled,

services started etc. After a while, the system will display a login: prompt. You can now log

in.

Some systems are configured to start graphical mode with a box in the middle containing both

login: and Password: prompts. Press [CTRL]-[ALT]-[F1] to switch to the virtual console (text

login screen), where you can log in to the system in the usual way.

Accounts and Privileges

Linux is a multi-user system, meaning that many users can use one Linux system

simultaneously, from different terminals. So to avoid confusion, each user's workspace must

be kept separate from the others.

Even if a particular Linux system is a stand-alone personal computer with no other terminals

physically connected to it, it can be shared by different people at different times, making the

separation of user workspace is important.

This separation is accomplished by giving each individual user an account on the system. You

need an account in order to use the system; with an account you are issued an individual

workspace to use, and a unique username that identifies you to the system and to other users.

It is the name along with the password by which the system will recognize the user.

Logging into the System

To begin a session on a Linux system, you need to log in. Do this by entering your username

at the login: prompt on your terminal, and then entering your password when asked.

29

Every Linux system has its own name, called the system's hostname; a Linux system is

sometimes called a host, and it identifies itself with its hostname at the login: prompt. It's

important to name your system -- like a username for a user account, a hostname gives name

to the system you are using (and it becomes especially important when putting the system on a

network). The system administrator usually names the system when it is being initially

configured (the hostname can be changed later; its name is kept in the file ̀ /etc/hostname'). The

name of the terminal you are connecting from is displayed just after the hostname.

To log in to the system, type your username (followed by) at the login: prompt, and then type

your password when asked (also followed by); for security purposes, your password is not

displayed on the screen when you type it.

Once you've entered your username and password, you are "logged in" to the system. You can

then use the system and run commands.

As soon as you log in, the system displays the contents of ̀ /etc/motd', the "Message of the Day"

file. The system then displays the time and date of your last login, and reports whether or not

you have electronic mail waiting for you. Finally, the system puts you in a shell---the

environment in which you interact with the system and give it commands. Bash is the default

shell on most Linux systems.

The dollar sign (`$') displayed to the left of the cursor is called the shell prompt; it means that

the system is ready and waiting for input. By default, the shell prompt includes the name of the

current directory.

Logging Out of the System

To end your session on the system, type logout at the shell prompt. This command logs you

out of the system, and a new login: prompt appears on your terminal.

 To log out of the system

$ logout

You can also logout by just pressing Ctrl+d.

Logging out of the system frees the terminal you were using and ensures that nobody can access

your account from this terminal.

Console Basics

A Linux terminal is a place to put input and get output from the system, and usually has at least

a keyboard and monitor.

When you access a Linux system by the keyboard and monitor that are directly connected to

it, you are said to be using the console terminal.

Linux systems feature virtual consoles, which act as separate console displays that can run

separate login sessions, but are accessed from the same physical console terminal. Linux

systems are configured to have seven virtual consoles by default. When you are at the console

terminal, you can switch between virtual consoles at any time, and you can log in and use the

system from several virtual consoles at once.

30

Switching Between Consoles

To switch to a different virtual console, press [ALT]-[Fn], where n is the number of the console

to switch to.

 To switch to the fourth virtual console, press [ALT]-[F4].

You can also cycle through the different virtual consoles with the left and right arrow keys. To

switch to the next-lowest virtual console, press [ALT]-[←]and to the next-highest virtual

console, press [ALT]-[→].

 To switch from the fourth to the third virtual console, press [ALT]-[←]

The seventh virtual console is reserved for the X Window System. If X is installed, this virtual

terminal will never show a login: prompt, but when you are using X, this is where your X

session appears. If your system is configured to start X immediately, this virtual console will

show an X login screen.

You can switch to a virtual console from the X Window System using [CTRL] in conjunction

with the usual [ALT] and function keys. This is the only console manipulation keystroke that

works in X.

 To switch from X to the first virtual console, press: [CTRL]-[ALT]-[F1]

Running a Command

A command is the name of a tool that performs a certain function along with the options and

arguments. Commands are case sensitive.

To run the hostname command just type the command in front of prompt ($)

$ hostname

Options always begin with a hyphen character, `-', which is usually followed by one

alphanumeric character. Always separate the command, each option, and each argument with

a space character.

Long-style options begin with two hyphen characters (`--').

For example, many commands have an option, `--version', to output the version number of the

hostname.

$ hostname --version

Sometimes, an option itself may take an argument. For example, hostname has an option for

specifying a file name to use to read the hostname from, `-F'; it takes as an argument the name

of the file that hostname should read from. To run hostname and specify that the file `host.info'

is the file to read from

$ hostname -F host.info

Changing Your Password

To change your password, use the passwd command. It prompts you for your current password

and a new password to replace it with. You must type it exactly the same way both times, or

passwd will not change your password.

31

$ passwd username

Listing Your Username

Use whoami to output the username of the user that is logged in at your terminal.

$ whoami

Listing Who Is on the System

Use who to output a list of all the users currently logged in to the system. It outputs a minimum

of three columns, listing the username, terminal location, and time of login for all users on the

system. A fourth column is displayed if a user is using the X Window System.

$ who

abc tty1 Oct 20 20:09

def tty2 Oct 21 14:37

def ttyp1 Oct 21 15:04 (:0.0)

$

The output in this example shows that the user abc is logged in on tty1 (the first virtual console

on the system), and has been on since 20:09 on 20 October. The user def is logged in twice --

on tty2 (the second virtual console), and ttyp1, which is an X session with a window location

of `(:0.0)'.

Listing the Last Times a User Logged In

Use last to find out who has recently used the system, which terminals they used, and when

they logged in and out.

$ last abc

Listing System Activity

When you run a command, you are starting a process on the system, which is a program that

is currently executing. Every process is given a unique number, called its process ID, or "PID."

Use ps to list processes on the system. By default, ps outputs 5 columns: process ID, the name

of the terminal from which the process was started, the current status of the process (including

`S' for sleeping, meaning that it is on hold at the moment, `R' meaning that it is running, and

`Z' meaning that it is a process that has already died), the total amount of time the CPU has

spent on the process since the process started, and finally the name of the command being run.

Listing Your Current Processes

Type ps with no arguments to list the processes you have running in your current shell session.

$ ps

 PID TTY STAT TIME COMMAND

 193 1 S 0:01 -bash

 204 1 S 0:00 ps

$

32

Listing All of a User's Processes

To list all the running processes of a specific user, use ps and give the username to list as an

argument with the `-u' option.

$ ps -u abc

Listing All Processes on the System

To list all processes running by all users on the system, use the `aux' options.

$ ps aux

Listing Processes by Name or Number

To list processes whose output contains a name or other text to match, list all processes and

pipe the output to grep. This is useful for when you want to see which users are running a

particular program or command.

To list all the processes whose commands contain reference to an `sbin' directory in them

$ ps aux | grep sbin

To list any processes whose process IDs contain a 13 in them

$ ps aux | grep 13

To list the process, which corresponds to a process ID, give that PID as an argument to the `-

p' option (PID is 344)

$ ps -p 344

Finding the System Manual of a Command

Use the man command to view a page in the system manual. As an argument to man, give the

name of the program whose manual page you want to view.

$ man ps

Use the up and down arrow keys to move through the text. Press [Q] to stop viewing the manual

page and exit man.

Working with Shell

Shell is a program that reads your command input and runs the specified commands. The shell

environment is the most fundamental way to interact with the system -- you are said to be in a

shell from the very moment you've successfully logged in to the system.

The `$' character preceding the cursor is called the shell prompt; it tells you that the system is

ready and waiting for input.

If your shell prompt shows a number sign (`#') instead of a `$', this means that you're logged in

with the superuser, or root, account. Beware: the root account has complete control over the

system; one wrong keystroke and you might accidentally break it something awful. You need

to have a different user account for yourself, and use that account for your regular use.

Every Linux system has at least one shell program, and most have several. The standard shell

on most Linux systems is bash("Bourne again shell").

33

Running a List of Commands

To run more than one command on the input line, type each command in the order you want

them to run, separating each command from the next with a semicolon (`;'). For example, to

clear the screen and then log out of the system

$ clear; logout

Redirecting Input and Output

The shell moves text in designated "streams." The standard output is where the shell streams

the text output of commands -- the screen on your terminal, by default. The standard input,

typically the keyboard, is where you input data for commands. You can redirect these streams

-- to a file, or even another command -- with redirection.

Redirecting Input to a File

To redirect standard input to a file, use the `<' operator. To do so, follow a command with <

and the name of the file it should take input from. For example, to redirect standard input for

ls -l to file `listing'

$ ls -l < listing

Redirecting Output to a File

Use the `>' operator to redirect standard output to a file. If you redirect standard output to an

existing file, it will overwrite the file, unless you use the `>>' operator to append the standard

output to the contents of the existing file. For example, to append the standard output of ls -l to

an existing file `commands'

$ ls -l>> commands

Redirecting Output to another Command's Input

Piping is to connect the standard output of one command to the standard input of another. You

do this by specifying the two commands in order, separated by a vertical bar character, `|' (also

called as a "pipe"). Commands built in this fashion are called pipelines.

For example, it's often useful to pipe commands that display a lot of text output to more for

perusing text.To pipe the output of apropos bash shell shells to less

$ ls –l | more

Managing Jobs

The processes you have running in a particular shell are called your jobs. You can have more

than one job running from a shell at once, but only one job can be active at the terminal, reading

standard input and writing standard output. This job is the foreground job, while any other jobs

are said to be running in the background.

The shell assigns each job a unique job number. Use the job number as an argument to specify

the job to commands. Do this by giving the job number preceded by a `%' character.

34

Suspending a Job

Type Ctrl+z to suspend or stop the foreground job. This is useful when you want to do

something else in the shell and return to the current job later. The job stops until you either

bring it back to the foreground or make it run in the background.

For example, if you are finding a file at Linux partition from root (/), typing Ctrl+z will suspend

the find program and return you to a shell prompt where you can do something else. The shell

outputs a line giving the job number (in brackets) of the suspended job, the text `Stopped' to

indicate that the job has stopped, and the command line itself, as shown here:

[1]+ Stopped find / -name abc

In this example, the job number is 1 and the command that has stopped is `find / -name abc'.

The `+' character next to the job number indicates that this is the most recent job.

If you have any stopped jobs when you log out, the shell will tell you this instead of logging

you out:

$ logout

There are stopped jobs.

$

At this point you can list your jobs, stop any jobs you have running and then log out.

Putting a Job in the Background

New jobs run in the foreground unless you specify otherwise. To run a job in the background,

end the input line with an ampersand (`&'). This is useful for running non-interactive programs

that perform a lot of calculations. To run the command find / -name abc > shell-commands as

a background job

$ find / -name abc > shell-commands &

[1] 6575

$

The shell outputs the job number (in this case, 1) and process ID (in this case, 6575), and then

returns to a shell prompt. When the background job finishes, the shell will list the job number,

the command, and the text `Done', indicating that the job has completed successfully:

[1]+ Done find / -name abc >shell-commands

To move a job from the foreground to the background, first suspend it and then type bg (for

"background").

 For example, to start the command find / -name abc > shell-commands in the foreground,

suspend it, and then specify that it finish in the background, you would type:

$ find / -name abc > shell-commands

Ctrl+z

[1]+ Stopped find / -name abc >shell-commands

$ bg

35

[1]+ find / -name abc &

$

If you have suspended multiple jobs, specify the job to be put in the background by giving its

job number as an argument. TFor example, to run job 4 in the background

$ bg %4

Putting a Job in the Foreground

Type fg to move a background job to the foreground. By default, fg works on the most recent

background job. For example, to bring the most recent background job to the foreground

$ fg

To move a specific job to the foreground when you have multiple jobs in the background,

specify the job number as an option to fg. To bring job 3 to the foreground

$ fg %3

Listing Your Jobs

To list the jobs running in the current shell, type jobs.

$ jobs

[1]- Stopped find / -name abc >shell-commands

[2]+ Stopped find / -name abc >bash-commands

$

This example shows two jobs--- find / -name abc > shell-commands and find / -name abc >

bash-commands. The `+' character next to a job number indicates that it's the most recent job,

and the `-' character indicates that it's the job previous to the most recent job. If you have no

current jobs, jobs returns nothing.

Stopping a Job

Typing Ctrl+c interrupts the foreground job before it completes, exiting the program. To

interrupt cat, a job running in the foreground

$ cat

Ctrl+c

$

Use kill to interrupt ("kill") a background job, specifying the job number as an argument. To

kill job number 2

$ kill %2

Command History

Your command history is the sequential list of commands you have typed, in the current or

previous shell sessions. The commands in this history list are called events.

By default, bash remembers the last 500 events, but this number is configurable.

36

Your command history is stored in a text file in your home directory called `.bash_history'; you

can view this file or edit it like you would any other text file.

Viewing Your Command History

Use history to view your command history. To view your command history

$ history

1 who

2 apropos shell >shell-commands

3 apropos bash >bash-commands

4 history

$

This command shows the contents of your command history file, listing one command per line

prefaced by its event number. Use an event number to specify that event in your history. To

search your history for the text `find'

$ history | grep find

Specifying a Command from Your History

You can specify a past event from your history on the input line, in order to run it again.

The simplest way to specify a history event is to use the up and down arrow keys at the shell

prompt to browse your history. The up arrow key takes you back through past events, and the

down arrow key moves you forward into recent history. When a history event is on the input

line, you can edit it as normal, and type to run it as a command; it will then become the newest

event in your history.

To run a history event by its event number, enter an exclamation mark (`!') followed by the

event number (1).

$!1

37

Perl Programming for Bioinformatics

K. K. Chaturvedi

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Introduction

What is Perl?

Perl stands for “Practical Extraction and Report Language” Perl is the natural outgrowth of a

project started by Larry Wall in 1986. Originally intended as a configuration and control system

for six VAXes and six SUNs located on opposite ends of the country, it grew into a more

general tool for system administration on many platforms. Since its unveiling to programmers

at large, it has become the work of a large body of developers. Larry Wall, however, remains

its principle architect. Although the first platform Perl inhabited was UNIX, it has since been

ported to over 70 different operating systems including, but not limited to, Windows

9x/NT/2000, MacOS, VMS, Linux, UNIX (many variants), BeOS, LynxOS, and QNX.

Uses of Perl

1. Tool for general system administration

2. Processing textual or numerical data

3. Database interconnectivity

4. Common Gateway Interface (CGI/Web) programming

5. Driving other programs! (FTP, Mail, WWW, OLE)

Philosophy & Idioms

The Virtues of a Programmer

Perl is a language designed to cater to the three chief virtues of a programmer.

 Laziness - develop reusable and general solutions to problems

 Impatience - develop programs that anticipate your needs and solve problems for you.

 Hubris - write programs that you want other people to see (and be able to maintain)

There are many means to the same end

Perl provides you with more than enough rope to hang yourself. Depending on the problem,

there may be several “official” solutions. Generally those that are approached using “Perl

idioms” will be more efficient.

Resources

· The Perl Institute (http://www.perl.org)

· The Comprehensive Perl Archive Network (http://www.cpan.org)

· The Win32 port of Perl (http://www.activestate.com/ActivePerl/)

38

Perl Basics

Script names

While generally speaking you can name your script/program anything you want, there are a

number of conventional extensions applied to portions of the Perl bestiary:

.pm - Perl modules

.pl - Perl libraries (and scripts on UNIX)

.plx - Perl scripts

Language properties

 Perl is an interpreted language – program code is interpreted at run time. Perl is unique

among interpreted languages, though. Code is compiled by the interpreter before it is

actually executed.

 Many Perl idioms read like English

 Free format language – whitespace between tokens is optional

 Comments are single-line, beginning with #

 Statements end with a semicolon (;)

 Only subroutines and functions need to be explicitly declared

 Blocks of statements are enclosed in curly braces {}

 A script has no “main()”

Data Types & Variables

Basic Types

The basic data types known to Perl are scalars, lists, and hashes. Scalar $foo Simple variables

that can be a number, a string, or a reference. A scalar is a “thingy.” List @foo An ordered

array of scalars accessed using a numeric subscript. $foo[0] Hash %foo An unordered set of

key/value pairs accessed using the keys as subscripts. $foo{key} Perl uses an internal type

called a typeglob to hold an entire symbol table entry. The effect is that scalars, lists, hashes,

and filehandles occupy separate namespaces (i.e., $foo[0] is not part of $foo or of %foo). The

prefix of a typeglob is *, to indicate “all types.” Literals are symbols that give an actual value,

rather than represent possible values, as do variables. For example in $foo = 1, $foo is a scalar

variable and 1 is an integer literal. Variables have a value of undef before they are defined

(assigned). The upshot is that accessing values of a previously undefined variable will not

(necessarily) raise an exception.

Variable Contexts

Perl data types can be treated in different ways depending on the context in which they are

accessed. Scalar Accessing data items as scalar values. In the case of lists and hashes, $foo[0]

and $foo{key}, respectively. Scalars also have numeric, string, and don’t-care contexts to cover

situations in which conversions need to be done. List Treating lists and hashes as atomic objects

Boolean Used in situations where an expression is evaluated as true or false. (Numeric: 0=false;

39

String: null=false, Other: undef=false) Void Does not care (or want to care) about return value

Interpolative Takes place inside quotes or things that act like quotes

Special Variables (defaults)

Some variables have a predefined and special meaning to Perl. A few of the most commonly

used ones are listed below:

$_ The default input and pattern-searching space

$0 Program name

$$ Current process ID

$! Current value of errno

@ARGV Array containing command-line arguments for the script

@INC The array containing the list of places to look for Perl scripts to

be evaluated by the do, require, or use constructs

%ENV The hash containing the current environment

%SIG The hash used to set signal handlers for various signals

Scalars

Scalars are simple variables that are either numbers or strings of characters. Scalar variable

names begin with a dollar sign followed by a letter, then possibly more letters, digits, or

underscores. Variable names are case-sensitive.

Numbers

Numbers are represented internally as either signed integers or double precision floating point

numbers. Floating point literals are the same used in C. Integer literals include decimal (255),

octal (0377), and hexadecimal (0xff) values.

Strings

Strings are simply sequences of characters. String literals are delimited by quotes: Single quote

‘string’ Enclose a sequence of characters Double quote “string” Subject to backslash and

variable interpolation Back quote `command` Evaluates to the output of the enclosed

command The backslash escapes are the same as those used in C:

\n Newline \e Escape

\r Carriage return \\ Backslash

\t Tab \” Double quote

\b Backspace \’ Single quote

In Windows, to represent a path, use either “c:\\temp” (an escaped backslash) or

“c:/temp” (UNIX-style forward slash). Strings can be concatenated using the “.” operator: $foo

= “hello” . ”world”;

40

Basic I/O

The easiest means to get operator input to your program is using the “diamond” operator:

$input = <>;The input from the diamond operator includes a newline (\n). To get rid of this

peskycharacter, use either chop() or chomp(). chop() removes the last character of thestring,

while chomp() removes any line-ending characters (defined in the specialvariable $/). If no

argument is given, these functions operate on the $_ variable.To do the converse, simply use

Perl’s print function:

print $output.”\n”;

Basic Operators

Arithmetic

Example Name Result

$a + $b Addition Sum of $a and $b

$a * $b Multiplication Product of $a and $b

$a % $b Modulus Remainder of $a divided by $b

$a ** $b Exponentiation $a to the power of $b

String

Example Name Result

$a . “string” Concatenation String built from pieces

“$a string” Interpolation String incorporating the value of $a

$a x $b Repeat String in which $a is repeated $b times

Assignment

The basic assignment operator is “=”: $a = $b. Perl conforms to the C idiom that lvalue

operator= expression is evaluated as: lvalue = lvalue operator expression So that $a *= $b is

equivalent to $a = $a * $b $a += $b $a = $a + $b This also works for the string concatenation

operator: $a .= “\n”

Autoincrement and Autodecrement

The autoincrement and autodecrement operators are special cases of the assignment operators,

which add or subtract 1 from the value of a variable:

++$a, $a++ Autoincrement Add 1 to $a

--$a, $a-- Autodecrement Subtract 1 from $a

Logical

Conditions for truth:Any string is true except for “” and “0”Any number is true except for 0

Any reference is trueAny undefined value is false Example Name Result $a && $b And True

if both $a and $b are true $a || $b Or $a if $a is true; $b otherwise !$a Not True if $a is not

true $a and $b And True if both $a and $b are true $a or $b Or $a if $a is true; $b otherwise

41

not $a Not True if $a is not true Logical operators are often used to “short circuit” expressions,

as in: open(FILE,”< input.dat”) or die “Can’t open file”;

Comparison

Comparison Numeric String Result Equal == eq True if $a equal to $b Not equal != ne True if

$a not equal to $b Less than < lt True if $a less than $bGreater than > gt True if $a greater than

$b Less than or equal <= le True if $a not greater than $b Comparison <=> cmp 0 if $a and $b

equal1 if $a greater -1 if $b greater

Operator Precedence

Perl operators have the following precedence, listed from the highest to the lowest, where

operators at the same precedence level resolve according to associativity:

Associativity Operators Description

Left Terms and

list operators

Left -> Infix dereference operator

++

--

Auto-increment

Auto-decrement

Right

Right

Right

\

! ~

+ -

Reference to an object (unary)

Unary negation, bitwise complement

Unary plus, minus

Left

Left

=~

!~

Binds scalar to a match pattern

Same, but negates the result

Left * / % x Multiplication, Division, Modulo, Repeat

42

Left + - . Addition, Subtraction, Concatenation

Left >> << Bitwise shift right, left

< > <= >=

lt gt le ge

Numerical relational operators

String relational operators

== != <=>

eq ne cmp

Numerical comparison operators

String comparison operators

Left & Bitwise AND

Left | ^ Bitwise OR, Exclusive OR

Left && Logical AND

Left || Logical OR

In scalar context, range operator

In array context, enumeration

Right ?: Conditional (if ? then : else) operator

Right = += -= etc Assignment operators

Left ,

=>

Comma operator, also list element separator

Same, enforces left operand to be string

Right not Low precedence logical NOT

Right and Low precedence logical AND

Right or xor Low precedence logical OR

Parentheses can be used to group an expression into a term.

A list consists of expressions, variables, or lists, separated by commas. An array variable

or an array slice many always be used instead of a list.

Control Structures

Statement Blocks

A statement block is simply a sequence of statements enclose in curly braces:

{

first_statement;

43

second_statement;

last_statement

}

Conditional Structures (If/elsif/else)

The basic construction to execute blocks of statements is the if statement. The if statement

permits execution of the associated statement block if the test expression evaluates as true. It

is important to note that unlike many compiled languages, it is necessary to enclose the

statement block in curly braces, even if only one statement is to be executed.The general form

of an if/then/else type of control statement is as follows:

if (expression_one) {

true_one_statement;

} elsif (expression_two) {

true_two_statement;

} else {

all_false_statement;

}

Loops

Perl provides several different means of repetitively executing blocks of statements.

While

The basic while loop tests an expression before executing a statement block

while (expression) {

statements;

}

Until

The until loop tests an expression at the end of a statement block; statements will be

executed until the expression evaluates as true.

until (expression) {

statements;

}

Do while

A statement block is executed at least once, and then repeatedly until the test expression

is false.

do {

statements;

44

} while (expression);

Do until

A statement block is executed at least once, and then repeatedly until the test expression

is true.

do {

statements;

} until (expression);

For

The for loop has three semicolon-separated expressions within its parentheses. These

expressions function respectively for the initialization, the condition, and re-initialization

expressions of the loop. The for loop

for (initial_exp; test_exp; reinit_exp) {

statements;

}

This structure is typically used to iterate over a range of values. The loop runs until the

test_exp is false.

for ($i; $i<10;$i++) {

print $i;

}

Foreach

The foreach statement is much like the for statement except it loops over the elements of

a list:

foreach $i (@some_list) {

statements;

}

Indexed Arrays (Lists)

A list is an ordered set of scalar data. List names follow the same basic rules as for

scalars. A reference to a list has the form @foo.

List literals

List literals consist of comma-separated values enclosed in parentheses:

(1,2,3)

(“foo”,4.5)

45

A range can be represented using a list constructor function (such as “..”):

(1..9) = (1,2,3,4,5,6,7,8,9)

($a..$b) = ($a, $a+1, … , $b-1,$b)

In the case of string values, it can be convenient to use the “quote-word” syntax

@a = (“fred”,”barney”,”betty”,”wilma”);

@a = qw(fred barney betty wilma);

Accessing List Elements

List elements are subscripted by sequential integers, beginning with 0

$foo[5] is the sixth element of @foo

The special variable $#foo provides the index value of the last element of @foo.

A subset of elements from a list is called a slice.

@foo[0,1] is the same as ($foo[0],$foo[1])

You can also access slices of list literals:

@foo = (qw(fred barney betty wilma))[2,3]

List operators and functions

Many list-processing functions operate on the paradigm in which the list is a stack. The highest

subscript end of the list is the “top,” and the lowest is the bottom.

push Appends a value to the end of the list

push(@mylist,$newvalue)

pop Removes the last element from the list (and returns it)

pop(@mylist)

shift Removes the first element from the list (and returns it)

shift(@mylist)

unshift Prepends a value to the beginning of the list

unshift(@mylist,$newvalue)

splice Inserts elements into a list at an arbitrary position

splice(@mylist,$offset,$replace,@newlist)

The reverse function reverses the order of the elements of a list

@b = reverse(@a);

The sort function sorts the elements of its argument as strings in ASCII order. You can

also customize the sorting algorithm if you want to do something special.

@x = sort(@y);

The chomp function works on lists as well as scalars. When invoked on a list, it removes

46

newlines (record separators) from each element of its argument.

Associative Arrays (Hashes)

A hash (or associative array) is an unordered set of key/value pairs whose elements are

indexed by their keys. Hash variable names have the form %foo.

Hash Variables and Literals

A literal representation of a hash is a list with an even number of elements (key/value

pairs, remember?).

%foo = qw(fred wilma barney betty);

%foo = @foolist;

To add individual elements to a hash, all you have to do is set them individually:

$foo{fred} = “wilma”;

$foo{barney} = “betty”;

You can also access slices of hashes in a manner similar to the list case:

@foo{“fred”,”barney”} = qw(wilma betty);

Hash Functions

The keys function returns a list of all the current keys for the hash in question.

@hashkeys = keys(%hash);

As with all other built-in functions, the parentheses are optional:

@hashkeys = keys %hash;

This is often used to iterate over all elements of a hash:

foreach $key (keys %hash) {

print $hash{$key}.”\n”;

}

In a scalar context, the keys function gives the number of elements in the hash.

Conversely, the values function returns a list of all current values of the argument

hash:

@hashvals = values(%hash);

The each function provides another means of iterating over the elements in a hash:

while (($key, $value) = each (%hash)) {

statements;

}

You can remove elements from a hash using the delete function:

delete $hash{‘key’};

47

Introduction to Python Programming

U. B. Angadi and Sudhir Srivastava

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Python is an easiest and simple open source powerful programming language. It has efficient

high-level data structures with support of multiple programming paradigms, such as

Procedural, Object Oriented and Functional paradigms. it an ideal language for scripting and

rapid application development in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or

binary form specifically ML, AI and Data science in Python web site, https://www.python.org/,

and may be freely distributed. The Python interpreter is easily extended with new functions

and data types implemented in C or C++. This can be used as a scripting language or can be

compiled to byte-code for building large application like Perl, R, LINUX shell script. Python

has been developed under virtual machine concept and support.

Installing Python

The most up-to-date and current source code, binaries, documentation, news, etc., is available

on the official website of Python https://www.python.org/ and also available in many source

for a wide variety of platforms.

If the binary code for your platform is not available, you need a C compiler to compile the

source code manually. Compiling the source code offers more flexibility in terms of choice of

features that you require in your installation. Installation from source codes is better than

binary.

Linux Installation

 Open a Web browser and go to https://www.python.org/downloads/. Or use wget

command with url of desire version of python.

 Follow the link to download zipped source code available for Unix/Linux.

 Download and extract files and change directory to python folder then run following

commands

 $./configure script

 $ make

 $ make install

 Or you can install though yum i.e. sudo yum install python3

Window installation

 Down load window version installation file

 Double click to installation file python-XYZ.msi such as python-3.10.2-amd64.exe

Setting up PATH

 Linux − type export PATH="$PATH:/usr/local/bin/python" and press Enter. Or make

entry the same entry in bashrc file

 Window- control panelSystem SecuritySystemSystem Properties

Environmental variablespath add path at last in existing path

https://www.python.org/
https://www.python.org/
https://www.python.org/downloads/

48

Running Python

You can start Python from Unix, DOS, or any other system that provides you a

command-line interpreter or shell window.

Enter python the command line and press enter

Or

Stored program or packages with py file extension

Enter python filename.py and press enter i.e. $python script.py in linux

Or

Make python file into standard scripting language file by adding #!/usr/bin/python in top of

the python code/scrip file

Add executable previlages to python file $ chmod +x pythonfile.py

Run python file by $./pythonefile.py (dot slash filename)

GUI - Integrated Development Environment

You can run Python from a Graphical User Interface (GUI) environment as well, if you have a

GUI application on your system that supports Python.

 Unix − IDLE is the very first Unix IDE for Python.

 Windows – PythonWin/pycharm/MSvisual studio are Windows interface for Python

and is an IDE with a GUI.

For these IDE need to be set python interpreter

Python Lines and Indentation

Python programming provides no braces to indicate blocks of code for class and function

definitions or flow control. Blocks of code are denoted by line indentation, which is rigidly

enforced.

The number of spaces in the indentation is variable, but all statements within the block must

be indented the same amount

Comments- non executable statement

Python comments are non-executable and readable explanation or annotations for programmer.

They are added with the purpose of making the source code easier for humans to understand

and are ignored by Python interpreter.

Single Line Comments

A hash sign (#) at beginning of a string. All characters after the # and up to the end of the

physical line are part of the comment.

This is a single line comment in python and below is print statement

print ("Hello, World! This print statement print constant and variable")

49

Multi-Line Comments

 Triple-quoted string can be used for multiline comments and it ignores by Python interpreter

''''''

This is first in multi-lines

This is 2nd in multi-lines

This is 3rd in multi-lines

''''''

Docstring Comments

Python docstrings provide a convenient way to provide a help documentation with Python

modules, functions, classes, and methods. The docstring is then made available via the

__doc__ attribute.

def add(a, b):

 """Function to add the value of a and b"""

 return a+b

print(add.__doc__)

print(add.__doc__) # for help

print(add(10,20)) # for execution

Variables

Python variables are name of memory location, in which values are stored. This means that

when you create a variable you reserve some space in the memory to store values. Based on

the data type of a variable, Python interpreter allocates memory and decides what can be stored

in the reserved memory. Therefore, by assigning different data types to Python variables, you

can store integers, decimals or characters in these variables.

Python variables do not need explicit declaration like other language to reserve memory space

or to create a variable. A Python variable is created automatically when you assign a value to

it. The equal sign (=) is used to assign values to variables.

The operand to the left of the = operator is the name of the variable and the operand to the right

of the = operator is the value stored in the variable.

counter = 1000 # Creates an integer variable

miles = 11234.567 # Creates a floating point variable

name = "Arun Kumar" # Creates a string variable

print (counter)

print (miles)

print (name)

Delete a Variable

You can delete the reference to a number object by using the del statement.

del var1[,var2[,var3[....,varN]]]]

del var

50

del var_a, var_b

Local Variable

Python Local Variables are defined inside a function. We can not access variable outside the

function.

def sum(x,y):

 sum = x + y

 return sum

print(sum(5, 10))

Global Variable

Any variable created outside a function can be accessed within any function and so they have

global scope.

x = 5

y = 10

def sum():

 sum = x + y

 return sum

print(sum())

Data Types

Python has various built-in data types which we will discuss with in this tutorial:

 Numeric - int, float, complex

integer variable.

a=123

print("The type of variable having value", a, " is ", type(a))

float variable.

b=2345.345

print("The type of variable having value", b, " is ", type(b))

complex variable.

c=11+5j

print("The type of variable having value", c, " is ", type(c))

 String – str

str = 'Hello World!'

print (str) # Prints complete string

print (str[0]) # Prints first character of the string

print (str[2:5]) # Prints characters starting from 3rd to 5th

print (str[2:]) # Prints string starting from 3rd character

print (str * 2) # Prints string two times

print (str + "TEST") # Prints concatenated string

51

 Sequence - list, tuple, range

A Python list contains items separated by commas and enclosed within square brackets ([]).

To some extent, Python lists are similar to arrays in C. One difference between them is that

all the items belonging to a Python list can be of different data type

list = ['abcd', 786, 2.23, 'john', 70.2]

tinylist = [123, 'john']

print (list) # Prints complete list

print (list[0]) # Prints first element of the list

print (list[1:3]) # Prints elements starting from 2nd till 3rd

print (list[2:]) # Prints elements starting from 3rd element

print (tinylist * 2) # Prints list two times

print (list + tinylist) # Prints concatenated lists

Tuple is another sequence data type that is similar to a list. A Python tuple consists of a number

of values separated by commas. Unlike lists, however, tuples are enclosed within parentheses.

Lists are enclosed in brackets ([]) and their elements and size can be changed, while tuples

are enclosed in parentheses (()) and cannot be updated. Tuples can be thought of as read-

only lists

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

tinytuple = (123, 'john')

print (tuple) # Prints the complete tuple

print (tuple[0]) # Prints first element of the tuple

print (tuple[1:3]) # Prints elements of the tuple starting from 2nd till 3rd

print (tuple[2:]) # Prints elements of the tuple starting from 3rd element

print (tinytuple * 2) # Prints the contents of the tuple twice

print (tuple + tinytuple) # Prints concatenated tuples

Range - range() is an in-built function in Python which returns a sequence of numbers starting

from 0 and increments to 1 until it reaches a specified number.

We use range() function with for and while loop to generate a sequence of numbers.

range(start, stop, step)

 Mapping - dict

Python dictionaries are kind of hash table type. They work like associative arrays or hashes

found in Perl and consist of key-value pairs. A dictionary key can be almost any Python type,

but are usually numbers or strings. Values, on the other hand, can be any arbitrary Python

object.

Dictionaries are enclosed by curly braces ({ }) and values can be assigned and accessed using

square braces ([])

dict = {}

dict['one'] = "This is one"

dict[2] = "This is two"

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

print (dict['one']) # Prints value for 'one' key

print (dict[2]) # Prints value for 2 key

52

print (tinydict) # Prints complete dictionary

print (tinydict.keys()) # Prints all the keys

print (tinydict.values()) # Prints all the values

 Binary - bytes, bytearray, memoryview

hexStr = bytes.fromhex('A2f7 4509')

myByteArray = bytearray('String', 'UTF-8')

memView = memoryview(myByteArray)

 Boolean – bool

Boolean type is one of built-in data types which represents one of the two values

either True or False. Python bool() function allows you to evaluate the value of any

expression and returns either True or False based on the expression.

a = True

display the value of a

print(a)

display the data type of a

print(type(a))

 Set - set, frozenset- immutable

fruits = {"Apple", "Banana", "Cherry", "Apple", "Kiwi"}

fruits.add("Orange")

fruits.remove("Mango")

print('After removing element:', fruits)

l = ["Geeks", "for", "Geeks"]

fnum = frozenset(l)

Data Type Conversion

Sometimes, you may need to perform conversions between the built-in data types. To convert

data between different data types.

Function & Description

int(x [,base]) -Converts x to an integer. base specifies the base if x is a string.

long(x [,base]) -Converts x to a long integer. base specifies the base if x is a string.

float(x) -Converts x to a floating-point number.

complex(real [,imag]) -Creates a complex number.

str(x) -Converts object x to a string representation.

repr(x) -Converts object x to an expression string.

eval(str)-Evaluates a string and returns an object.

tuple(s)-Converts s to a tuple.

53

list(s)-Converts s to a list.

set(s)-Converts s to a set.

dict(d)-Creates a dictionary. d must be a sequence of (key,value) tuples.

frozenset(s)-Converts s to a frozen set.

chr(x)-Converts an integer to a character.

unichr(x)-Converts an integer to a Unicode character.

ord(x)-Converts a single character to its integer value.

hex(x)-Converts an integer to a hexadecimal string.

oct(x)-Converts an integer to an octal string.

Arithmetic Operators

Arithmetic operators are used to perform mathematical operations on numerical values. List is

given below table

Operator Name Example

+ Addition 10 + 20 = 30

- Subtraction 20 – 10 = 10

* Multiplication 10 * 20 = 200

/ Division 20 / 10 = 2

% Modulus 22 % 10 = 2

** Exponent 4**2 = 16

// Floor Division 9//2 = 4

Comparison/relational Operators

Python comparison operators compare the values on either sides of them and decide the relation

among them.

Operator Name Example

== Equal 4 == 5 is not true.

!= Not Equal 4 != 5 is true.

54

> Greater Than 4 > 5 is not true.

< Less Than 4 < 5 is true.

>= Greater than or Equal to 4 >= 5 is not true.

<= Less than or Equal to 4 <= 5 is true.

Assignment Operators

Python assignment operators are used to assign values to variables. These operators include

simple and complex with arithmetic operator.

Operator Name Example

= Assignment Operator a = 10

+= Addition Assignment a += 5 (Same as a = a + 5)

-= Subtraction Assignment a -= 5 (Same as a = a - 5)

*= Multiplication Assignment a *= 5 (Same as a = a * 5)

/= Division Assignment a /= 5 (Same as a = a / 5)

%= Remainder Assignment a %= 5 (Same as a = a % 5)

**= Exponent Assignment a **= 2 (Same as a = a ** 2)

//= Floor Division Assignment a //= 3 (Same as a = a // 3)

Bitwise Operators

Bitwise operator works on bits and performs bit by bit operation. Assume if a = 60; and b = 13;

Now in the binary format their values will be 0011 1100 and 0000 1101 respectively.

Operator Name Example

& Binary AND Sets each bit to 1 if both bits are 1

 a&b = 12 (0000 1100

| Binary OR Sets each bit to 1 if one of two bits is 1

a|b = 61 (0011 1101)

^ Binary XOR Sets each bit to 1 if only one of two bits is 1

 a^b = 49 (0011 0001)

~ Binary Ones Complement Inverts all the bits

~a = -61 (1100 0011)

55

<< Binary Left Shift Shift left by pushing zeros in from the right and let

the leftmost bits fall off

a << 2 = 240 (1111 0000)

>> Binary Right Shift Shift right by pushing copies of the leftmost bit in

from the left, and let the rightmost bits fall off

a>>2 = 15 (0000 1111)

Logical Operators

There are following logical operators supported by Python language. Assume variable a holds

10 and variable b holds 20 then

Operator Description Example

and Logical AND If both the operands are true then condition

becomes true.

(a and b) is true.

or Logical OR If any of the two operands are non-zero then

condition becomes true.

(a or b) is true.

not Logical NOT Used to reverse the logical state of its

operand.

Not(a and b) is false.

Membership Operators

Membership operators test for membership in a sequence, such as strings, lists, or tuples. There

are two membership operators as explained below −

Operator Description Example

in Evaluates to true if it finds a variable in the

specified sequence and false otherwise.

x in y, here in results in a 1 if

x is a member of sequence y.

not in Evaluates to true if it does not finds a variable

in the specified sequence and false otherwise.

x not in y, here not in results

in a 1 if x is not a member of

sequence y.

Identity Operators

Identity operators compare the memory locations of two objects.

Operator Description Example

is Evaluates to true if the variables on either side of

the operator point to the same object and false

otherwise.

x is y, here is results in 1 if

id(x) equals id(y).

56

is not Evaluates to false if the variables on either side of

the operator point to the same object and true

otherwise.

x is not y, here is

not results in 1 if id(x) is

not equal to id(y).

Decision making

Usual codes are executed sequentially, the first statement in a function is executed first,

followed by the second, and so on. Decision making is to change path on conditions while

execution of the program and specifying action/path taken according to the conditions

result(TRUE/FALSE).

Sr.No. Statement & Description

1 if statements

An if statement consists of a boolean expression followed by one or more

statements.

2 if...else statements

An if statement can be followed by an optional else statement, which executes

when the boolean expression is FALSE.

3 nested if statements

Again if or else can use in if statement inside another if or else if statement(s).

var = 100

if (var == 100) : print "Value of expression is 100"

print "Good bye!"

amount = 2000

if (amount <10000) : print "Interest rate is 10%"

else:

print "Interest rate is 20 %"

Loops

Generally statements are executed sequentially. There may be a situation when you need to

execute a block of code several number of times or based termination condition. A loop

statement allows us to execute a statement or group of statements multiple times.

https://www.tutorialspoint.com/python/python_if_statement.htm
https://www.tutorialspoint.com/python/python_if_else.htm
https://www.tutorialspoint.com/python/nested_if_statements_in_python.htm

57

Python programming language provides following types of loops to handle looping

requirements.

Sr.No. Loop Type & Description

1 while loop

Repeats a statement or group of statements while a given condition is TRUE. It tests

the condition before executing the loop body.

2 for loop

Executes a sequence of statements multiple times and abbreviates the code that

manages the loop variable.

3 nested loops

You can use one or more loop inside any another while, for or do..while loop.

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a

scope, all automatic objects that were created in that scope are destroyed.

Python supports the following control statements. Click the following links to check their

detail.

Let us go through the loop control statements briefly

Sr.No. Control Statement & Description

1 break statement :Terminates the loop statement and transfers execution to the

statement immediately following the loop.

2 continue statement :Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

https://www.tutorialspoint.com/python/python_while_loop.htm
https://www.tutorialspoint.com/python/python_for_loop.htm
https://www.tutorialspoint.com/python/python_nested_loops.htm
https://www.tutorialspoint.com/python/python_break_statement.htm
https://www.tutorialspoint.com/python/python_continue_statement.htm

58

i = 1

while i < 6:

 print(i)

 if i == 3:

 break

 i += 1

Functions

A function is a block of organized, reusable code that is used to perform a single, related action.

Functions provide better modularity and a high degree of code reusing. You can define

functions to provide the required functionality with following simple rules.

 Function blocks begin with the keyword def followed by the function name and

parentheses () and then a colon (:)

 Input parameters should be placed within these parentheses. parameters can be defined

inside the parentheses.

 First statement of a function can be an optional statement - the documentation string of

the function or docstring.

 The statement return [expression] exits a function, optionally passing back an

expression to the caller. A return statement with no arguments is the same as return

None.

def printme(str):

 "This prints a passed string into this function"

 print str

 return

Calling a Function

Defining a function only gives it a name, specifies the parameters that are to be included in the

function and structures the blocks of code.

printme("I'm first call to user defined function!")

printme("Again second call to the same function")

Required arguments

Required arguments are the arguments passed to a function in correct positional order. Here,

the number of arguments in the function call should match exactly with the function definition.

#!/usr/bin/python

Function definition is here

def printme(str1, str2):

 "This prints a passed string into this function"

 print str1

 print str2

 return “Success”;

Now you can call printme function

printme(“Hi”, “Good Morning”)

59

Keyword arguments

Keyword arguments are related to the function calls. When you use keyword arguments in a

function call, the caller identifies the arguments by the parameter name. This allows you to

skip arguments (if default is assigned) or place them out of order because the Python interpreter

is able to use the keywords provided to match the values with parameters

#!/usr/bin/python

Function definition is here

def printme(str1, str2):

 "This prints a passed string into this function"

 print str

 return;

Now you can call printme function

printme(str2 = "Good Morning", str1=”Hi!!”)

Default arguments

A default argument is an argument that assumes a default value if a value is not provided in the

function call for that argument. The following example gives an idea on default arguments, it

prints default age if it is not passed −

#!/usr/bin/python

Function definition is here

def printinfo(name, age = 35):

 "This prints a passed info into this function"

 print "Name: ", name

 print "Age ", age

 return;

Now you can call printinfo function

printinfo(age=50, name="miki")

printinfo(name="miki")

The Anonymous Functions

These functions are called anonymous because they are not declared in the standard manner by

using the def keyword. You can use the lambda keyword to create small anonymous functions.

 Lambda form is one-line statement and can take any number of arguments but return just

one.

 An anonymous function cannot be a direct call to print because lambda requires an expression

 Can be own local namespace and cannot access variables other than those in their parameter

list.

lambda [arg1 [,arg2,.....argn]]:expression

Modules

A module is a Python object with arbitrarily named attributes and logically organize python

code/functions. Grouping related code into a module makes the code easier to understand and

use. A module is a file consisting of Python code. A module can define functions, classes and

variables.

60

The Python code for a module named aname normally resides in a file named aname.py. Here's

an example of a simple module, support.py

def print_func(par):

 print "Hello : ", par

 return

The import Statement

You can use any Python source file as a module by executing an import statement in some

other Python source file as below.

import module1[, module2[,... moduleN]

It imports the module if the module is present in the search path. A search path is a list of

directories that the interpreter searches before importing a module. Example, to import the

module support.py, need to put the following command at top of the script

#!/usr/bin/python

Import module support

import support

Now you can call defined function that module as follows

support.print_func("Zara")

A module is loaded only once, regardless of the number of times it is imported.

The from...import Statement

Python's from statement lets you import specific attributes from a module into the current

namespace. The from...import has the following syntax −

from modname import name1[, name2[, ... nameN]]

Import the function fibonacci from the module fib, use the following statement

from fib import fibonacci

This statement does not import the entire module fib into the current namespace; it just

introduces the item fibonacci from the module fib into the global symbol table of the importing

module.

The from...import * Statement

It is also possible to import all names from a module into the current namespace.

from modname import *

Locating Modules

When you import a module, the Python interpreter searches for the module in the following

sequences.

 The current directory.

 If the module isn't found, Python then searches each directory in the shell variable

PYTHONPATH.

 If all else fails, Python checks the default path. On UNIX, this default path is normally

/usr/local/lib/python/.

61

The module search path is stored in the system module sys as the sys.path variable. The

sys.path variable contains the current directory, PYTHONPATH, and the installation-

dependent default.

The PYTHONPATH Variable

The PYTHONPATH is an environment variable, consisting of a list of directories. The syntax

of PYTHONPATH is the same as that of the shell variable PATH.

Here is a typical PYTHONPATH from a Windows system −

set PYTHONPATH = c:\python20\lib;

And here is a typical PYTHONPATH from a UNIX system −

set PYTHONPATH = /usr/local/lib/python

#!/usr/bin/python

Money = 2000

def AddMoney():

 # Uncomment the following line to fix the code:

 # global Money

 Money = Money + 1

print Money

AddMoney()

print Money

The reload() Function

When the module is imported into a script, the code in the top-level portion of a module is

executed only once. if you want to reexecute the top-level code in a module while module

development stage or modified, you can use the reload() function. The reload() function

imports a previously imported module again.

reload(module_name)

Files I/O

Printing to the Screen

The simplest way to produce output is using the print statement where you can pass zero or

more expressions separated by commas. This function converts the expressions you pass into

a string and writes the result to standard output (screen)

#!/usr/bin/python

print "Python is really a great language,", "isn't it?"

Reading Keyboard Input

Python provides two built-in functions to read a line of text from standard input, which by

default comes from the keyboard.

 raw_input

 input

The raw_input Function

62

The raw_input([prompt]) function reads one line from standard input and returns it as a string

(removing the trailing newline).

#!/usr/bin/python

str = raw_input("Enter your input: ")

print "Received input is : ", str

Enter your input: Hello Python

Received input is : Hello Python

The input Function

The input([prompt]) function is equivalent to raw_input, except that it assumes the input is a

valid Python expression and returns the evaluated result.

#!/usr/bin/python

str = input("Enter your input: ")

print "Received input is : ", str

This would produce the following result against the entered input −

Enter your input: [x*5 for x in range(2,10,2)]

Recieved input is : [10, 20, 30, 40]

Opening and Closing Files

Until now, you have been reading and writing to the standard input and output. Now, we will

see how to use actual data files.

The open Function

Before you can read or write a file, you have to open it using Python's built-in open() function.

This function creates a file object, which would be utilized to call other support methods

associated with it.

file object = open(file_name [, access_mode][, buffering])

Here are parameter details −

 file_name − The file_name argument is a string that contains the name of the file that

you want to access.

 access_mode − The access_mode determines the mode in which the file has to be

opened, i.e., read, write, append, etc and details as below.

 buffering − If the buffering value is set to 0, no buffering takes place. If the buffering

value is 1, line buffering is performed while accessing a file. If you specify the buffering

value as an integer greater than 1, then buffering action is performed with the indicated

buffer size. If negative, the buffer size is the system default(default behavior).

Here is a list of the different modes of opening a file

Sr.No. Modes & Description

1 r
Opens a file for reading only. The file pointer is placed at the beginning of the file.

This is the default mode.

63

2 rb
Opens a file for reading only in binary format. The file pointer is placed at the

beginning of the file. This is the default mode.

3 r+
Opens a file for both reading and writing. The file pointer placed at the beginning

of the file.

4 rb+
Opens a file for both reading and writing in binary format. The file pointer placed

at the beginning of the file.

5 w
Opens a file for writing only. Overwrites the file if the file exists. If the file does

not exist, creates a new file for writing.

6 wb
Opens a file for writing only in binary format. Overwrites the file if the file exists.

If the file does not exist, creates a new file for writing.

7 w+
Opens a file for both writing and reading. Overwrites the existing file if the file

exists. If the file does not exist, creates a new file for reading and writing.

8 wb+
Opens a file for both writing and reading in binary format. Overwrites the existing

file if the file exists. If the file does not exist, creates a new file for reading and

writing.

9 a
Opens a file for appending. The file pointer is at the end of the file if the file exists.

That is, the file is in the append mode. If the file does not exist, it creates a new file

for writing.

10 ab
Opens a file for appending in binary format. The file pointer is at the end of the file

if the file exists. That is, the file is in the append mode. If the file does not exist, it

creates a new file for writing.

11 a+
Opens a file for both appending and reading. The file pointer is at the end of the

file if the file exists. The file opens in the append mode. If the file does not exist, it

creates a new file for reading and writing.

12 ab+
Opens a file for both appending and reading in binary format. The file pointer is at

the end of the file if the file exists. The file opens in the append mode. If the file

does not exist, it creates a new file for reading and writing.

64

The file Object Attributes

Once a file is opened and you have one file object, you can get various information related to

that file.

Here is a list of all attributes related to file object −

Sr.No. Attribute & Description

1 file.closed
Returns true if file is closed, false otherwise.

2 file.mode
Returns access mode with which file was opened.

3 file.name
Returns name of the file.

4 file.softspace
Returns false if space explicitly required with print, true otherwise.

#!/usr/bin/python

Open a file

fo = open("foo.txt", "wb")

print "Name of the file: ", fo.name

print "Closed or not : ", fo.closed

print "Opening mode : ", fo.mode

print "Softspace flag : ", fo.softspace

This produces the following result −

Name of the file: foo.txt

Closed or not : False

Opening mode : wb

Softspace flag : 0

The close() Method

The close() method of a file object closes the file object, after which no more access for read

or write. Python automatically closes a file when the reference object of a file is reassigned to

another file. It is a good practice to use the close() method to close a file.

fileObject.close()

#!/usr/bin/python

Open a file

fo = open("foo.txt", "wb")

print "Name of the file: ", fo.name

Close opend file

fo.close()

Name of the file: foo.txt

The write() Method

65

The write() method writes any string to the opened file. The write() method does not add a

newline character ('\n') to the end of the string

fileObject.write(string)

Here, passed parameter is the content to be written into the opened file.

#!/usr/bin/python

Open a file

fo = open("foo.txt", "wb")

fo.write("Python is a great language.\nYeah its great!!\n")

Close opend file

fo.close()

The read() Method

The read() method reads a string from an open file. It is important to note that Python strings

can have binary data. apart from text data.

fileObject.read([count])

Here, passed parameter is the number of bytes to be read from the opened file. This method

starts reading from the beginning of the file and if count is missing, then it tries to read as much

as possible, maybe until the end of file.

#!/usr/bin/python

Open a file

fo = open("foo.txt", "r+")

str = fo.read(10);

print "Read String is : ", str

Close opend file

fo.close()

File Positions

The tell() method tells you the current position within the file; in other words, the next read or

write will occur at that many bytes from the beginning of the file.

The seek(offset[, from]) method changes the current file position. The offset argument

indicates the number of bytes to be moved. The from argument specifies the reference position

from where the bytes are to be moved.

If from is set to 0, it means use the beginning of the file as the reference position and 1 means

use the current position as the reference position and if it is set to 2 then the end of the file

would be taken as the reference position.

#!/usr/bin/python

Open a file

fo = open("foo.txt", "r+")

str = fo.read(10)

print "Read String is : ", str

Check current position

position = fo.tell()

print "Current file position : ", position

66

Reposition pointer at the beginning once again

position = fo.seek(0, 0);

str = fo.read(10)

print "Again read String is : ", str

Close opend file

fo.close()

Read String is : Python is

Current file position : 10

Again read String is : Python is

Renaming and Deleting Files

Python os module provides methods that help you perform file-processing operations, such as

renaming and deleting files.

To use this module you need to import os module first and then you can call any related

functions.

The rename() Method

The rename() method takes two arguments, the current filename and the new filename.

os.rename(current_file_name, new_file_name)

#!/usr/bin/python

import os

Rename a file from test1.txt to test2.txt

os.rename("test1.txt", "test2.txt")

You can use the remove() method to delete files by supplying the name of the file to be deleted

as the argument.

os.remove(file_name)

#!/usr/bin/python

import os

Delete file test2.txt

os.remove("text2.txt")

Directories in Python

All files are contained within various directories, and Python has handling these too.

The os module has several methods that help you create, remove, and change directories.

The mkdir() Method

You can use the mkdir() method of the os module to create directories in the current directory.

You need to supply an argument to this method which contains the name of the directory to be

created.

os.mkdir("newdir")

#!/usr/bin/python

import os

67

Create a directory "test"

os.mkdir("test")

The chdir() Method

You can use the chdir() method to change the current directory. The chdir() method takes an

argument, which is the name of the directory that you want to make the current directory.

os.chdir("newdir")

#!/usr/bin/python

import os

Changing a directory to "/home/newdir"

os.chdir("/home/newdir")

The getcwd() Method

The getcwd() method displays the current working directory.

os.getcwd()

#!/usr/bin/python

import os

This would give location of the current directory

os.getcwd()

The rmdir() Method

The rmdir() method deletes the directory, which is passed as an argument in the method.

os.rmdir('dirname')

#!/usr/bin/python

import os

This would remove "/tmp/test" directory.

os.rmdir("/tmp/test")

Virtual environments

A virtual environment is a provision to keep dependencies required by different projects. For a

scenario, working on two python projects one of them uses Tensorflow 4.0 and another uses

Tensorflow 4.1. In this scenario tow environment may be created. When used from within a

virtual environment, common installation tools such as pip will install Python packages into a

virtual environment

Creating virtual environments

python3 -m venv /path/to/new/virtual/environment

usage: venv [-h] [--system-site-packages] [--symlinks | --copies] [--clear]

 [--upgrade] [--without-pip] [--prompt PROMPT] [--upgrade-deps]

 ENV_DIR [ENV_DIR ...]

Creates virtual Python environments in one or more target directories.

positional arguments:

 ENV_DIR A directory to create the environment in.

optional arguments:

 -h, --help show this help message and exit

https://pypi.org/project/pip/

68

 --system-site-packages

 Give the virtual environment access to the system

 site-packages dir.

 --symlinks Try to use symlinks rather than copies, when symlinks

 are not the default for the platform.

 --copies Try to use copies rather than symlinks, even when

 symlinks are the default for the platform.

 --clear Delete the contents of the environment directory if it

 already exists, before environment creation.

 --upgrade Upgrade the environment directory to use this version

 of Python, assuming Python has been upgraded in-place.

 --without-pip Skips installing or upgrading pip in the virtual

 environment (pip is bootstrapped by default)

 --prompt PROMPT Provides an alternative prompt prefix for this

 environment.

 --upgrade-deps Upgrade core dependencies: pip setuptools to the

 latest version in PyPI

Once an environment has been created, you may wish to activate it, e.g. by

sourcing an activate script in its bin directory.

source env/bin/activate

python3 -m pip install requests

deactivate

Using requirements files

Instead of installing packages individually, pip allows you to declare all dependencies in

a Requirements File. Example you could create a plain text file “requirements.txt” with

following

requests==2.18.4

google-auth==1.1.0

python3 -m pip install -r requirements.txt

Some of python based Bioinformatics tools are given below:

Tool Description

vcfR Variant call format (VCF) files document the genetic variation observed

after DNA sequencing, alignment and variant calling of a sample cohort.

Given the complexity of the VCF format as well as the diverse variant

annotations and genotype metadata, there is a need for fast, flexible

methods enabling intuitive analysis of the variant data within VCF and

BCF files.

circexplorer2 it is a comprehensive and integrative circular RNA analysis toolset.

VCF-KIt VCF-kit is a command-line based collection of utilities for performing

analysis on Variant Call Format (VCF) files.

https://pip.pypa.io/en/latest/user_guide/#requirements-files

69

DMRfinder it is written in Python and R, DMRfinder efficiently identifies genomic

regions with differentially methylated CpG sites from high-throughput

MethylC-seq datasets

Trim Galore is a wrapper script to automate quality and adapter trimming as well as

quality control, with some added functionality to remove biased

methylation positions for RRBS sequence files

mltest A fast, robust and easy-to-use calculation of multiclass classification

evaluation metrics based on confusion matrix.

SqueezeMeta SqueezeMeta is a full automatic pipeline for

metagenomics/metatranscriptomics, covering all steps of the analysis.

checkM CheckM provides a set of tools for assessing the quality of genomes

recovered from isolates, single cells, or metagenomes.

Primer3 Primer3-py is a Python-abstracted API for the popular Primer3 library.

The intention is to provide a simple and reliable interface for automated

oligo analysis and design.

VCF-kit VCF-kit is a command-line based collection of utilities for performing

analysis on Variant Call Format (VCF) files.

gmx-MMPBSA gmx_MMPBSA is a new tool based on AMBER's MMPBSA.py aiming

to perform end-state free energy calculations with GROMACS files

MODELLER MODELLER is used for homology or comparative modeling of protein

three-dimensional structures

References

 Peter J. A. Cock, Tiago Antao, Jeffrey T. Chang, Brad A. Chapman, Cymon J. Cox, Andrew

Dalke, Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek Wilczynski, Michiel J. L.

de Hoon. Biopython: freely available Python tools for computational molecular biology

and bioinformatics, Bioinformatics, Volume 25, Issue 11, June 2009, Pages 1422–

1423, https://doi.org/10.1093/bioinformatics/btp163

 Brad Chapman and Jeff Chang. Biopython: Python tools for computational biology. ACM

SIGBIO Newsletter 20 (2): 15–19 (August 2000).

 https://docs.python.org/3/tutorial/

 https://en.wikipedia.org/wiki/Python_(programming_language)

 http://biopython.org/DIST/docs/tutorial/Tutorial.html

https://doi.org/10.1093/bioinformatics/btp163
https://en.wikipedia.org/wiki/Python_(programming_language)
http://biopython.org/DIST/docs/tutorial/Tutorial.html

70

Introduction to R for Bioinformatics

Sudhir Srivastava, D. C. Mishra and Deepa Bhatt

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Introduction

R is a programming language that allows for advanced statistical computing and graphics. It

was created by the statisticians Ross Ihaka and Robert Gentleman. It is supported by the R Core

Team and the R Foundation for Statistical Computing. The language is very powerful for

writing programs. Output may be limited based on the function, but even small code can

generate wonderful graphics. It is very sensitive to syntax, case, punctuation used, even

spacing. R is open source and free on the Internet. R is used among statisticians, computer

scientists and bioinformaticians for data analysis and developing statistical software. The

official R software environment is an open-source free software environment within the GNU

package, available under the GNU General Public License. It is written primarily in C, Fortran,

and R itself (partially self-hosting). Precompiled executables are provided for

various operating systems. R has a command line interface as well as multiple third-

party graphical user interfaces such as RStudio (an integrated development environment)

and Jupyter (a notebook interface).

Working in R and RStudio

R can be installed in Linux, Unix, Windows and Mac platforms from www.r-project.org. For

downloading R, please visit https://cloud.r-project.org/.

The R GUI

RStudio is a free, open-source IDE (integrated development environment) for R. It can be

downloaded from https://www.rstudio.com/products/rstudio/download/. One must install R

before installing RStudio. The interface is organized so that the user can clearly view graphs,

data tables, R code, and output all at the same time.

https://en.wikipedia.org/wiki/Robert_Gentleman_(statistician)
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Statistical_software
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/List_of_GNU_packages
https://en.wikipedia.org/wiki/List_of_GNU_packages
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Self-hosting_(compilers)
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Command_line_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/RStudio
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Jupyter
https://en.wikipedia.org/wiki/Notebook_interface
http://www/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/

71

R Studio Interface

There are various ways for working in R:

• Work directly from the R editor to type in your script and execute the script completely

(batch) or line-by-line (highlight and execute)

• Write script in an external editor (Notepad or software that interfaces with R) and execute

in R by copy/paste or highlighting

• Beyond the native R GUI, external GUI can work with R to help in writing scripts,

selecting functions, procedures, statistical tests, or graphics

Getting started: R

72

Getting started: RStudio

R is an expression language with a very simple syntax. It is case sensitive as are most UNIX

based packages. For example, A and a are different symbols and refer to different variables.

The set of symbols which can be used in R names depends on the operating system and country

within which R is being run (technically on the locale in use). Normally all alphanumeric

symbols are allowed (and in some countries this includes accented letters) plus ‘.’ and ‘_’, with

the restriction that a name must start with ‘.’ or a letter, and if it starts with ‘.’ the second

character must not be a digit. Elementary commands consist of either expressions or

assignments. If an expression is given as a command, it is evaluated, printed (unless specifically

made invisible), and the value is lost. An assignment evaluates an expression and passes the

value to a variable but the result is not automatically printed. Commands are separated either

by a semi-colon (‘;’), or by a newline. Elementary commands can be grouped together into one

compound expression by braces (‘{’ and ‘}’). Comments can be put almost anywhere, starting

with a hashmark (‘#’), everything to the end of the line is a comment. If a command is not

complete at the end of a line, R will give a different prompt, by default + on second and

subsequent lines and continue to read input until the command is syntactically complete.

R Workspace

R workspace is temporary space on your CPU’s RAM that “disappears” at the end of R session.

It includes any user-defined objects (vectors, matrices, data frames, lists, functions). All data,

analyses, output are stored as objects in the R workspace. This workspace is not saved on disk

unless you tell R to do so. This means that your objects are lost when you close R and not save

the objects, or worse when R or your system crashes on you during a session. When you close

the RGui or the R console window, the system will ask if you want to save the workspace

image. If you select to save the workspace image then all the objects in your current R session

are saved in a file “.RData”. “.RData” is a binary file located in the working directory of R,

which is by default the installation directory of R. During your R session, you can also

explicitly save the workspace image.

Go to the ‘Session’ menu and then select ‘Save Workspace as’

 > save.image(“example1.Rdata”)

73

If you have saved a workspace image and you start R the next time, it will restore the

workspace. So all your previously saved objects are available again.

Go to the ‘Session’ menu and then select ‘Load Workspace’.

 > load.image(“example1.Rdata”)

• Windows uses a \ (left slash) to delineate locations in CPU:

 C:\Users\hp\Documents

• R uses / (right slash) to delineate locations in CPU:

 C:/Users/hp/Documents

• An alternative to R’s / (single right) is \\ (two left) slashes:

 C:\\Users\\hp\\Documents

• There is no issue in the MAC OS/Linux as they have retained the / (right slash) as the basis

for directory delineation

• Print the current working directory

 > getwd()

• List the objects in the current workspace

 > ls()

• Change to my directory

 > setwd(mydirectory)

• Display last 25 commands

 > history()

• Display all previous commands

 > history(max.show=Inf)

• Saving R workspace

 > x <- 5 # object x; x is assigned value 5

 > y <- 10 # object y; y is assigned value 10

 > z <- x+y # object z (addition of numbers x and y); z is assigned the value x+y

 > save(x, y, file = "example1_xy.RData") # save two specified objects x and y

 > save.image(file = "example1.RData") # save entire workspace

• Removing objects R workspace: Use rm()

> ls()

[1] "x" "y" "z"

> rm(x, y) # removes objects x and y

> ls()

[1] "z"

• Use load() to add previously saved objects or workspaces to your current R session.

> load(file = "example1.RData")

> ls()

[2] "x" "y" "z"

Getting help with functions and features

To get more information on any specific named function, use help() function or ? help operator.

74

> help(lm) or > help(“lm”)

> ?lm

For a feature specified by special characters, the argument must be enclosed in double or single

quotes, making it a “character string”. This is also necessary for a few words with syntactic

meaning including if, for and function.

> help("[[")

The convention is to use double quote marks for preference.

On most R installations help is available in HTML format by running help.start() which will

launch a Web browser that allows the help pages to be browsed with hyperlinks. The

help.search command (alternatively ??) allows searching for help in various ways.

> help.search("lm")

> ??lm

The examples on a help topic can normally be run by

> example(lm)

Windows versions of R have other optional help systems: Use ?help for further details.

R Datasets

R comes with a number of sample datasets that you can experiment with. One has to type data(

) to see the available datasets. The results will depend on which packages you have loaded. For

getting details on a sample dataset, type help(datasetname). Example: > help("AirPassengers")

R Packages

One of the strengths of R is that the system can easily be extended. The system allows you to

write new functions and package those functions in a so called `R package' (or `R library’).

The R package may also contain other R objects, for example data sets or documentation. There

is a lively R user community and many R packages have been written and made available on

CRAN for other users. For example, there are packages for statistics, bioinformatics and many

more. To attach package to the system you can use the menu or the library function.

• Via the menu in RGui: Select the ‘Packages’ menu and select ‘load package...’, a list of

available packages on your system will be displayed. Select one and click ‘OK’.

• Via the library function: > library()

Data Management

Everything in R is an object. An object is simply a data structure that has some methods and

attributes. The data elements in any R object has attributes. These attributes describe the nature

of the elements. Object attributes are modes, class and types.

• Modes: logical (TRUE, FALSE), numeric, character (string), complex (complex number)

• Type (e.g. vectors can be character, numeric, logical or complex)

• Class: Describes object type and mode of object or element that is specified.

75

Objects in R:

• Scalar: a single number (1x1 vector)

• Vector: all elements of the same type (Type: logical, character, numeric or complex)

• List: can contain objects of different types

• Matrix: table of vectors, where all elements are numeric (or complex)

• Data frame: table of number and/or character vectors. Can contain lists, too.

Data objects in R can exist in many different modes, classes, and types. mode() function returns

the mode of an object. Some object classes like arrays and matrices require all elements to be

of the same mode. A vector can have only mode type of elements. It can have only numeric,

character, logical or complex elements. Other objects (data frames, lists) allow for different

modes to exist, i.e. objects within data frames and lists can be of different modes. Class

describes object type and mode of object or element that is specified. class() function returns

class of an object.

Examples: “vector”, “data.frame”, “numeric”, “factor”

> z <- 0:9

> z

 [1] 0 1 2 3 4 5 6 7 8 9

> digits <- as.character (z)

> digits

[1] "0" "1" "2" "3" "4" "5" "6" "7" "8" "9"

> d <- as.integer (digits)

> d

[1] 0 1 2 3 4 5 6 7 8 9

> class (z)

[1] "integer"

> class (digits)

[1] "character"

> class (d)

[1] "integer"

Vector Arithmetic

<- the arrow is the assignment symbol, used to assign a value or function to a symbol or object.

The ‘=’ operator can be used as an alternative.

> 5+10

[1] 15

> x <- 5 # object x; x is assigned value 5

> y <- 10 # object y; y is assigned value 10

> z <- x+y # object z; z is assigned the value x+y

> z # Display z

[1] 15

> sqrt(z)

[1] 3.872983

> ls() # List objects

[1] "x" "y" "z"

76

Here, x, y and z are scalar objects, each having a single value.

Assignment statement using c() function

> x <- c(9.5, 10.8, 2.5, 3.9, 19.6)

> x

[1] 9.5 10.8 2.5 3.9 19.6

> assign("x", c(9.5, 10.8, 2.5, 3.9, 19.6))

> x

[1] 9.5 10.8 2.5 3.9 19.6

> c(9.5, 10.8, 2.5, 3.9, 19.6) -> x

> x

[1] 9.5 10.8 2.5 3.9 19.6

> 1/x

[1] 0.10526316 0.09259259 0.40000000 0.25641026 0.05102041

> y <- c(x, 1, 0, 1, x)

> y

 [1] 9.5 10.8 2.5 3.9 19.6 1.0 0.0 1.0 9.5 10.8 2.5 3.9 19.6

The elementary arithmetic operators:

• +, -, *, / and ^

• log, exp, sin, cos, tan, sqrt

• max and min select the largest and smallest elements of a vector respectively.

• range is a function whose value is a vector of length two, namely c(min(x), max(x)).

• length(x) is the number of elements in x.

• sum(x) gives the total of the elements in x.

• prod(x) gives the product.

> x <- c(1:10)

> x

[1] 1 2 3 4 5 6 7 8 9 10

> x [x>6]

[1] 7 8 9 10

> x [(x>6) | (x<4)]

[1] 1 2 3 7 8 9 10

> x <- seq (1,10)

> x

 [1] 1 2 3 4 5 6 7 8 9 10

> rev (x) # reverse order

 [1] 10 9 8 7 6 5 4 3 2 1

> x <- (1:4)^2

> x

[1] 1 4 9 16

Missing values

Arithmetic functions on missing values yield missing values.

> x <- c(1, 5, 4, NA, 6)

> x

[1] 1 5 4 NA 6

77

> mean(x)

[1] NA

> mean(x, na.rm = TRUE)

[1] 4

The function is.na(x) gives a logical vector of the same size as x with value TRUE if and only

if the corresponding element in x is NA.

> is.na(x)

[1] FALSE FALSE FALSE TRUE FALSE

Impossible values (e.g., dividing by zero) are represented by the symbol NaN (Not a Number).

> 5/0

[1] Inf

> 0/0

[1] NaN

> Inf - Inf

[1] NaN

is.na(xx) is TRUE both for NA and NaN values.

is.nan(xx) is only TRUE for NaNs.

> color <-c("red", "green", "blue")

> color # the values of character variable color are red, green and blue

[1] "red" "green" "blue"

> cat(color) # remove quotation marks

red green blue

> cat(color[1])

red

Assign names to the Elements

> x <- c(Delhi="red", Mumbai="green", Kolkata="blue")

> x

 Delhi Mumbai Kolkata

 "red" "green" "blue"

> names(x)

[1] "Delhi" "Mumbai" "Kolkata"

> fruit <- c(2, 3, 6)

> names(fruit) <- c("orange", "apple", "banana")

> fruit

orange apple banana

 2 3 6

> fruit[c("apple","orange")]

 apple orange

 3 2

> Fruit <- c(orange=2, apple=3, banana=6)

> Fruit

orange apple banana

 2 3 6

All elements of a vector must have the same type. If you concatenate vectors of different types,

they will be converted to the least "restrictive" type.

78

> c(2, "car")

[1] "2" "car”

Logical values are converted to 0 / 1 OR "TRUE"/ "FALSE".

> c(FALSE, 5)

[1] 0 5

> c(FALSE, "red")

[1] "FALSE" "red"

Background in Vector Arithmetic: Vector addition required the vectors to be the same length

(dimension).

x <- c(9, 2)

> x

[1] 9 2

> y <- c(5, 1)

> y

[1] 5 1

> x + 5

[1] 14 7

> x + y

[1] 14 3

> x - y

[1] 4 1

> x*y

[1] 45 2

> 2*x+y+5

[1] 28 10

> x/y

[1] 1.8 2.0

Concatenate – c()

c(x, y)

> z <- c(6, 4, 1, 0)

> z

[1] 6 4 1 0

> x <- c(6, 4)

> x

[1] 6 4

> y <- c(1, 0)

> y

[1] 1 0

> z <- c(x, y)

> z

[1] 6 4 1 0

Generating regular sequences – seq()

> x1 <- 1:10

> x1

79

 [1] 1 2 3 4 5 6 7 8 9 10

> x2 <- seq(1, 10)

> x2

 [1] 1 2 3 4 5 6 7 8 9 10

> x3 <- seq(1, 10, by = 2)

> x3

[1] 1 3 5 7 9

> x4 <- seq(10, 22, length = 5)

> x4

[1] 10 13 16 19 22

> x5 <- seq(length = 31, from = -5, by = 3)

> x5

 [1] -5 -2 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

[28] 76 79 82 85

Generating regular sequences – rep()

Replicate or repeat

> x6 <- rep(3, 5)

> x6

[1] 3 3 3 3 3

> x7 <- 1:3

> x7

[1] 1 2 3

> x8 <- rep(x7, times = 5) # put five copies of x7 end-to-end in x8

> x8

 [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

> x9 <- rep(x7, each = 5) # repeats each element of x7 five times before moving on to the

next

> x9

 [1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

Summaries and Subscripting

> x <- c(1, 3, 4, 7, 11, 32)

> x[1:3]

[1] 1 3 4

> x[c(1:3, 6)]

[1] 1 3 4 32

> x[-(1:4)]

[1] 11 32

> mean(x) # Mean

[1] 9.666667

> m1 <- sum(x)/length(x)

> m1

[1] 9.666667

> var(x) # Variance

80

[1] 131.8667

> sum((x-m1)^2)/(length(x)-1)

[1] 131.8667

> sd(x) # Standard deviation

[1] 11.48332

> sqrt(sum((x-m1)^2)/(length(x)-1))

[1] 11.48332

> summary(x) # Summary

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1.000 3.250 5.500 9.667 10.000 32.000

> summary(x[1:4]) # Summary

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1.00 2.50 3.50 3.75 4.75 7.00

Matrices

Matrices or more generally arrays are multi-dimensional generalizations of vectors. In fact,

they are vectors that can be indexed by two or more indices.

> X <- matrix(1:12, nrow = 3, ncol = 4)

> X

 [,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> dim(X)

[1] 3 4

> Y <- matrix(1:12, nrow = 3, ncol = 4, byrow = TRUE)

> Y

 [,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

Assigning names to rows and columns

> rownames(X) <- c("A", "B", "C")

> X

 [,1] [,2] [,3] [,4]

A 1 4 7 10

B 2 5 8 11

C 3 6 9 12

> colnames(X) <- c("X1", "X2", "X3", "X4")

> X

 X1 X2 X3 X4

A 1 4 7 10

B 2 5 8 11

C 3 6 9 12

81

Accessing elements of a matrix

> X

 X1 X2 X3 X4

A 1 4 7 10

B 2 5 8 11

C 3 6 9 12

> X[,1]

A B C

1 2 3

> X[1,]

X1 X2 X3 X4

 1 4 7 10

> X[2, 3]

[1] 8

Adding additional rows or binding matrices – rbind()

Adding additional columns or binding matrices – cbind()

> X <- matrix(1:12, nrow = 3, ncol = 4)

> X

 [,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> rbind(X, c(5, 1, 2, 6))

 [,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

[4,] 5 1 2 6

> cbind(X, c(3, 4, 9))

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 4 7 10 3

[2,] 2 5 8 11 4

[3,] 3 6 9 12 9

Transpose – t(); Determinant – det(); Inverse – solve()

> X <- matrix(c(1, 3, 8, 12), nrow = 2, byrow = TRUE)

> X

 [,1] [,2]

[1,] 1 3

[2,] 8 12

> t(X) # Transpose of matrix

 [,1] [,2]

[1,] 1 8

[2,] 3 12

> det(X) # Determinant of matrix

82

[1] -12

> solve(X) # Inverse of matrix

 [,1] [,2]

[1,] -1.0000000 0.25000000

[2,] 0.6666667 -0.08333333

List and Data Frame

An R list is an object consisting of an ordered collection of objects known as its components.

> Lst <- list(name="Fred", wife="Mary", no.children=3, child.ages=c(4,7,9))

> Lst

$name

[1] "Fred"

$wife

[1] "Mary"

$no.children

[1] 3

$child.ages

[1] 4 7 9

> length(Lst) # Length

[1] 4

> names(Lst) # Names

[1] "name" "wife" "no.children" "child.ages“

 > Lst$no.children

[1] 3

> Lst[[3]]

[1] 3

A data frame object in R has similar dimensional properties to a matrix but it may contain

categorical data, as well as numeric (mixed modes). The standard layout is to put data for one

observation across a row and variables as columns. Columns can be thought of as vectors, being

either numeric or character. Columns can have column names, similar to variable names.

Column names can be of any length, consisting of letters, numbers and a period (.) if desired.

Underscores are not allowed. Column names must start with a letter. Columns (vectors) in a

data.frame must be of the same length. On one level, as the notation will reflect, a data frame

is a list. Each component corresponds to a variable, i.e., the vector of values of a given variable

for each sample. Therefore, a data frame is like a list with components as columns of table.

Lists have columns of the same lengths.

A list can be made into a data.frame:

 Components must be vectors (numeric, character, logical) or factors.

 All vectors and factors must have the same lengths.

Matrices and even other data frames can be combined with vectors to form a data frame if the

dimensions match up.

> students <- data.frame(gender = c("F", "M","F"), ht = c(170, 188.5, 168.3), wt = c(91.8,90,

82.6))

83

> students

 gender ht wt

1 F 170.0 91.8

2 M 188.5 90.0

3 F 168.3 82.6

> students[1, 2] # Identify the row 1, col 2 element in object Students

[1] 170

> names(students) # Identify the column names in object Students

[1] "gender" "ht" "wt"

> rownames(students) <- c("S1", "S2", "S3") # Apply row names to object Students

> students

 gender ht wt

S1 F 170.0 91.8

S2 M 188.5 90.0

S3 F 168.3 82.6

Lists

Lists combine a collection of objects into a larger composite object.

> intake.pre <- c(23,35,34,13,46, 45,34)

> intake.post <- c(56,57,36,58,36,67,32)

> mylist <- list(before=intake.pre, after=intake.post)

> mylist

$before

[1] 23 35 34 13 46 45 34

$after

[1] 56 57 36 58 36 67 32

> mylist[1]

$before

[1] 23 35 34 13 46 45 34

> mylist[[1]]

[1] 23 35 34 13 46 45 34

> dat <- data.frame(intake.pre, intake.post)

> dat

 intake.pre intake.post

84

1 23 56

2 35 57

3 34 36

4 13 58

5 46 36

6 45 67

7 34 32

> dat$intake.pre

[1] 23 35 34 13 46 45 34

> dat$intake.pre[3]

[1] 34

> dat$intake.pre[c(1,3)]

[1] 23 34

> dat$intake.pre[-3]

[1] 23 35 13 46 45 34

Factor

Factors are the data objects which are used to categorize the data and store it as levels. They

can store both strings and integers. They are useful in the columns which have a limited number

of unique values such as gender (Male, Female), etc.

factor(x = character(), levels, labels = levels, ordered = is.ordered(x))

> gender <- c("male","male","female","female","male","female","male")

> gender

[1] "male" "male" "female" "female" "male" "female" "male"

> class(gender)

[1] "character“

> gender <- factor(gender)

> gender

[1] male male female female male female male

Levels: female male

> class(gender)

[1] "factor"

Two-way Layout

Consider our two-way layout problem, where we produced the indicator variables using rep().

A better way to do this is using the function gl, which will generate factors.

> clevels <- gl(3,8)

> clevels

 [1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

+ 3

85

Levels: 1 2 3

> rlevels <- gl(4,2,length=24)

> rlevels

[1] 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4

+ 4

Levels: 1 2 3 4

Use the function expand.grid to produce a data frame with the desired factors.

> reps

[1] 1 2

> colLevels <- 1:3

> colLevels

[1] 1 2 3

> rowLevels <- 1:4

> rowLevels

[1] 1 2 3 4

> height = seq(60, 80, 10)

> height

[1] 60 70 80

> weight = seq(100, 200, 50)

> weight

[1] 100 150 200

> sex = c("Male","Female")

> sex

[1] "Male" "Female"

Generating Random Numbers

As a language for statistical analysis, R has a comprehensive library of functions for generating

random numbers from various statistical distributions.

Example: Generate 5 random integers between 1 and 10

> set.seed (100) # function in R used to reproduce results

> sample (1:10, 5) # sampling without

 replacement is the default

[1] 10 7 6 3 1

> sample (1:10, 5, replace = TRUE)

[1] 10 7 6 6 4

> sample (c("H","T"),5, replace = TRUE)

[1] "H" "T" "T" "H" "H"

> runif (5, 0, 1) # generating between 0 and 1, excluding 0 and 1

[1] 0.6902905 0.5358112 0.7108038 0.5383487 0.7489722

> rnorm (5, 1, 3) # generating random numbers from normal dist with (1,3)

[1] 0.3950981 3.2195215 1.3701385 0.9120499 -0.1665627

Importing Data

> mydata <- read.table ("mydata.txt", header=TRUE) # From Text file

> head(mydata)

86

 Height Weight Sex

1 60 100 Male

2 70 100 Male

3 80 100 Male

4 60 150 Male

5 70 150 Male

6 80 150 Male

> mydata <- read.table ("mydata.csv", header=TRUE) # From CSV file

> mydata <- read.delim ("mydata.csv") # Importing file with a separator character

> mydata <- read.delim2("mydata.csv")

Importing from Excel: Importing from 1st worksheet

We will require a package named ‘xlsx’.

> library(xlsx)

Warning message:

package ‘xlsx’ was built under R version 4.0.5

> mydata <- read.xlsx("mydata.xlsx", 1)

Importing SPSS

library(foreign)

mydata <- read.spss(“mydata.sav”, to.data.frame=TRUE,

use.value.labels=FALSE)

Importing SAS files

library(sas7bdat)

mydata <- read.sas7bdat(“mydata.sas7bdat”)

Importing Minitab files

library(foreign)

mydata <- read.mtp(“mydata.mtp”)

Graphics

Histogram plots the frequencies that data appears within certain ranges.

> data(trees)

> head(trees)

 Girth Height Volume

1 8.3 70 10.3

2 8.6 65 10.3

87

3 8.8 63 10.2

4 10.5 72 16.4

5 10.7 81 18.8

6 10.8 83 19.7

Add a title: The “main” statement will give the plot an overall heading.

Add axis labels: Use “xlab” and “ylab” to label the X and Y axes, respectively.

Changing colors: Use the col statement

hist(trees$Height, main="Height of Cherry Tree", xlab="Height", ylab="Frequency",

col="red")

A boxplot provides a graphical view of the median, quartiles, maximum, and minimum of a

data set.

> boxplot(trees$Volume,main='Volume of Timber', ylab='Volume (cubic ft)')

Partitioning the Graphics Window

A useful facility before beginning is to divide a page into smaller pieces so that more than

one figure can be displayed graphically.

88

par: used to set or query graphics parameters

par(mfrow=c(2,2))

This will create a window of graphics with 2 rows and 2 columns.

The windows are filled up row-wise.

Use mfcol instead of mfrow to fill up column-wise.

> data(trees)

> par(mfrow=c(2,2))

> hist(trees$Height)

> boxplot(trees$Height)

> hist(trees$Volume)

> boxplot(trees$Volume)

> par(mfrow=c(1,1))

- Use layout()

Example: layout(matrix(1:4,2,2)) will partition the window into 4 equal parts

One can view the layout with layout show (n = 4)

A scatter plot provides a graphical view of the relationship between two sets of numbers.

> plot(trees$Height, trees$Volume, xlab="Height", ylab="Volume", main="Scatter Plot",

pch=20)

parameter pch stands for ‘plotting character’.

> pairs(trees)

A matrix of scatterplots is produced.

89

Density plot is a representation of the distribution of a numeric variable that uses a kernel

density estimate to show the probability density function of the variable. In R Language we

use the density() function which helps to compute kernel density estimates.

> plot(density(gtemp), ylim=c(0, 2), col = "green",main = "Density plot")

> lines(density(gtemp2), col="red")

> legend(0.5,1.5, cex=0.8, c("gtemp", "gtemp2"), col=c("green", "red"), lty=1:1)

Writing functions

A function is a set of statements organized together to perform a specific task. R has a large

number of in-built functions such as seq(), mean(), max(), sum(), etc. The user can create their

own functions.

General form of the function:

func_name <- function(arg1, arg2, ...) {

Function body

}

90

func_name is the name of actual name of function.

The argument can be any type of object (like a scalar, a matrix, a data frame, a vector, a logical,

etc)

Local vs global environment

It’s not necessarily to use return() at the end of your function. The reason you return an object

is if you’ve saved the value of your statements into an object inside the function. In this case,

the objects in the function are in a local environment and won’t appear in your global

environment.

fun1 <- function(x){

 2*x+3

}

> fun1(4)

[1] 11

fun2 <- function(x){

 y <- 2*x+3

}

> fun2(4)

> print(y)

Error in print(y) : object 'y' not found

We can return the value of y using return(y) at the end of the function.

fun2_1 <- function(x){

 y <- 2*x+3

 return(y)

}

> fun2_1(4)

[1] 11

fun3 <- function(x, y){

 z1 <- 2*x+y

 z2 <- x+2*y

 z3 <- 2*x+2*y

 z4 <- x/y

 return(c(z1, z2, z3, z4))

}

> fun3(1, 2)

91

[1] 4.0 5.0 6.0 0.5

If we need to return multiple objects from a function, we can use list() to list them together.

To extract objects from output, use [[]] operator.

fun4 <- function(x, y){

 m1 <- mean(x)

 m2 <- mean(y)

 sd1 <- sd(x)

 sd2 <- sd(y)

 cor.xy <- cor(x, y)

 xy <- cbind(x, y)

 list(m1, m2, sd1, sd2, cor.xy, xy)

}

> x <- c(1, 4, 8, 11, 20, 23)

> y <- c(2, 6, 3, 8, 21, 29)

> fun4(x, y)

[[1]]

[1] 11.16667

[[2]]

[1] 11.5

[[3]]

[1] 8.750238

[[4]]

[1] 10.96814

[[5]]

[1] 0.9471335

[[6]]

 x y

[1,] 1 2

[2,] 4 6

[3,] 8 3

[4,] 11 8

[5,] 20 21

[6,] 23 29

92

for loops

-The for loop is used when iterating through a list.

-The basic structure of the for loop:

for(index in list){

 commands

}

cars <- c("Toyota", "Ford", "Chevy")

for(I in cars) {

 print(i)

}

[1] "Toyota"

[1] "Ford"

[1] "Chevy"

while loop

The while loop is used when you want to keep iterating as long as a specific condition is

satisfied. The basic structure of the while loop:

while(condition) {

 commands

}

i <- 3

while(i <= 6) {

 i <- i+1

 print(i)

}

[1] 4

[1] 5

[1] 6

[1] 7

Ifelse function

The ifelse function is very handy because it allows the user to specify the action taken for the

test condition being true or false. Like the if statement the ifelse function can be included in

any function or loop.

The basic structure of the ifelse function:

93

Ifelse(test, action.if.true, action.if.false)

> x <- seq(1:10)

> ifelse(x < 6, "T", "F")

[1] "T" "T" "T" "T" "T" "F" "F" "F" "F" "F"

R Packages for Bioinformatics

R packages are extensions to the R statistical programming language. R packages contain code,

data, and documentation in a standardised collection format that can be installed by users of R.

A large number of R packages are freely through CRAN (the Comprehensive R Archive

Network; https://cran.r-project.org/) and Bioconductor set of R packages

(www.bioconductor.org). Some well-known bioinformatics R packages are the Bioconductor

set of R packages (www.bioconductor.org). Bioconductor is a free, open source and open

development software project for the analysis and comprehension of genomic data.

R Packages for analysis of biological sequence analysis and retrieval of genomic data

 seqinr

 tidysq

 biomartr

 rentrez

R packages for sequence alignment

 Biostrings

 msa

 msaR

 ggmsa

 AlignStat

R Packages for differential gene expression analysis of microarray data

 amda

 maGUI

 maEndToEnd

 limma

 GEOlimma

R packages for differential gene expression analysis of RNA-Seq data

 edgeR

 DESeq2

 ideal

 DEvis

R Packages for protein structure analysis

 Bio3D

 Rpdb

 XLmap

R packages for protein-protein interaction graphs

 graph

 RBGL

94

 Rgraphviz

 crosstalkr

 igraph

R Packages for proteomics data analysis

 RforProteomcs

 protti

 Proteus

 DanteR

 MSstats

 MSqRob

 DAPAR

R Packages for metagenomics data analysis

 MicrobiomeExplorer

 matR

 MegaR

R Packages for GWAS and genomic selection

 statgenGWAS

 GWASTools

 BlueSNP

 rrBLUP

 lme4GS

 BWGS

 GSelection

 learnMET

 GAPIT

Demonstration of an R package “GAPIT: Genomic Association and Prediction

Integrated Tool”

GAPIT implemented a series of methods for Genome Wide Association (GWAS) and Genomic

Selection (GS). The GWAS models include

 General Linear Model (GLM)

 Mixed Linear Model (MLM or Q+K)

 Compressed MLM (CMLM)

 Enriched CMLM

 SUPPER

 Multiple Loci Mixed Model (MLMM)

 FarmCPU

 BLINK

The GS models include

 gBLUP

 Compressed BLUP

 SUPER BLUP

GAPIT is an R package which can be freely downloaded from http://www.r-project.org or

http://www.rstudio.com.

95

There are two sources to install GAPIT package.

Zhiwu Zhang Lab website

source("http://zzlab.net/GAPIT/GAPIT.library.R")

source("http://zzlab.net/GAPIT/gapit_functions.txt")

GitHub

install.packages("devtools")

devtools::install_github("jiabowang/GAPIT3",force=TRUE)

library(GAPIT3)

Help manual: https://zzlab.net/GAPIT/gapit_help_document.pdf

Import data from Zhiwu Zhang Lab

myY <- read.table("http://zzlab.net/GAPIT/data/mdp_traits.txt", head = TRUE)

myGD=read.table(file="http://zzlab.net/GAPIT/data/mdp_numeric.txt",head=T)

myGM=read.table(file="http://zzlab.net/GAPIT/data/mdp_SNP_information.txt",head=T)

GWAS

myGAPIT=GAPIT(

 Y=myY[,c(1,2,3)], #fist column is ID

 GD=myGD,

 GM=myGM,

 PCA.total=3,

 model=c("FarmCPU", "Blink"),

 Multiple_analysis=TRUE)

References

 Giorgi, F. M., Ceraolo, C. and Mercatelli, D. (2022). The R Language: An Engine for

Bioinformatics and Data Science. Life (Basel, Switzerland), 12(5), 648.

https://doi.org/10.3390/life12050648

 Ihaka, R. and Gentleman, R (1996). R: A Language for Data Analysis and Graphics. Journal

of Computational and Graphical Statistics, 5, 299–314.

doi: 10.1080/10618600.1996.10474713

 W. N. Venables, D. M. Smith and the R Core Team. An Introduction to R. Notes on R: A

Programming Environment for Data Analysis and Graphics, Version 4.2.2 (2022-10-31),

URL: https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

 https://en.wikipedia.org/wiki/R_(programming_language)

 https://en.wikipedia.org/wiki/Bioconductor

 https://www.cran.r-project.org/

 https://www.bioconductor.org/

https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Bioconductor
https://www.cran.r-project.org/
https://www.bioconductor.org/

96

Overview of Biological Databases

K. K. Chaturvedi

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Introduction

Bioinformatics is the field of science in which biology, physics, chemistry, mathematics.

Statistical and computer science, information and communication technology become a single

discipline. It is emerging field that application of computer to collection, organization,

storing, maintaining, accessing, sharing, analysis, interpretation and presentation of

biological data (nucleotide and amino acids sequences, protein domains, protein structures)

which helps to accomplishing life science research.

The potential flood of sequence data and the rapidly evolving database technologies

empowered researchers to establish international DNA data banks in the early 1980s. Today,

we have massive sequence data in the public biological databases due to concerted effort at a

number of molecular biology laboratories throughout the world, and the internet and computer

technologies. At the beginning, the main concern of bioinformatics was the creation and

maintenance of database to store nucleotide and amino acid sequences with wen based

interfaces user can access existing data and submitting new data to the database. Hence,

database creation and maintenance is major components in bioinformatics. Now, emphasis has

shifted to decipher the functional, structural and evolutionary clues encoded in the languages

of biology, in which sequences is represented by as sentence, motifs and patterns are by words

and nucleotides and amino acids are by letters. However, database design and management is

core area in bioinformatics.

Data represents facts or value of results and relations between them have the capacity to

represent information (Figure 1). Patterns of relationship between information have the

capacity to represent knowledge. Each data is assigned to one data type, which indicates

possible relationship with other data. For example; text, integer, float/double, character, time,

date and binary.

A database is a collection of data organized in the way which can be easily, stored, accessed

and managed. Database system is amalgamation of database, database management system and

users. (Fig. 1)

Types of Database models

In mid of 1960 the “database” word was first introduced with direct-access-storage. Charles

Bachman has introduced Integrated Data Store (IDS), founded, the group “Database Task

Group” responsible for the creation and standardization of COBOL. In 1971 the DTG within

CODASYL (Conference on Data Systems Languages) delivered standard for database, which

generally became known as the "Codasyl approach”, this led to network database. Same period

IBM was developed IMS (Information Management System), which is similar to Codasyl

approach and used hierarchical model of data. Edgar Codd worked at IBM in San Jose,

California and he was unhappy with the above two models. He wrote a number of papers those

illustrated a new approach based on relational algebra for construction of database that led to a

well accepted Relational Model of Data for Large Shared Data Banks. This based on concept

relational algebra. There are three main types of database models; 1) Network Model, 2)

97

Hierarchy Model, and 3) Relational Model. Main objective of these models is integration of

data, which is process of combining data of different sources under single query interface.

Fig. 1: Data to knowledge

Network Database Model

This model visualizes data in a flexible way of representing objects and their relationships. Its

distinguishing feature is that the schema, viewed as a graph in which object types are nodes

and relationship types are arcs, is not restricted to being a hierarchy or lattice.

Hierarchical database model

This model is a data model in which the data is organized into a reverse tree-like structure. In

this data can be represented as parent and child relationships by 1 to many relationships that

each parent can have many children, but each child has only one parent. All attributes of a

specific record are listed under an entity type.

Relational Database Model

In this model, database structure is represented in terms of tuples (rows), grouped into relations

(tables) and values in each columns of tuple are represented as attributes values (data) and

identified solely by the attribute name (Field).

98

Major Components and Architecture of Database System

Fig. 2: Architecture of Database

 Users: DB Administrator, Developer and end-user.

 Application: Application software to any specific domain.

 DBMS: Software for creation, insertion, deletion and modification.

 Database: Collection of data

Database architecture logically divided in to two types

 2 - tier: End-user < -- > DBMS; Here end-user/client can directly communicate with

database server.

 3- tier: End-user < -- > Application Software < -- > DBMS; Here end-user/client will

communicate with database server through application tools.

Basic Concept of DataBase Management System (DBMS)

Database Management Systems (DBMS) is specially designed applications software that

designed to interact with the user, other applications and database(s) to capture and analyse

data. The DBMS have facilities to allow the definition, creation, querying, update, and

administration of databases. Well-known DBMSs include MySQL, PostgreSQL, Microsoft

Users

Application software

DBMS

Database

3-tier

2-tier

99

SQL Server, Oracle, SAP, MS Access, FoxPro, IBM DB2/TeraByte, etc. Now database have

generally portable across different DBMS by using standards such as SQL and ODBC or JDBC

to allow a single application to work with more than one database.

Major functions of DBMS

 Data definition: Defining new data structures, removing and modifying the

existing structure.

 Update: Inserting, modifying, and deleting data.

 Retrieval: Obtaining information for end-user queries or for applications.

 Administration: Registering and monitoring users, enforcing data security,

monitoring performance, maintaining data integrity, dealing with concurrency

control, and recovering information if the system fails.

Benefits of DBMS

 Segregation of work to end-users

 Easy editing, maintenance and retrieval

 Minimizing data duplication

 Reducing time in development and maintenance

 Data security

 Multiple user accessing

 Backup and recovery

Relational Database Management System (RDBMS)

A Relational database Management System (RDBMS) is a database management system to

manage relational database based on relation database model as discussed above, which is

introduced by E. F. Codd. In this data is represented in terms of tuples (rows) Relational

database is collection of tables, table is consist of rows usually called as records and columns

called as field or attributes, and columns are identified by unique name. Table is most simplest

and fundamental unit of data storage. Each table has its own primary key (one or more fields),

which ensures that uniqueness of each record with set of fields. The keys are very important

part of relational database. They are used to establish and identify relationship between tables.

The RDBMS supports Structured Query Language (SQL).

Normalization

Normalization is a systematics pre-process of decomposing tables to eliminate data

redundancy. This will help to easy insertion, updation and deletion. Normalization rule are

divided into following form

 First Normal Form: Row cannot contain repeating group of data.

 Second Normal Form: Remove partial dependency between columns

 Remove transitive functional dependency

100

 Boyce and Codd Normal Form: This deals with certain anomaly that is not handled

by3NF.

Entity-Relationship (E-R) Diagram

ER diagram is visual diagrammatic representation of data with standard symbols and notation,

which describes how data is related to each other (Fig. 3).

Major symbols and notations

Fig. 3: Symbols and Notations

Entity may be any object, person, place and etc. Attributes are features or characteristics. For

Example livestock census statistics is shown in table 1.

Table 1: Livestock data before normalization

State State

Capital

Dist Dist

Head

Qrts

Year Animal Category Population Population

(000)

Karnataka Bangalore Dharwad Dharwad 2007 Cattle < 1 year 14355 14.356

Karnataka Bangalore Dharwad Dharwad 2007 Cattle 1-2.5

year

24675 24.675

Karnataka Bangalore Dharwad Dharwad 2007 Cattle >2.5 year 44355 44.355

Karnataka Bangalore Uttar

Kannada

Karwar 2007 Cattle < 1 year 45255 45.255

Karnataka Bangalore Uttar

Kannada

Karwar 2007 Cattle 1-2.5

year

56555 56.555

Karnataka Bangalore Uttar

Kannada

Karwar 2007 Cattle >2.5 year 1836 1.836

The ER diagram for the table 1 is shown in Fig. 4.

Entity Relationship Attributes
Joining

101

Fig. 4: ER-Diagram

The relationships of the tables are shown in Fig. 5.

Fig. 5: Relationship diagram from MS Access

Structured Query Language (SQL)

SQL is a tool for communicate with database. SQL is a plat form independent common

language is used to perform all types of data operation such as data defining, storing and

managing in RDBMS database concept. Now, all RDBMS software employs this language as

standard database language. Some of the sample commands are mentioned in table 2.

Table 2: Sample of SQL commands

Command Description Syntax

Data Definition

Animals Category

Census Dists

Year

States

Regions

Ani_Code

S_Code

R_Code

D_Code

Y_Code

Ani_Code

102

create To create new table

or database

CREATE TABLE "tablename" ("column1_name" "data

type",

 "column2_name" "data type", “. . . ")

alter For alteration ALTER TABLE table_name ADD column_name datatype;

ALTER TABLE table_name DROP COLUMN

column_name;

ALTER TABLE table_name MODIFY COLUMN

column_name datatype;

drop To drop a table DROP TABLE "tablename"

rename To rename a table RENAME TABLE tbl_name TO new_tbl_name;

Data Manipulation

Insert To insert a new row INSERT INTO tablename" (column1,... column_last)

 VALUES (value1, ... value_last);

update To update existing

row

UPDATE "tablename" SET "columnname" = "newvalue"

[,"nextcolumn" = "newvalue2"...] WHERE "columnname"

 OPERATOR "value" [AND|OR "column"

 OPERATOR "value"];

delete To delete a row DELETE FROM "tablename" WHERE "columnname"

OPERATOR "value" [AND|OR "column" OPERATOR

"value"];

Transaction control

commit To permanently

save

COMMIT;

rollback To undo change ROLLBACK;

savepoint To save temporarly SAVEPOINT SAVEPOINT_NAME;

Data query

select SELECT[ALL| DISTINCT] column1 [,column2]

FROM table1 [,table2] [WHERE "conditions"] [GROUP BY

"column-list"] [HAVING "conditions] [ORDER BY

"column-list" [ASC | DESC]]

Biological Database

Life science is a field which generates an enormous amount of un-integrated data. Biological

databases are collection of life sciences data, information and knowledge collected from

different sources such as scientific experiments, published literature, high-throughput

experiment, and computational & statistical analyses in form text, numbers, videos, images and

diagrams. These data are broadly classified into four categories based type of data such as

103

literature, sequences, structures and micro-array data. Also area wise classified into Genomics,

Proteomics, Metabolomics, and Micro-array (gene expression) and Phylogenetics.

Primary Genomic Databases

 GenBank (National Center for Biotechnology Information) url:

http://www.ncbi.nlm.nih.gov/genome

 DNA Data Bank of Japan (National Institute of Genetics) url:

http://www.ddbj.nig.ac.jp/

 European Nucleotide Archive (European Bioinformatics Institute) url:

http://www.ebi.ac.uk/ena/

Primary Protein Databases

 Uniprot (Universal Protein Resources) url:www.uniprot.org

 PDB url: www.rcsb.org/pdb/

Metabolomics databases

 META Cyc url: http://metacyc.org/

 KEGG: url : http://www.genome.jp/kegg/pathway.html

 Plant Metabolic Network (PMN) url: http://www.plantcyc.org/

Phylogenetics databases

 PhylomeDB url: http://phylomedb.org

 TreeBASE url: http://treebase.org

Microarray Database

 EMBL-EBI microarray database array express url: http://www.ebi.ac.uk/arrayexpress/

 Stanford University database url: http://smd.princeton.edu/

 Gene expression Omnibus (GEO) (NLM) url: http://www.ncbi.nlm.nih.gov/geo/

 ExpressDB - Harvard url: http://arep.med.harvard.edu/ExpressDB/

Similarly many bioinformatics databases such as Compound-Specific Databases,

Comprehensive Metabolomic Database, drug database, RNA database, SNP database,

Microsatellites, Literature database, Crystallographic database, NMR spectra database,

Carbohydrate structure databases, Protein-protein interactions database, Signal transduction

pathway databases, primer databases, Taxonomic databases and etc.

http://www.ncbi.nlm.nih.gov/genome
http://www.ddbj.nig.ac.jp/
http://www.ebi.ac.uk/ena/
http://www.rcsb.org/pdb/
http://metacyc.org/
http://www.genome.jp/kegg/pathway.html
http://www.plantcyc.org/
http://phylomedb.org/
http://treebase.org/
http://www.ebi.ac.uk/arrayexpress/
http://smd.princeton.edu/
http://www.ncbi.nlm.nih.gov/geo/
http://arep.med.harvard.edu/ExpressDB/

104

Sequence Analysis

S. B. Lal

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Introduction

Since the development of high-throughput methods for production of gene and protein

sequences during 90s, the rate of addition of new sequences to the databases increases very

rapidly. However, comparing sequences with known functions with these new sequences is

one way of understanding the biology of that organism from which the new sequence comes.

Thus, sequence analysis can be used to study of the similarities between the compared

sequences. Now a days, there are many tools and techniques that provide the sequence

comparisons (sequence alignment) and analyze the alignment to understand the biology.

Sequence analysis in molecular biology and bioinformatics is an automated, computer-based

examination of characteristic fragments, e.g. of a DNA strand. It basically includes relevant

topics:

1. The comparison of sequences in order to find similarity and dissimilarity in compared

sequences (sequence alignment)

2. Identification of gene-structures, reading frames, distributions of introns, exons and

regulatory elements

3. Finding and comparing point mutations or the single nucleotide polymorphism (SNP)

in organism in order to get the genetic marker.

4. Revealing the evolution and genetic diversity of organisms.

5. Functional annotation of genes.

Sequence alignment is a way to identify regions of similarity in DNA, RNA, or protein

sequences that may be a consequence of functional, structural, or evolutionary relationships

between the sequences. Aligned sequences of nucleotide or amino acid residues are typically

represented as rows within a matrix. If two sequences share a common ancestor for the

alignment, mismatches can be interpreted as point mutations and gaps as indels (that is,

insertion or deletion mutations). Thus, a letter or a stretch of letters may be paired up with

dashes in the other sequence to signify such an insertion or deletion. Homologous sequences

may have different length, which is generally explained through insertions or deletions in

sequences. Since an insertion in one sequence can always be seen as a deletion in the other one

frequently uses the term "indel". In sequence alignments of proteins, the degree of similarity

between amino acids sequence can be interpreted as a rough measure of how conserved a

particular region or sequence motif is among lineages. The absence of substitutions, or the

presence of only very conservative substitutions (that is, the substitution of amino acids whose

side chains have similar biochemical properties) in a particular region of the sequence, suggest

that this region has structural or functional importance. Although DNA and RNA nucleotide

bases are more similar to each other than are amino acids, the conservation of base pairs can

indicate a similar functional or structural role.

105

Very short or very similar sequences can be aligned by hand. However, most interesting

problems require the alignment of lengthy, highly variable or extremely numerous sequences

that cannot be aligned solely by human effort. Computational methods need to be developed

for the alignment of a large pair of sequences. Computational approaches are of two categories:

global alignments and local alignments. Global alignment is a form of global optimization that

"forces" the alignment to span the entire length of all query sequences. Global alignment will

be applied when the sequences are of similar lengths. Local alignments identify regions of

similarity within long sequences. Local alignments are often preferable, but it consumes more

time to calculate because of the additional challenge of identifying the regions of similarity in

the local regions. Number of algorithms is being applied for the sequence alignment, including

optimizing methods like dynamic programming, and heuristic algorithms or probabilistic

methods designed for large-scale database search.

Fig. 1 Sample of sequence Alignment text based representations

In sequence alignment of graphical representations, sequences are written in rows so that

aligned residues appear in successive columns. While in text formats, aligned columns

containing identical or similar characters are indicated with a system of conservation symbols.

An asterisk or pipe symbol is used to represent the similarity of these two columns, a colon for

conservative substitutions and a period for semi-conservative substitutions.

Many sequence visualization techniques use a color coding scheme to display information

about the properties of the individual sequence elements. In DNA and RNA sequences, each

nucleotide is represented by a specific color. In protein alignments, color is used to indicate

amino acid properties in determining the conservation of a given amino acid substitution.

Pair-wise Alignment

Pair-wise sequence alignment methods are used to find the best-matching pairs of two

sequences. The three primary methods of pair-wise alignments are dot-matrix, dynamic

programming and word methods. One way of quantifying the utility of a pair-wise alignment

is the 'maximum unique match', or the longest subsequence that occurs in both query sequence.

a) Dot-Matrix Method: The two sequences are written along the top row and leftmost column

of a two-dimensional matrix and a dot is placed at any point where the characters in the

appropriate columns match. We try to draw lines diagonally. The dot plots of very closely

related sequences will appear as a single line along the matrix's main diagonal (Fig. 2). The

dot-matrix approach produces a simple way of alignments for small sequences with the similar

regions but time-consuming to analyze large sequences.

106

Fig. 2: The dot matrix technique for sequence alignment

There are many problems with dot plots such as noise, lack of clarity, difficulty extracting

match summary statistics. Dot-plots are limited to two sequences only.

b) Dynamic Programming: Dynamic programming can be applied to produce global and local

alignments. This can be done by applying Needleman-Wunsch algorithm for global alignment

and Smith-Waterman algorithm for the local alignments. In general, alignments use a

substitution matrix to assign scores for matches or mismatches, and a gap penalty for matching

an in one sequence with a gap in the other.

DNA and RNA alignments may use a different scoring matrix, but in practice often simply

assign a positive match score, a negative mismatch score, and a negative gap penalty. Dynamic

programming can be useful in aligning nucleotide to protein sequences. The framesearch

method produces a series of global or local pair-wise alignments between a query nucleotide

sequence and a search set of protein sequences, or vice versa. The BLAST and EMBOSS

provide basic tools for creating alignments of the sequences.

c) Word Method: Word or k-tuple methods are heuristic methods but are not guaranteed to find

an optimal alignment solution. These methods are especially useful in large-scale database

searches Word methods are best known for their implementation in the database search tools

FASTA and BLAST family. Word methods identify a series of short, non-overlapping

subsequences ("words") that are matched to candidate database sequences. The relative

positions of the word in the two sequences being compared are subtracted to obtain an offset;

this will indicate a region of alignment if multiple distinct words produce the same offset.

In the FASTA method, the user defines a value k to use as the word length with which to search

the database. The method is slower but more sensitive for lower values of k, which are preferred

for searching a very short query sequence. The BLAST family of search methods provides a

number of algorithms optimized for particular types of queries. BLAST was developed to

provide a faster alternative to FASTA without sacrificing accuracy. BLAST uses a word search

of length k, but evaluates only the most significant word matches. Most BLAST

implementations use a fixed default word length that is optimized for the query and database.

Web based implementations are available such as EMBL FASTA and NCBI BLAST.

1. Global and Local Alignment

Global Alignment

107

Global alignments, which attempt to align every residue of each sequence, when the size of the

sequences are similar or of equal size. A general global alignment technique is based on

dynamic programming i.e., Needleman-Wunsch algorithm. This can be easily understood with

the following two sequences aligned globally as follows

G A A T T C A G T T A (sequence #1)

G G A T C G A (sequence #2)

In simple dynamic programming principle, we construct a matrix. The matrix will be filled by

inserting 0 or 1 where ever there is a mismatch or match. We also penalize the gaps with 0 as

a simple case. Following steps are needed for construction of the matrix

i. Initialization

ii. Matrix fill (scoring)

iii. Traceback (alignment)

i. Initialization

The first step is to create a matrix with M + 1 columns and N + 1 rows where M and N are the

sizes of the sequences to be aligned.

With the given sequences, length of sequence #1 = 11 and length of sequence #2 is 7. The size

of the matrix will be 12*8 (11+1 * 7+1). The first row and first column of the matrix can be

initially filled with 0 because we assume assumes there is no gap opening or gap extension

penalty as shown in fig. 3.

Fig. 3. Initial matrix with two sequences

ii. Matrix Fill

One possible way of filling the matrix is to find the maximum global alignment score by

starting from the upper left hand corner of the matrix and find the maximal score Mi,j for each

position in the matrix.

For each position, Mi,j is defined to be the maximum score at position i,j i.e.,

Mi,j = MAXIMUM[

 Mi-1, j-1 + Si,j (match/mismatch in the diagonal),

 Mi,j-1 + w (gap in sequence #1),

 Mi-1,j + w (gap in sequence #2)]

108

In fig. 4, Mi-1,j-1 will be red, Mi,j-1 will be blue and Mi-1,j will be green. The score at position 1,1

in the matrix can be calculated. Since the first residue in both sequences is a G i.e., a match, so

score S1,1 = 1. We assumed the gap penalty as 0.

Thus, M1,1 = MAX[M0,0 + 1, M1, 0 + 0, M0,1 + 0] = MAX [1, 0, 0] = 1.

A value of 1 is then placed in position 1,1 of the scoring matrix.

Fig. 4. Sample fill of the entry M1,1

Now the element M1,2, the value is the max of 0 (for a mismatch), 0 (for a vertical gap) or 1

(horizontal gap). The rest of element of first row can be filled up similarly. At this point, there

is a G in both sequences (light blue). Thus, the value for the cell at row 1 column 8 is the

maximum of 1 (for a match), 0 (for a vertical gap) or 1 (horizontal gap). The value will again

be 1 as in fig. 5

Fig. 5. Sample fill of the entry whene there is a collosion of two cells for M1,8

Now similarly at column 2. The location at row 2 will be assigned the value of the maximum

of 1(mismatch), 1(horizontal gap) or 1 (vertical gap). So its value is 1.

After filling in all of the values the score matrix is shown in fig. 6:

109

Fig. 6. Final filled matrix

iii. Traceback Step

After the matrix fill step, find the the maximum alignment score for the two test sequences.

The traceback step determines the actual alignment(s) that result in the maximum score. Note

that with a simple scoring algorithm such as one that is used here, there are likely to be multiple

maximal alignments.

The traceback step begins in the matrix that leads to the maximal score. In this case, there is a

6 in that location. Traceback takes the current cell and looks to the neighbor cells that could be

direct predecessors. This means that it looks to the neighbor to the left (gap in sequence #2),

the diagonal neighbor (match/mismatch), and the neighbor above it (gap in sequence #1). The

algorithm for traceback chooses as the next cell in the sequence one of the possible

predacessors. In this case, the neighbors are marked in red. They are all also equal to 5 as in

fig 7.

Fig. 7. Traceback process start where the score is maximum

Since the current cell has a value of 6 and the scores are 1 for a match and 0 for anything else,

the only possible predecessor is the diagonal match/mismatch neighbor. If more than one

possible predecessor exists, any can be chosen. The corresponding row and column can be

crossed out as in fig. 8. This gives us a current alignment of

 (Seq #1) A

 |

 (Seq #2) A

110

Fig. 8. Traceback steps and crossing of the row and column

Now, look at the current cell and determine which cell is its direct predecessor. In this case, it

is the cell with the red 5 as in fig. 9. The alignment as described in the above step adds a gap

to sequence #2 , so the current alignment is

 (Seq #1) T A

 |

 (Seq #2) _ A

Once again, the direct predecessor produces a gap in sequence #2.

Fig. 9. Traceback steps and crossing of the row and column

After this step, the current alignment is

 (Seq #1) T T A

 |

 _ _ A

Continuing on with the traceback step, we eventually get to a position in row 0 and column 0,

which tells us that traceback is completed as in fig. 10.

111

Fig. 10. Final matrix with the traceback steps

One possible maximum alignment is

 G A A T T C A G T T A

 | | | | | |

 G G A _ T C _ G _ _ A

Local Alignment

Local alignments are more useful for dissimilar sequences that may contains regions of

similarity or similar sequence motifs within their larger sequence context. The Smith-

Waterman algorithm is a general local alignment method based on dynamic programming. A

local alignment searches for regions of local similarity between two sequences and need not

include the entire length of the sequences. This can be done by reading a scoring matrix that

contains values for every possible residue or nucleotide match or mismatch. The Smith-

Waterman algorithm is a member of the class of algorithms that can calculate the best score

and local alignment in the order of m*n steps, where 'm' and 'n' are the lengths of the two

sequences. Local alignment methods only report the best matching areas between two

sequences while there may be a large number of alternative local alignments which do not score

as highly as the best alignment done by this algorithm.

Consider the two DNA sequences to be globally aligned are:

 ACACACT (x=7, length of sequence 1)

 AGCACAC (y=7, length of sequence 2)

It also follows three steps

i. Initialization

ii. Matrix fill (scoring)

iii. Traceback (alignment)

 Let us assume the simple scoring scheme as

 Si,j = 2 if there is a match

 Si,j = -1 if there is a mismatch

112

 w = -1 as gap penalty

i. Initialization

The first step in the global alignment dynamic programming approach is to create a matrix with

M + 1 columns and N + 1 rows where M and N correspond to the size of the sequences to be

aligned. In this example, we assume that there is no gap opening or gap extension penalty. The

first row and first column of the matrix can be initially filled with 0 as in fig. 11.

Fig. 11. Initial matrix with first row and first column element as 0

ii. Matrix Fill

One way to fill the matrix is to find the maximum global alignment score by starting from the

upper left hand corner in the matrix and get the maximal score Mi,j for each position in the

matrix. In order to find Mi,j for any i,j it is minimal to know the score for the matrix positions

to the left, above and diagonal to i, j. In terms of matrix positions, it is necessary to know Mi-

1,j, Mi,j-1 and Mi-1, j-1.

For each position, Mi,j is defined to be the maximum score at position i,j; i.e.

Mi,j = MAXIMUM[

 Mi-1, j-1 + Si,j (match/mismatch in the diagonal),

 Mi,j-1 + w (gap in sequence #1),

 Mi-1,j + w (gap in sequence #2)]

Using this information, the score at position 1,1 in the matrix can be calculated. Since the first

residue in both sequences is A, S1,1 = 2, and by the assumptions stated at the beginning, w = 0.

Thus, M1,1 = MAX[M0,0 + 2, M1, 0 -1, M0,1 -1] = MAX [2, -1, -1] = 2.

A value of 2 is then placed in position 1,1 of the scoring matrix as in fig. 12. And subsequently

the whole matrix is filled in the same way.

113

Fig. 12. Final filled matrix

iii. Traceback

After the matrix fill step, the maximum alignment score for these two test sequences is 11. The

traceback step determines the actual alignment(s) for the maximum score. It is not mandatory

that the last cell has the maximum alignment score.

The traceback step begins with the position that leads to the maximal score. In this case, there

is 11 in that location.

Trace back takes the current cell and looks to the neighbor cells that could be direct

predecessors. This means it looks to the neighbor to the left (gap in sequence #2), the diagonal

neighbor (match/mismatch), and the neighbor above it (gap in sequence #1) as in fig. 13. The

algorithm for trace back chooses as the next cell in the sequence one of the possible

predecessors. This continues till cell with value 0 is reached.

Fig. 13. Traceback Step

The only possible predecessor is the diagonal match/mismatch neighbor. If more than one

possible predecessor exists, any can be chosen. This gives us a current alignment of

 (Seq #1) C

 |

 (Seq #2) C

So now we look at the current cell and determine which cell is its direct predecessor. In this

case, it is the cell with the red 9 as in fig. 14.

114

 (Seq #1) C A

 | |

 (Seq #2) C A

Fig. 14. Traceback step with the correct arrows

Continuing with the traceback step, we eventually get a position in column 0 or row 0 which

tells us that traceback is completed as in fig. 15.

Fig. 15. Final Traceback Matrix

The possible maximum alignment is:

 AG C A C A C

 | | | | | |

 A _ C A C A C

There is a combination of these two methods which is called hybrid methods, also known as

semiglobal or "glocal" methods. This method attempts to find the best possible alignment that

includes the start and end of one or the other sequence. This can be especially useful when the

downstream part of one sequence overlaps with the upstream part of the other sequence. In this

case, neither global nor local alignment is entirely appropriate.

115

2. Significance of Sequence Alignment

Sequence alignments are useful in bioinformatics for identifying sequence similarity,

producing phylogenetic trees, and developing homology models of protein structures.

However, the biological relevance of sequence alignments is not always clear. Alignments are

often assumed to reflect a degree of evolutionary change between sequences descended from a

common ancestor; however, it is formally possible that convergent evolution can occur to

produce apparent similarity between proteins that are evolutionarily unrelated but perform

similar functions and have similar structures.

In database searches such as BLAST, statistical methods can determine the likelihood of a

particular alignment between sequences or sequence regions arising by chance with the given

the size and composition of the database being searched. These values can vary significantly

depending on the search space. In particular, the likelihood of finding a given alignment by

chance increases, if the database consists only of sequences from the same organism as the

query sequence. Repetitive sequences in the database or query can also distort both the search

results and the assessment of statistical significance. BLAST automatically filters such

repetitive sequences in the query to avoid apparent hits that are statistical artifacts.

The choice of a scoring function that reflects biological or statistical observations about known

sequences is important to producing good alignments. Protein sequences are frequently aligned

using substitution matrices that reflect the probabilities of given character-to-character

substitutions. A series of matrices called PAM matrices (Point Accepted Mutation matrices,

originally defined by Margaret Dayhoff and sometimes referred to as "Dayhoff matrices")

explicitly encode evolutionary approximations regarding the rates and probabilities of

particular amino acid mutations. Another common series of scoring matrices, known as

BLOSUM (Blocks Substitution Matrix), encodes empirically derived substitution probabilities.

Variants of both types of matrices are used to detect sequences with differing levels of

divergence, thus allowing users of BLAST or FASTA to restrict searches to more closely

related matches or expand to detect more divergent sequences. Gap penalties account for the

introduction of a gap - on the evolutionary model, an insertion or deletion mutation - in both

nucleotide and protein sequences, and therefore the penalty values should be proportional to

the expected rate of such mutations. The quality of the alignments produced therefore depends

on the quality of the scoring function.

3. Sequence Databases

The repositories for the genomic sequences are

National Center for Biotechnology Information (NCBI) is part of the United States National

Library of Medicine (NLM), a branch of the National Institutes of Health. The NCBI is located

in Bethesda, Maryland and was founded in 1988 through legislation sponsored by Senator

Claude Pepper. The NCBI houses genome sequencing data in GenBank and an index of

biomedical research articles in PubMed Central and PubMed, as well as other information

relevant to biotechnology. All these databases are available online through the Entrez search

engine. The NCBI is directed by David Lipman, one of the original authors of the BLAST

sequence alignment program and a widely respected figure in Bioinformatics. The NCBI has

had responsibility for making available the GenBank DNA sequence database since 1992 as

shown in fig. 16. GenBank coordinates with individual laboratories and other sequence

116

databases such as those of the European Molecular Biology Laboratory (EMBL) and the DNA

Data Bank of Japan (DDBJ). Since 1992, NCBI has grown to provide other databases in

addition to GenBank. NCBI provides Online Mendelian Inheritance in Man, the Molecular

Modeling Database (3D protein structures), dbSNP a database of single-nucleotide

polymorphisms, the Unique Human Gene Sequence Collection, a Gene Map of the human

genome, a Taxonomy Browser, and coordinates with the National Cancer Institute to provide

the Cancer Genome Anatomy Project.

Fig. 16. NCBI portal

The NCBI assigns a unique identifier (Taxonomy ID number) to each species of organism. The

NCBI has software tools that are available by WWW browsing or by FTP. For example,

BLAST is a sequence similarity searching program. BLAST can do sequence comparisons

against the GenBank DNA database in less than 15 seconds. The NCBI Bookshelf is a

collection of freely available, downloadable, on-line versions of selected biomedical books.

The Bookshelf has various titles covering aspects of molecular biology, biochemistry, cell

biology, genetics, microbiology, a couple of disease states from a molecular and cellular point

of view, research methods, and virology. Some of the books are online versions of previously

published books, while others, such as Coffee Break (book), are written and edited by NCBI

staff. The Bookshelf is a complement to the Entrez PubMed repository of peer-reviewed

publication abstracts in that Bookshelf contents provide established perspectives on evolving

areas of study and a context in which many disparate individual pieces of reported research can

be organized.

European Molecular Biology Laboratory (EMBL) is a molecular biology research

institution supported by 20 European countries and Australia as associate member state. The

EMBL was created in 1974 and is a non-profit organisation funded by public research money

from its member states. Research at EMBL is conducted by approximately 85 independent

groups covering the spectrum of molecular biology. The Laboratory operates from five sites:

117

the main Laboratory in Heidelberg, and Outstations in Hinxton (the European Bioinformatics

Institute (EBI)), Grenoble, Hamburg, and Monterotondo near Rome as in fig. 17. Each of the

sites has a research specific field. At EBI, the research is oriented towards computational

biology and bioinformatics. At Grenoble and Hamburg the research is in the field of structural

biology. At Monterotondo the research is focused mainly on mouse models for clinical

research. At the headquarters in Heidelberg, there are big departments in Cell Biology and

Gene Expression as well as smaller complementing the aforementioned research fields.

Fig. 17. EMBL portal

The cornerstones of EMBL's mission are: to perform basic research in molecular biology and

molecular medicine, to train scientists, students and visitors at all levels, to offer vital services

to scientists in the member states, to develop new instruments and methods in the life sciences,

and to actively engage in technology transfer. EMBL's international PhD Programme has a

student body of about 170. The Laboratory also sponsors an active Science and Society

programme. Many scientific breakthroughs have been made at EMBL, most notably the first

systematic genetic analysis of embryonic development in the fruit fly by Christiane Nüsslein-

Volhard and Eric Wieschaus, for which they were awarded the Nobel Prize for Medicine in

1995.

DNA Data Bank of Japan (DDBJ) is a DNA data bank. It is located at the National Institute

of Genetics (NIG) in the Shizuoka prefecture of Japan. It is also a member of the International

Nucleotide Sequence Database Collaboration or INSDC. It exchanges its data with European

Molecular Biology Laboratory at the European Bioinformatics Institute and with GenBank at

the National Center for Biotechnology Information on a daily basis. Thus these three databanks

contents the same data at any given time. DDBJ began data bank activities since 1986 at NIG

and it boasts to be the only nucleotide sequence data bank in Asia. Although DDBJ mainly

118

receives its data from Japanese researchers, however it can accept data from a contributor

belonging to any other country as in fig. 18.

Fig. 18. DDBJ Portal

DDBJ is primarily funded by the Japanese Ministry of Education, Culture, Sports, Science and

Technology (MEXT). DDBJ has an international advisory committee which consists of nine

members, 3 members each from Europe, US, and Japan. This committee advice DDBJ about

its maintenance, management and future plans once a year. Apart from this DDBJ also has an

international collaborative committee which advises on various technical issues related to

international collaboration and consists of working-level participants.

4. Softwares Used in Sequence Alignment

 S.

No.
Name Function Website Link

1 ALIGN Sequence Analysis http://www.ebi.ac.uk/Tools/emboss/ali

gn

2 CENSOR Sequence Analysis http://www.ebi.ac.uk/Tools/censor/

3 CLUSTALW2 Sequence Analysis http://www.ebi.ac.uk/Tools/clustalw2/

4 CpG Plot/ CpGreport Sequence Analysis http://www.ebi.ac.uk/Tools/emboss/

cpgplot/

5 Genewise Sequence Analysis http://www.ebi.ac.uk/Tools/Wise2/

6 Kalign Sequence Analysis http://www.ebi.ac.uk/Tools/kalign

7 MAFFT Sequence Analysis http://www.ebi.ac.uk/Tools/mafft/

http://www.ebi.ac.uk/Tools/emboss/align
http://www.ebi.ac.uk/Tools/emboss/align
http://www.ebi.ac.uk/Tools/censor/
http://www.ebi.ac.uk/Tools/clustalw2/
http://www.ebi.ac.uk/Tools/emboss/%20cpgplot/
http://www.ebi.ac.uk/Tools/emboss/%20cpgplot/
http://www.ebi.ac.uk/Tools/Wise2/
http://www.ebi.ac.uk/Tools/kalign
http://www.ebi.ac.uk/Tools/mafft/

119

8 MUSCLE Sequence Analysis http://www.ebi.ac.uk/Tools/muscle/

9 Pepstats/

Pepwindow/Pepinfo
Sequence Analysis http://www.ebi.ac.uk/Tools/emboss/

pepinfo/

10 PromoterWise Sequence Analysis http://www.ebi.ac.uk/Tools/Wise2/

promoterwise.html

11 SAPS Sequence Analysis http://www.ebi.ac.uk/Tools/saps/

12 T-coffee Sequence Analysis http://www.ebi.ac.uk/Tools/t-coffee/

13 Transeq Sequence Analysis http://www.ebi.ac.uk/Tools/emboss/tra

nseq/

14 COBALT Sequence Analysis http://www.ncbi.nlm.nih.gov/tools/

cobalt/

15 Genome Workbench Sequence Analysis http://www.ncbi.nlm.nih.gov/projects/

gbench/

16 ORF Finder Sequence Analysis http://www.ncbi.nlm.nih.gov/gorf/gorf

/ html

17 Primer - BLAST Sequence Analysis http://www.ncbi.nlm.nih.gov/tools/

primer-blast

18 ProSplign Sequence Analysis http://www.ncbi.nlm.nih.gov/sutils/sta

tic/prosplin/prosplign.html

19 Splign Sequence Analysis http://www.ncbi.nlm.nih.gov/sutils/

splign/

20 VecScreen Sequence Analysis http://www.ncbi.nlm.nih.gov/VecScre

en/VecScreen.html

21 Sequence Analysis Sequence analysis http://www.informagen.com/SA/

22 SeWeR Sequence analysis http://www.bioinformatics.org/sewer/

23 Motif Search Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/

motifsearch2/ index.pl

24 DNA Translator Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/JDT/

25 Non coding RNA

Gene Finder

Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/

ncRnaGeneFinder/index.pl

26 TransTerm Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/

transterm/

http://www.ebi.ac.uk/Tools/muscle/
http://www.ebi.ac.uk/Tools/emboss/%20pepinfo/
http://www.ebi.ac.uk/Tools/emboss/%20pepinfo/
http://www.ebi.ac.uk/Tools/Wise2/%20promoterwise.html
http://www.ebi.ac.uk/Tools/Wise2/%20promoterwise.html
http://www.ebi.ac.uk/Tools/saps/
http://www.ebi.ac.uk/Tools/t-coffee/
http://www.ebi.ac.uk/Tools/emboss/transeq/
http://www.ebi.ac.uk/Tools/emboss/transeq/
http://www.ncbi.nlm.nih.gov/tools/%20cobalt/
http://www.ncbi.nlm.nih.gov/tools/%20cobalt/
http://www.ncbi.nlm.nih.gov/projects/%20gbench/
http://www.ncbi.nlm.nih.gov/projects/%20gbench/
http://www.ncbi.nlm.nih.gov/gorf/gorf/%20html
http://www.ncbi.nlm.nih.gov/gorf/gorf/%20html
http://www.ncbi.nlm.nih.gov/tools/%20primer-blast
http://www.ncbi.nlm.nih.gov/tools/%20primer-blast
http://www.ncbi.nlm.nih.gov/sutils/static/prosplin/prosplign.html
http://www.ncbi.nlm.nih.gov/sutils/static/prosplin/prosplign.html
http://www.ncbi.nlm.nih.gov/sutils/%20splign/
http://www.ncbi.nlm.nih.gov/sutils/%20splign/
http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html
http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html
http://www.informagen.com/SA/
http://www.bioinformatics.org/sewer/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20motifsearch2/%20index.pl
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20motifsearch2/%20index.pl
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20motifsearch2/%20index.pl
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/JDT/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/JDT/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20ncRnaGeneFinder/index.pl
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20ncRnaGeneFinder/index.pl
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20ncRnaGeneFinder/index.pl
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20transterm/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20transterm/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20transterm/

120

27 QRNA Sequence analysis http://nbc11.biologie.unikl.de/framed/

left/menu/auto/right/qrna/

28 Clustalformatter 5 Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/

ClustalFormatter/

29 BioEdit Sequence

Alignment Editor

http://www.mbio.ncsu.edu/BioEdit/

bioedit.html

30 FASTA Sequence Similarity

Search

http://www.ebi.ac.uk/Tools/fasta/

31 HMMER Homology of

protein

http://hmmer.janelia.org/

32 JAligner Pairwise seq.

alignment

http://jaligner.sourceforge.net/

33 JSTRING Java Search for

Tandem Repeats IN

Genomes

http://bioinf.dms.med.uniroma1.it/

JSTRING/

34 NCBI BLAST Aligning Sequences http://blast.ncbi.nlm.nih.gov/Blast.cgi

35 Gene Runner/ Motif

Runner

Motif based

sequence analysis

http://www.generunner.net/

36 GoCore Protein Seq.

Alignment &

Analysis

http://www.helsinki.fi/project/ritvos/

GoCore/

37 MAFFT Multiple alignment http://mafft.cbrc.jp/alignment/server/

index.html

38 MAUVE Multiple alignment http://gel.ahabs.wisc.edu/mauve/

39 MEME Suite Motif based

sequence analysis

http://meme.nbcr.net/

40 CORAL (CDTree) Aligning Core

Conserved Regions

http://www.ncbi.nlm.nih.gov/Structure

/ cdtree/cdtree.shtml

41 BlastAlign Align N Seq. with

large INDELs

http://www.bioafrica.net/blast/BlastAli

gn.html

42 ARB software Sequence DB

Handling and Data

Analysis

http://www.arb-home.de/

43 Automated Codon

Usage Analysis

Software - ACUA

Nucleotide Analysis http://www.bioinsilico.com/acua

http://nbc11.biologie.unikl.de/framed/%20left/menu/auto/right/qrna/
http://nbc11.biologie.unikl.de/framed/%20left/menu/auto/right/qrna/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/ClustalFormatter/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/ClustalFormatter/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/ClustalFormatter/
http://www.mbio.ncsu.edu/BioEdit/%20bioedit.html
http://www.mbio.ncsu.edu/BioEdit/%20bioedit.html
http://www.ebi.ac.uk/Tools/fasta/
http://hmmer.janelia.org/
http://jaligner.sourceforge.net/
http://bioinf.dms.med.uniroma1.it/%20JSTRING/
http://bioinf.dms.med.uniroma1.it/%20JSTRING/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.generunner.net/
http://www.helsinki.fi/project/ritvos/%20GoCore/
http://www.helsinki.fi/project/ritvos/%20GoCore/
http://mafft.cbrc.jp/alignment/server/%20index.html
http://mafft.cbrc.jp/alignment/server/%20index.html
http://gel.ahabs.wisc.edu/mauve/
http://meme.nbcr.net/
http://www.ncbi.nlm.nih.gov/Structure/%20cdtree/cdtree.shtml
http://www.ncbi.nlm.nih.gov/Structure/%20cdtree/cdtree.shtml
http://www.bioafrica.net/blast/BlastAlign.html
http://www.bioafrica.net/blast/BlastAlign.html
http://www.arb-home.de/
http://www.bioinsilico.com/acua

121

44 AnnHyb Nucleotide Analysis http://www.bioinformatics.org/annhyb

/

45 SOAP2 Short read

Alignment

http://soap.genomics.org.cn/

46 ACT (Artemis

Comparison Tool)

DNA Sequence

Comparison

http://www.sanger.ac.uk/resources/

software/act/

47 WU-BLAST Multiple Sequence

Alignment

www.ebi.ac.uk/Tools/blast2/

48 CLUSTALW2 multiple sequence

alignment

http://www.ebi.ac.uk/Tools/clustalw2/

References

 www.wikipedia.org/

 cnx.org/content/m11026/latest/

 www.ncbi.nlm.nih.gov/

 www.ebi.ac.uk/embl/

 www.ddbj.nig.ac.jp/

http://www.bioinformatics.org/annhyb/
http://www.bioinformatics.org/annhyb/
http://soap.genomics.org.cn/
http://www.sanger.ac.uk/resources/%20software/act/
http://www.sanger.ac.uk/resources/%20software/act/
http://www.ebi.ac.uk/Tools/blast2/
http://www.ebi.ac.uk/Tools/clustalw2/
http://www.ddbj.nig.ac.jp/

122

Phylogenetic Analysis

Sarika, M. A. Iquebal, Anil Rai and Dinesh Kumar

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

INTRODUCTION

Phylogenetics is the study of evolutionary relationships. Biological sequences (amino acids

and nucleotides) are the product of evolutionary history and phylogenies are graphical

summaries of this history. Phylogenetic analysis of a family of related nucleic acids and protein

sequences is the determination of how the family might have been derived during evolution.

Phylogenetic analysis is the means of inferring or estimating the relationships. The

evolutionary history from phylogenetic analysis is generally depicted as branching or treelike

diagrams. Traditionally morphological features were used to derive relationships but now a

days molecular information is used to derive relationships, which are more informative than

the traditional anatomic or morphological characters. Molecular phylogeny provides new,

powerful and independent tests of the theory of evolution. Evolution supported molecular

phylogeny to be consistent with classical phylogeny. It also predicted that all parts of the

genome should evolve in parallel and exhibit the same taxonomic pattern. The recent

development of techniques to analyze and sequence proteins and nucleic acids has allowed

biologists to determine relatedness of organisms and to construct phylogenetic sequences.

Molecular phylogenetics attempts to determine the rates and patterns of change occurring in

DNA and proteins and to construct the evolutionary history of genes and organisms.

WHY DO WE BUILD PHYLOGENETIC TREES

The main aim of phylogenetics is to discover rates of evolutionary change, find origin of

diseases, prediction of sequence function and population history. In addition to analyzing

changes that have occurred in the evolution of different organisms, the evolution of a family

of sequences may be studied. On the basis of analysis, sequences that are most closely related

can be identified by their occupying neighboring branches on a tree. When a gene family is

found in an organism and group of organisms, phylogenetic relationships among the genes can

help to predict which ones might have an equivalent function. These functional predictions can

be tested by genetic experiments.Phylogenetic analysis can be used to study the changes

occurring in the rapidly changing species like virus. Analysis of types of changes within a

population can reveal whether or not a particular gene is under selection.

TERMINOLOGIES

A phylogeny or evolutionary tree, represents evolutionary relationships among a set of

organisms or groups of organisms, called taxa (Fig. 1). Understanding phylogeny is like

reading a family tree. The root of tree represents the ancestral lineage and the tips of branches

represent the descendants of that ancestor. Moving from root to tip means moving forward in

time. When a lineage splits (speciation), it represents a branching on a phylogeny.Whenever

speciation occurs, a single ancestral lineage give rise to two or more daughter lineages.Two

descendants that split from the same node are called sister groups. Branches connect nodes

uniquely and define the relationship between the taxonomic units in terms of descent and

ancestry. Only one branch can connect any two adjacent nodes. The branching pattern of the

tree is called topology, and the branch length usually represents the number of changes that

123

have occurred in the branch. Branches on phylogenetic trees may be scaled representing the

amount of evolutionary change, time or both, under the assumption of molecular clock or they

may be unscaled with no correspondence with either time or amount of evolutionary change.

Phylogenies trace patterns of shared ancestry between lineages. Each lineage has a part of its

history that is unique to it alone and parts that are shared with other lineages. Similarly, each

lineage has ancestors that are unique to that lineage and ancestors that are with other lineages-

common ancestors (Fig. 2).Clade includes a common ancestor and all the descendants of that

ancestor. When clades are nested within one another, they form a nested hierarchy.

Phylogenetic trees may be rooted or un-rooted (Fig. 3). In rooted trees, a particular node is

called the root, representing a common ancestor from which a unique path leads to any other

node. In case of un-rooted trees, branching relationship between taxa are specified by the way

they are connected to each other but the position of common ancestor is not. For example, on

an unrooted tree with five species, there are five branches on which tree can be rooted. Rooting

on each of the five branches has different implications for evolutionary relationships.

Fig. 1: Parts of a phylogenetic tree

Fig. 2: Each box represents a clade

(A)

(B)

Fig. 3. Rooted and rooted phylogenetic tress

Node

Root Branch

Branch length

Clade

Human

Mouse

Fly

124

ADVANTAGES OF PHYLOGENETIC CLASSIFICATION

Phylogenetic classification has two main advantages over the Linnaean system. First,

phylogenetic classification tells you something important about the organism: its evolutionary

history. Second, phylogenetic classification does not attempt to "rank" organisms. Linnaean

classification "ranks" groups of organisms artificially into kingdoms, phyla, orders, etc. This

can be misleading as it seems to suggest that different groupings with the same rank are

equivalent.

There is just no reason to think that any two identically ranked groups are comparable and by

suggesting that they are, the Linnaean system is misleading. So it seems that there are many

good reasons to switch to phylogenetic classification. However, organisms have been named

using the Linnaean system for many hundreds of years. How are biologists making the

transition to phylogenetic classification?

CONSTRUCTION OF PHYLOGENETIC TREE

Molecular phylogenetic tree construction can be divided into four steps (Felsenstein, 2004):

A. Choosing sequences

B. Multiple sequence alignment

C. Determining a tree building method and

D. Assessing tree reliability

A. CHOICE OF SEQUENCE

For constructing molecular phylogenetic trees, one can use either nucleotide or protein

sequence data. The choice of molecular markers is an important matter because it can make a

major difference in obtaining a correct tree. The decision to use nucleotide or protein sequences

depends on the properties of the sequences and the purpose of study. For studying very closely

related organisms nucleotide sequences can be used. For studying the evolution of more widely

divergent groups of organisms, one may choose either slowly evolving nucleotide sequences,

such as ribosomal RNA or protein sequences. If the phylogenetic relationships to be delineated

are at the deepest level, such as between bacteria and eukaryotes, using conserved protein

sequences makes more sense than using nucleotide sequences. DNA sequences are sometimes

more biased than protein sequences because of preferential codon usage in different organisms.

In this case, different codons for the same amino acid are used at different frequencies, leading

to sequence variations not attributable to evolution. In addition, the genetic code of

mitochondria varies from the standard genetic code. Therefore, for comparison of mitochondria

protein-coding genes, it is necessary to translate the DNA sequences into protein sequences.

Protein sequences allow more sensitive alignment than DNA sequences because the former has

twenty characters versus four in the latter. For moderately divergent sequences, it is almost

impossible to use DNA sequences to obtain correct alignment. In addition, to align protein-

coding DNA sequences, when gaps are introduced to maximize alignment scores, they almost

always cause frame-shift errors, making the alignment biologically meaningless. Synonymous

substitutions are nucleotide changes in the coding sequence that do not result in amino acid

sequence changes for the encoded protein. Non synonymous substitutions are nucleotide

125

changes that result in alterations in the amino acid sequences. Comparing the two types of

substitution rates helps to understand an evolutionary process of a sequence. For example, if

the non-synonymous substitution rate is found to be significantly greater than the synonymous

substitution rate, this means that certain parts of the protein are undergoing active mutations

that may contribute to the evolution of new functions. This is described as positive selection or

adaptive evolution. On the other hand, if the synonymous substitution rate is greater than the

non-synonymous substitution rate, this causes only neutral changes at the amino acid level,

suggesting that the protein sequence is critical enough that changes at the amino acid sequence

level are not tolerated. In this case, the sequence is said to be under negative or purifying

selection.

B. MULTIPLE SEQUENCE ALIGNMENT

The second step in making phylogenetic tree is sequence alignment. This is the most critical

step in the procedure because it establishes positional correspondence in evolution. Only the

correct alignment produces correct phylogenetic inference because aligned positions are

assumed to be genealogically related. Incorrect alignment leads to systematic errors in the final

tree or even a completely wrong tree. Therefore it is essential that the sequences are correctly

aligned. Two approaches are used for aligning sequence: Global alignment (similarity across

the full stretch of sequences) and a Local alignment (similarity in parts of the sequences).

Although many programs exist that can generate a multiple alignment from unaligned

sequences, extreme care must be taken when interpreting the results. An alignment may show

perfect matching of a known active-site residue with an identical residue in a well characterized

protein family, but, if the alignment is incorrect, any inference about function will also be

incorrect. A clustal program such as ClustalX which aligns sequences according to an explicitly

phylogenetic criterion, is the most commonly used program for the multiple alignment of

biochemical sequences. The multiple alignment is inefficient with sequences if INDELs are

common and substitution rates are high, most studies restrict comparisons to regions in which

alignments are relatively obvious. The substitution model should be given the same emphasis

as alignment and tree building. The simplest nucleotide substitution model is the Jukes–Cantor

model, which assumes that all nucleotides are substituted with equal probability. A formula for

deriving evolutionary distances that include hidden changes is introduced by using a

logarithmic function.

𝑑𝐴𝐵 = −(3 4⁄)𝑙𝑛[1 − (4 3⁄)𝑝𝐴𝐵]

where 𝑑𝐴𝐵 is the evolutionary distance between sequences A & B and 𝑝𝐴𝐵 is the observed

sequence distance measured by the proportion of substitutions over the entire length of the

alignment. Another model is the Kimura two-parameter model. This is a more sophisticated

model in which mutation rates for transitions and transversion are assumed to be different,

which is more realistic. According to this model, transitions occur more frequently than

transversions, which, therefore, provides a more realistic estimate of evolutionary distances.

The Kimura model uses the following formula:

𝑑𝐴𝐵 = −(1 2⁄) 𝑙𝑛(1 − 𝑝𝑡𝑖 − 𝑝𝑡𝑣) − (1 4⁄)𝑙𝑛(1 − 2𝑝𝑡𝑣)

where 𝑑𝐴𝐵 is the evolutionary distance between sequences A and B, 𝑝𝑡𝑖 is the observed

frequency for transition, and 𝑝𝑡𝑣 the frequency of transversion. The substitution model

126

influences both alignment and tree building. For protein sequences, the evolutionary distances

from an alignment can be corrected using a Protein Accepted Mutation (PAM) or Jones, Taylor,

Thornton (JTT) amino acid substitution matrix whose construction already takes into account

the multiple substitutions.

Alternatively, protein equivalents of Jukes–Cantor and Kimura models can be used to correct

evolutionary distances. For example, the Kimura model for correcting multiple substitutions in

protein distances is:

𝑑 = −𝑙𝑛(1 − 𝑝 − 0.2𝑝2)

where p is the observed pairwise distance between two sequences.

At the present time, two elements of the substitution model can be computationally assessed

for nucleotide data but not for amino acid or codon data. One element is the model of

substitution between particular bases; the other is the relative rate of overall substitution among

different sites in the sequence. Substitutions are more frequent between bases that are

biochemically more similar. In the case of DNA, the transitions between purine to purine and

pyrimidine to pyrimidine are usually more frequent than the transversion between purine to

pyrimidine and pyrimidine to purine. Such biases will affect the estimated divergence between

two sequences. Specification of the relative rates of substitution among particular residues

usually takes the form of a square matrix. The most widely used models of amino acid

substitution include distance based methods, which are based on matrixes such as PAM and

BLOSUM. Dayhoff’s PAM 001 matrix is an empirical model that scales probabilities of

change from one amino acid to another in terms of an expected 1% change between two amino

acid sequences. Phylogenetic distances are calculated with the assumption that the probabilities

in the matrix are correct. There are currently two main categories of tree-building methods.

Although any of the parameters in a substitution model might prove critical for a given data

set, the best model is not always the one with the most parameters. For a given DNA sequence

comparison, a two-parameter model will require that the summed base differences be sorted

into two categories and into six for a six parameter model. The number of sites sampled in each

of the six categories would be much smaller to give a reliable estimate. For protein sequences,

the model used is often dependent on the degree of sequence similarity. For more divergent

sequences, the BLOSUM matrices are often better, whereas the PAM matrix is suited for more

highly similar sequences.

C. TREE BUILDING METHOD

Tree building method is one of the steps of construction of phylogenetic trees. These may be

divided into Distance based method and character based method.

a) DISTANCE BASED METHODS

These methods employ the number of changes between each pair in a group of sequences to

produce a phylogenetic tree. These methods use the amount of dissimilarity (the distance)

between two aligned sequences to derive trees. The distance method was pioneered by Feng

and Doolittle. The algorithms for the distance based tree building method can be subdivided

into either clustering based or optimality based. The clustering type algorithms compute a tree

based on a distance matrix starting from the most similar sequence pairs. These algorithms

127

include an unweighted pair group method using arithmetic average (UPGMA) and neighbour

joining (NJ). The optimality based algorithms compare many alternative tree topologies and

select one that has the best fit between estimated distances in the tree and the actual

evolutionary distances. This category includes the Fitch-Margoliash and minimum

evolutionary algorithms.

1. Unweighted Pair Group Method with Arithmetic Mean (UPGMA)

The UPGMA method is the simplest method of tree construction. It joins tree branches based

on the criterion of greatest similarity. It is not strictly an evolutionary distance method. It

employs a sequential clustering algorithm, in which local topological relationship are identified

in the order of similarity, and the phylogenetic tree is built in a stepwise manner. Firstly, two

nodes which are most similar to each other is identified among all nodes and treat these as new

single node. Such a node is referred to as a composite node. Subsequently, among the new

group of nodes, the pair with highest similarity is identified and so on. UPGMA often produces

erroneous tree topologies.

2. Neighbor-Joining (NJ)

The UPGMA method uses unweighted distances and assumes that all taxa have constant

evolutionary rates. Since the molecular clock assumption is often not met in biological

sequences, so NJ method can be used, which is somewhat similar to UPGMA in that it builds

a tree by using stepwise reduced distance matrices. It does not require that all lineages have

diverged by equal amounts. The method is especially suited for datasets comprising lineages

with largely varying rates of evolution (Saitou, 1987). The NJ method is a special case of the

star decomposition method. The fully resolved tree is decomposed from a fully unresolved star

tree by successively inserting branches between a pair of closest neighbours and the remaining

terminals in the tree. The raw data are provided as distance matrix and the initial tree is a star

tree. Then a modified distance matrix is constructed in which the separation between each pair

of nodes is adjusted on the basis of their divergence from all other nodes. The tree is constructed

by linking the least-distant pair of nodes in this modified matrix. When two nodes are linked,

their common ancestral node is added to the tree and the terminal nodes with their respective

branches are removed from the tree. This pruning process converts the newly added common

ancestor into a terminal node on a tree of reduced size. At each stage in the process two terminal

nodes are replaced by one new node. The process is complete when two nodes remain,

separated by a single branch. The NJ method produces an unrooted tree. It is fast and thus

suited for large datasets. Sequence information is reduced. The methods is comparatively very

fast. Algorithm for finding NJ tree is:

𝑑𝐴𝐵′ = 𝑑𝐴𝐵 − 1 2⁄ 𝑥(𝑟𝐴 + 𝑟𝐵)

where𝑑𝐴𝐵′ is the converted distance between A and B and 𝑑𝐴𝐵 is the actual evolutionary

distance between A and B. The value of 𝑟𝐴 (or 𝑟𝐵) is the sum of distances of A (or B) to all

other taxa.

 3. Fitch-Margoliash Least Square Method (FM)

Optimality based methods have a well-defined algorithm to compare all possible tree

topologies and select a tree that best fits the actual evolutionary distance matrix. Based on the

differences in optimality criteria, there are two types of algorithms, Fitch–Margoliash and

128

minimum evolution (Fitch, 1967). The Fitch–Margoliash (FM) method selects a best tree

among all possible trees based on minimal deviation between the distances calculated in the

overall branches in the tree and the distances in the original dataset. It starts by randomly

clustering two taxa in a node and creating three equations to describe the distances, and then

solving the three algebraic equations for unknown branch lengths. The clustering of the two

taxa helps to create a newly reduced matrix. This process is repeated until a tree is completely

resolved. The method searches for all tree topologies and selects the one that has the lowest

squared deviation of actual distances and calculated tree branch lengths. The optimality

criterion is expressed in the following formula:

𝐸 = ∑ ∑
(𝑑𝑖𝑗 − 𝑝𝑖𝑗)

2

𝑑𝑖𝑗
2

𝑇

𝑗=𝑗+1

𝑇

𝑡=1

4. Minimum Evolution (ME)

In the ME method, distance measures that correct for multiple hits at the same sites are used.

The construction of a minimum evolution tree is time-consuming because, in principle, the

values for all topologies must be evaluated. The number of possible topologies (unrooted trees)

rapidly increases with the number of taxa so it becomes very difficult to examine all topologies.

While the NJ tree is usually the same as the ME tree, when the number of taxa is small the

difference between the NJ and ME trees can be substantial. If a long DNA or amino acid

sequence is used, the ME tree is preferable. When the number of nucleotides or amino acids

used is relatively small, the NJ method generates the correct topology more often than does the

ME method. It constructs a tree with a similar procedure, but uses a different optimality

criterion that finds a tree among all possible trees with a minimum overall branch length. The

optimality criterion relies on the formula:

𝑆 = ∑ 𝑏𝑖

where 𝑏𝑖 is the ith branch length. Searching for the minimum total branch length is an indirect

approach to achieving the best fit of the branch lengths with the original dataset.

b) CHARACTER BASED METHODS

Character-based methods are based directly on the sequence characters rather than on pairwise

distances. A character is a heritable trait possessed by an organism. When amino acid are used

we have 20 possible states per position (character), when DNA is used there are 4 states. The

actual nucleotide or amino acid occupying a site is the character state. The character-based

approaches treat each substitution separately rather than reducing all of the individual variation

to a single divergence value. Ancestral sequence can also be inferred. The two most popular

character-based approaches are maximum parsimony (MP) and maximum likelihood (ML)

methods.

1. Maximum Parsimony (MP)

The parsimony method chooses a tree that has the fewest evolutionary changes or shortest

overall branch lengths. The MP approach is in principal similar to ME approach but the latter

is distance based instead of character based. Parsimony tree building works by searching for

all possible tree topologies and reconstructing ancestral sequences that require the minimum

129

number of changes to evolve to the current sequences. To save computing time, only a small

number of sites that have richest phylogenetic information are used in tree determination. These

sites are called informative sites, which are defined as sites that have at least two different kinds

of characters, each occurring at least twice. Informative sites are the ones that can often be

explained by a unique tree topology. Other sites are non-informative, which are constant sites

or sites that have changes occurring only once. Constant sites have the same state in all taxa

and are obviously useless in evaluating the various topologies. The sites that have changes

occurring only once are not very useful either for constructing parsimony trees because they

can be explained by multiple tree topologies. The non-informative sites are thus discarded in

parsimony tree construction. Once the informative sites are identified and non-informative sites

are discarded, the minimum, number of substitutions at each informative site is computed for

a given tree topology. The total number of changes at all informative sites is summed up for

each possible tree topology. The tree that has smallest number of changes is chosen as the best

tree (Kitching, 1998). The key to counting a minimum number of substitutions for a particular

site is to determine the ancestral character states at internal nodes. Because these ancestral

character states are not known directly, multiple possible solutions may exist. In this case, the

parsimony principal applies to choose the character states that result in a minimum number of

substitutions. The inference of an ancestral sequence is made by first going from the leaves to

internal nodes and to the common root to determine all possible ancestral character states and

then going back from the common root to the leaves to assign sequences that require the

minimum number of substitutions.

2. Maximum Likelihood (ML)

Another character-based approach is ML, which uses probabilistic models to choose a best tree

that has the highest probability or likelihood of reproducing the observed data (Felsenstein,

1973). It finds a tree that most likely reflects the actual evolutionary process. ML is an

exhaustive method that searches every possible tree topology and considers every position in

an alignment, not just informative sites. It sometimes also incorporates parameters that account

for rate variations across sites. This method uses probability calculations to find a tree that best

accounts for the variation in a set of sequences. The likelihood becomes the sum of the

probabilities of each possible reconstruction of substitutions under a particular substitution

process. The likelihoods for all the sites are multiplied to give an overall “likelihood of the

tree” (i.e., the probability of the data given the tree and the substitution process). As one can

imagine, for one particular tree, the likelihood of the data is low at some sites and high at others.

For a “good” tree, many sites will have higher likelihood, so the product of likelihoods is high.

For a “poor” tree, the reverse will be true. The method is similar to the maximum parsimony

method in that the analysis is performed on each column of a multiple sequence alignment. All

possible trees are considered. Hence, the method is only feasible for a small number of

sequences. The number of sequence changes or mutations that may have occurred to give the

sequence variation is considered for each tree. Because the rate of appearance of new mutations

is very small, the more mutations needed to fit a tree to the data, the less likely that tree. Thus,

the method can be used to explore relationships among more diverse sequences, conditions that

are not well handled by maximum parsimony methods. The main disadvantage of maximum

likelihood methods is this method uses great amounts of computational time, it is usually

impractical to perform a complete search that simultaneously optimizes the substitution model

and the tree for a given data set. However, with faster computers, the maximum likelihood

130

method is seeing wider use and is being used for more complex models of evolution. ML works

by calculating the probability of a given evolutionary path for a particular extant sequence. The

probability values are determined by a substitution model (either for nucleotides or amino

acids). For example, for DNA sequences using the Jukes–Cantor model, the probability (P)

that a nucleotide remains the same after time t is:

𝑃(𝑡) = 1 4⁄ + 3 4⁄ 𝑒−𝛼𝑡

where 𝛼 is the nucleotide substitution rate in the Jukes–Cantor model, which is either

empirically assigned or estimated from the raw datasets. The most commonly used heuristic

ML method is called quartet puzzling, which uses a divide-and-conquer approach.

PHYLOGENETIC ANALYSIS USING BIOINFORMATICS TOOLS

Bioinformatics has transformed the discipline of biology from a purely lab-based science to an

information science as well. Now it becomes easier to do phylogenetic analysis by using

different softwares. Some of the softwares are free (PHYLIP) and some are not free (PAUP).

To do phylogeny with the help of bioinformatics tools it is easier to get results.

PHYLIP (the PHYLogeny Inference Package)

PHYLIP is the most widely-distributed phylogeny package. It is a package of programs for

inferring phylogenies (evolutionary trees) freely available on web. Methods that are available

in the package include parsimony, distance matrix, and likelihood methods and bootstrapping.

Data types that can be handled include molecular sequences, gene frequencies, restriction sites

and fragments, distance matrices, and discrete characters. The data are read into the program

from a text file, which the user can prepare using any word processor.

Programs of the PHYLIP package that make distance matrix include the following programs

DNADIST computes distances among input nucleic acid sequences. PROTDIST computes a

distance measure for protein sequences, based on the Dayhoff PAM model. Distance analysis

programs in PHYLIP includes FITCH which estimates a phylogenetic tree assuming additivity

of branch lengths using the Fitch-Margoliash method and does not assume a molecular clock.

KITSCH estimates a phylogenetic tree using the Fitch-Margoliash method but under the

assumption of a molecular clock. NEIGHBOR estimates phylogenies using the neighbor-

joining or UPGMA method.

The main programs for maximum parsimony analysis in the PHYLIP package are DNAPARS

which treats gaps as a fifth nucleotide state. DNAPENNY which performs parsimonious

phylogenies by branch-and-bound search that can analyze more sequences. DNACOMP, which

performs phylogenetic analysis using the compatibility criterion. Rather than searching for

overall parsimony at all sites in the multiple sequence alignment, this method finds the tree that

supports the largest number of sites. This method is recommended when the rate of evolution

varies among sites. DNAMOVE which performs parsimony and compatibility analysis

interactively. For analysis of protein sequences, the program is: PROTPARS which counts the

minimum number of mutations to change a codon for the first amino acid into a codon for the

second amino acid, but only scores those mutations in the mutational path that actually change

the amino acid.

PHYLIP includes two programs for maximum likelihood analysis DNAML estimates

phylogenies from nucleotide sequences by the maximum likelihood method, allowing for

131

variable frequencies of the four nucleotides, for unequal rates of transitions and transversions.

DNAMLK estimates phylogenies from nucleotide sequences by the maximum likelihood

method in the same manner as DNAML, but assumes a molecular clock. One starts with an

evolutionary model of sequence change that provides estimates of rates of substitution of one

base for another in a set of nucleic acid sequences. Once the analysis have done then we have

to see the phylogenetic tree by choosing the program DRAWGRAM which made rooted tree

and DRAWTREE which made unrooted tree.

D) TREE RELIABILITY

Although various methods have been developed for reconstructing phylogenetic trees, there

exist few methods for evaluating the statistical confidence of an inferred phylogeny or for

testing whether one phylogeny is significantly better than another. There are two questions that

need to be answered in assessing reliability. One is how reliable the tree or a portion of the tree

is; and the second is whether this tree is significantly better than another tree. To answer the

first question, we need to use analytical resampling strategies such as bootstrapping and

jackknifing, which repeatedly resample data from the original dataset. For the second question,

conventional statistical tests are needed. Bootstrapping is a statistical technique that tests the

sampling errors of a phylogenetic tree. It does so by repeatedly sampling trees through slightly

changed datasets. The robustness of the original tree can be assessed by this way. The rationale

for bootstrapping is that a newly constructed tree is possibly biased owing to incorrect

alignment or chance fluctuations of distance measurements. To determine the robustness or

reproducibility of the current tree, trees are repeatedly constructed with slightly disturbed

alignments that have some random fluctuations introduced. A truly robust phylogenetic

relationship should have enough characters to support the relationship even if the dataset is

disturbed in such a way. Otherwise, the noise introduced in the resampling process is sufficient

to generate different trees, indicating that the original topology may be derived from weak

phylogenetic signals. Thus, this type of analysis gives an idea of the statistical confidence of

the tree topology. Bootstrap resampling relies on redistribution of original sequence datasets.

There are two redistribution strategies. One way to produce disturbances by random

replacement of sites. This is referred to as Nonparametric bootstrapping. Another disturbance

is by making new datasets based on a particular sequence distribution, which is Parametric

bootstrapping. Both types of bootstrapping can be applied to the distance, parsimony, and

likelihood tree construction methods. A large number of bootstrap resampling steps are needed

to achieve meaningful results. It is generally recommended that a phylogenetic tree should be

bootstrapped 500 to 1,000 times. On the basis of simulation studies, it has been suggested that,

under favorable conditions bootstrap values greater than 70% correspond to a probability of

greater than 95% that the true phylogeny has been found. Under less favorable conditions,

bootstrap values greater than 50% will be overestimates of accuracy. Simply put under certain

conditions high bootstrap values can make the wrong phylogeny look good; therefore, the

conditions of the analysis must be considered. Bootstrapping can be used in experiments in

which trees are recomputed after internal branches are deleted one at a time. Bootstrapping

does not assess the accuracy of a tree, but only indicates consistency and stability of individual

clades of the tree. This means that, because of systematic errors, wrong trees can still be

obtained with high bootstrap values. Therefore, bootstrap results should be interpreted with

caution. Unusually high GC content in the original dataset, unusually accelerated evolutionary

rates and unrealistic evolutionary models are the potential causes for generating biased trees,

132

as well as biased bootstrap estimates, which come after the tree generation. In jackknifing, one

half of the sites in a dataset are randomly deleted, creating datasets half as long as the original.

Each new dataset is subjected to phylogenetic tree construction using the same method as the

original. The advantage of jackknifing is that sites are not duplicated relative to the original

dataset and that computing time is much shortened because of shorter sequences. One

disadvantage of this approach is that the size of datasets has been changed into one half and

that the datasets are no longer considered replicates. The statistical methodology for testing

phylogenies is in a primitive state. This is because of two reasons. First, phylogenetic

reconstruction has long been recognized as a problem in statistical inference few authors have

formulated the problem in a statistical framework. Most current methods give one or a few

trees and do not provide information concerning the confidence level of estimated phylogenies.

Second, the problem is complex, because the number of possible alternative trees is large even

when only a moderate number of taxa are involved. For this reason, most current statistical

tests are heuristic when the number of taxa involved is five or larger. The Bayesian method is

probably the most efficient statistical tests; it does not require bootstrapping because the

Markov chain Monte Carlo (MCMC) procedure itself involves thousands or millions of steps

of resampling. As a result of Bayesian tree construction, posterior probabilities are assigned at

each node of a best Bayesian tree as statistical support. Because of fast computational speed of

MCMC tree searching, the Bayesian method offers a practical advantage over regular

maximum likelihood (ML) and makes the statistical evaluation of ML trees more feasible.

Unlike bootstrap values, Bayesian probabilities are normally higher because most trees are

sampled near a small number of optimal trees. Therefore, they have a different statistical

meaning from bootstrap. The Kishino–Hasegawa (KH) test The KH test sets out to test the null

hypothesis that the two competing tree topologies are not significantly different. A paired

student t-test is used to assess whether the null hypothesis can be rejected at a statistically

significant level. In this test, the difference of branch lengths at each informative site between

the two trees is calculated. The standard deviation of the difference values can then be

calculated. This in turn allows derivation of a t-value which is used for evaluation against the

t-distribution to see whether the value falls within the significant range to warrant the rejection

of the null hypothesis

𝑡 =
𝐷𝑎 − 𝐷𝑡

𝑆𝑑
√𝑛

⁄
~𝑡𝑛−1

where n is the number of informative sites, t is the test statistic value, 𝐷𝑎 is the average site-to-

site difference between the two trees, 𝑆𝑑 is the standard deviation, and 𝐷𝑡 is the total difference

of branch lengths of the two trees.

References

 Felsenstein, J. (2004). Inferring Phylogenies. Sunderland, MA: Sinauer Associates.

 Felsenstein, J. (1973). Maximum likelihood estimation of evolutionary trees from

continuous characters. Am. J. Hum. Gen., 25: 471-492.

 Fitch, W. and Margoliash, E. (1967). The construction of phylogenetic trees. Science, 155:

279-284.

133

 Kitching, I. J., Forey, P. L., Humphries, C. J., and Williams, D. M. (1998). Cladistics: The

Theory and Practice of Parsimony Analysis.Second Edition.The Systematics Association

Publication No. 11. Oxford: Oxford University Press.

 Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425.

134

Introduction to NGS Data

Dwijesh Chandra Mishra

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Introduction

DNA sequencing is a biochemical method in order to determine the correct order of nucleotide

bases in a DNA macromolecule by using sequencing machines. Earlier sequencing was based

on a single type of method that is Sanger sequencing. In 2005, Next Generation Sequencing

(NGS) Technologies emerged and changed the view of the analysis and understanding of living

beings. Over the last two decade, considerable progress has been made on new sequencing

methods. NGS is modern high-throughput DNA sequencing technologies. They are faster,

cheaper, rapid and parallel. They require much less template preparation than the Sanger

sequencing technique.

First Generation Sequencing

1. Dideoxy method or chain termination method:

This method is developed by Sanger and Coulson in 1977. In this method one strand of the

double stranded DNA is used as template to be sequenced. This sequencing is based on using

chemically modified nucleotides called dideoxy-nucleotides (ddNTPs). The

dideoxynucleotides are used in elongation of DNA complementary strand, once incorporated

into the DNA strand they prevent the further elongation. The sequencing reaction is carried out

in four test tubes which consist of various components besides the templates. These

components are a small stretch of DNA sequence called primer, DNA polymerase enzyme, a

mixture of four deoxy nucleotide triphosphate (A, T, G, and C) and one of the dideoxy

nucleotide, i.e. either ddATP, ddTTP, ddGTP or ddCTP labeled with radioactive substances or

non-radioactive substances like dig or biotin. The synthesis of new DNA strand continues in

the presence of DNA polymerase enzyme until a dideoxynucleotide is added in the

complementary DNA strand which results in the generation of different sized DNA fragments,

ending with labeled ddNTPs. After the reaction is complete the reaction mixture of all the four

tubes are loaded adjacent to each other on a polyacrylamide sequencing gel. The four lanes

specific to ddATP, ddCTP, ddGTP and ddTTP produce fragments of varying length upon

electrophoresis and autoradiography. The position of bands in the gel is used to directly read

DNA sequences from bottom to top. The automated version of this method uses ddNTPs that

are labeled with different color fluorescent dyes so that all four reactions can be run in a single

tube.

2. Chemical cleavage method of DNA sequencing:

This method is developed by Maxam and Gilbert in 1977. This method uses chemicals to break

DNA molecules of specific bases, thus creating fragments of different sizes. DNA molecule to

be sequenced is radiolabeled. The sequencing reaction is devised into four tubes along with a

fifth reference tube.

Chemicals Reaction

Dimethyl sulphate Alters guanine at N7 position by methylation

135

Acid Alters either adenine or guanine

Hydrazine Alters either thymine or cytosine

Hydrazine + NaCl Alters cytosine

NaOH Reference

For removing altered basepairs from the sequencing reaction, piperidine is added in each tube.

Piperidine breaks the DNA molecules at the sugar residue from the point of altered nucleotide

thus making different sized fragments of DNA. The mixture of DNA fragments are separated

on high resolution polyacrylamide gels by loading the contents of all the four tubes in adjacent

lanes. After electrophoresis, the gels are exposed to x-ray film for developing autoradiographs

of the DNA bands from which sequence is read.

Second Generation Sequencing

The first generation of sequencing especially Sanger sequencing was extensively used for three

decades, however, the cost and time was a major drawback. In 2005, second generation

sequencing technologies came into the market which eliminates the limitations of the first

generation sequencing. The basic characteristics of second generation sequencing technology

are: (1) The generation of many millions of short reads in parallel, (2) The speed up of

sequencing the process compared to the first generation, (3) The low cost of sequencing and

(4) The sequencing output is directly detected without the need for electrophoresis. Short read

sequencing approaches divided under two wide approaches: sequencing by ligation (SBL) and

sequencing by synthesis (SBS).

1. 454/Roche:

Roche/454 sequencing appeared on the market in 2005, using pyrosequencing technique which

is based on the detection of pyrophosphate, released after each nucleotide incorporation in the

new synthetic DNA strand (http://www.454.com). The pyrosequencing technique is a

sequencing-by-synthesis approach. DNA samples are randomly fragmented and each fragment

is attached to a bead whose surface carries primers that have oligonucleotides complementary

to the DNA fragments so each bead is associated with a single fragment. Then, each bead is

isolated and amplified using PCR emulsion which produces about one million copies of each

DNA fragment on the surface of the bead. The beads are then transferred to a plate containing

many wells called picotiter plate (PTP) and the pyrosequencing technique is applied which

consists in activating of a series of downstream reactions producing light at each incorporation

of nucleotide. By detecting the light emission after incorporation of each nucleotide, the

sequence of the DNA fragment is deduced. The use of the picotiter plate allows hundreds of

thousands of reactions occur in parallel, considerably increasing sequencing throughput. The

latest instrument launched by Roche/454 called GS FLX+ that generates reads with lengths of

up to 1000 bp and can produce ~1Million reads per run. The Roche/454 is able to generate

relatively long reads which are easier to map to a reference genome. The main errors detected

of sequencing are insertions and deletions due to the presence of homopolymer regions. Indeed,

the identification of the size of homopolymers should be determined by the intensity of the

light emitted by pyrosequencing. Signals with too high or too low intensity lead to under or

overestimation of the number of nucleotides which causes errors of nucleotides identification.

136

2. Illumina/ Solexa:

Illumina technology is sequencing by synthesis approach and is currently the most used

technology in the NGS market. During the first step, the DNA samples are randomly

fragmented into sequences and adapters are ligated to both ends of each sequence. Then, these

adapters are fixed themselves to the respective complementary adapters, the latter are hooked

on a slide with many variants of adapters (complementary) placed on a solid plate. During the

second step, each attached sequence to the solid plate is amplified by PCR bridge amplification

that creates several identical copies of each sequence. A set of sequences made from the same

original sequence is called a cluster. Each cluster contains approximately one million copies of

the same original sequence. The last step is to determine each nucleotide in the sequences,

Illumina uses the sequencing by synthesis approach that employs reversible terminators in

which the four modified nucleotides, sequencing primers and DNA polymerases are added as

a mix, and the primers are hybridized to the sequences. Then, polymerases are used to extend

the primers using the modified nucleotides. Each type of nucleotide is labeled with a

fluorescent specific in order for each type to be unique. The nucleotides have an inactive 3’-

hydroxyl group which ensures that only one nucleotide is incorporated. Clusters are excited by

laser for emitting a light signal specific to each nucleotide, which will be detected by a coupled-

charge device (CCD) camera and Computer programs will translate these signals into a

nucleotide sequence. The process continues with the elimination of the terminator with the

fluorescent label and the starting of a new cycle with a new incorporation.

3. ABI/SOLiD:

Sequencing by Oligonucleotide Ligation and Detection (SOLiD) is a NGS sequencer Marketed

by Life Technologies (http:// www.lifetechnologies.com). In 2007, Applied Biosystems (ABI)

has acquired SOLiD and developed ABI/SOLID sequencing technology that adopts the ligation

(SBL) approach. The ABI/SOLiD process consists of multiple sequencing rounds. It starts by

attaching adapters to the DNA fragments, fixed on beads and cloned by PCR emulsion. These

beads are then placed on a glass slide and the 8-mer with a fluorescent label at the end is

sequentially ligated to DNA fragments, and the color emitted by the label is recorded. Then,

the output format is color space which is the encoded form of the nucleotide where four

fluorescent colors are used to represent 16 possible combinations of two bases. The sequencer

repeats this ligation cycle and each cycle the complementary strand is removed and a new

sequencing cycle starts at the position n-1 of the template. The cycle is repeated until each base

is sequenced twice. The recovered data from the color space can be translated to letters of DNA

bases and the sequence of the DNA fragment can be deduced.

4. Ion Torrent:

Life Technologies commercialized the Ion Torrent semiconductor sequencing technology in

2010 (https//www.thermofisher.com/us/en/home/brands/ion-torrent.html). It is similar to 454

pyrosequencing technology but it does not use fluorescent labeled nucleotides like other

second-generation technologies. It is based on the detection of the hydrogen ion released during

the sequencing process. First, emulsion PCR is used to clonally amplify adapter ligated DNA

fragments on the surface of beads. The beads are subsequently distributed into micro-wells

where sequencing by synthesis reaction occurs. Ion torrent chip consists of a flow compartment

and solid state pH sensor micro-arrayed wells that are manufactured using processes built on

137

standard complementary metal oxide semiconductor (CMOS) technology. The release of H+

during extension of each nucleotide is detected as a change in the pH within the sensor wells.

Since there is no detectable difference for H+ released from a A, T, G or C bases, the individual

dNTPs are applied in multiple cycles of consecutive order. The speed of sequencing is 2-8 hrs

depending on the machine and chip used. Error rate for substitutions is ~0.1%, similar to

Illumina. Homopolymer repeats more than 6bp lead to increased error rates.

Third Generation Sequencing

The second generation sequencing technologies generally require PCR amplification step

which is a long and expensive procedure. Also, it became clear that the genomes are very

complex with many repetitive areas that second generation sequencing technologies are

incapable to solve them and the relatively short reads made genome assembly more difficult.

Third generation sequencing technologies are remedy to these problems. These third

generations of sequencing have the ability to cover a low sequencing cost and easy sample

preparation without the need PCR amplification. The execution time reduces significantly than

second generation sequencing technologies. The most widely used third generation sequencing

technology approach is SMRT (Pacific Biosciences) and Oxford Nanopore sequencing.

1. Pacific biosciences SMRT sequencing

Pacific Biosciences (http//www.pacificbiosciences.com/) developed the first genomic

sequencer using SMRT approach and it’s the most widely used third-generation sequencing

technology. Template preparation involves ligation of single stranded hairpin adapters onto the

ends of digested DNA or cDNA molecules, generating a capped template called SMRT-bell.

This technology works with single molecule detection which does not require any amplification

step. By using a strand displacing polymerase, the original DNA molecule can be sequenced

multiple times, thereby increasing accuracy.

DNA synthesis occurs in zeptoliter sized chambers, called zero-mode waveguides (ZMWs).

These ZMW are small reaction wells that each ideally contains one complex consisting of

template molecule, sequencing primer and DNA polymerase bound to the bottom of the ZMW.

The fluorescent signals of the extended nucleotides are recorded in real time at 75 frames per

second for the individual ZMWs. This is achieved by powerful optical system that illuminates

the individual ZMWs with red and green laser beamlets from the bottom of the SMRT cell and

a parallel confocal recording system to detect the signal from the fluorescent nucleotides. When

a nucleotide complementary to the template is bound in position by the polymerase within the

illumination zone of the zmw, the identity of the nucleotide is recorded by its fluorescent label.

Each SMRT cell produces ~50k reads and upto 1 gb of data in 4 hrs. The average read length

is >14 kb. This technology has a high error rate of approximately 11%. This is useful for denovo

assembly of small bacterial and viral genomes as well as large genome finishing.

2. Oxford nanopore sequencing

This technology is also based on single molecule strategy. This relies on the transition of DNA

or individual nucleotides through a small channel called protein nanopore. A nanopore is a

nanoscale hole made of proteins or synthetic materials. A sequencing flow cell comprises

hundreds of independent micro-wells, each containing a synthetic bilayer perforated by

biological nanopores. Sequencing is accomplished by measuring characteristic changes in ionic

current that are induced as the bases are threaded through the pore by a molecular motor

138

protein. Library preparation is minimal, involving fragmentation of DNA and ligation of

adapters. The first adapter is bound with a motor enzyme as well as a molecular tether, whereas

second adapter is a hairpin oligonucleotide that is bound by a second motor protein. This library

design allows sequencing of both strands of DNA from a single molecule, which increases

accuracy. The variation in ionic current is recorded progressively on a graphic model and then

interpreted to identify the sequence. MinION is released in 2014 which generate longer reads,

ensure better resolution structural genomic variants and repeat content.it is a mobile single –

molecule nanopore sequencing measures connected by a USB 3.0 port of a laptop computer.

PromethION is bigger than MinION, equivalent to 48 MinIONs.

References:

 Kchouk M, Gibrat JF, Elloumi M. (2017). Generations of Sequencing Technologies: From

First to Next Generation. Biol Med (Aligarh) 9: 395. doi:10.4172/0974-8369.1000395.

 H.P.J. Buermans, J.T. den Dunnen. (2014). Next generation sequencing technology:

Advances and applications, Biochimica et Biophysica Acta (BBA) - Molecular Basis of

Disease, 1842(10): 1932-1941. https://doi.org/10.1016/j.bbadis.2014.06.015.

139

Genome Assembly

Dwijesh Chandra Mishra, Sanjeev Kumar, Sudhir Srivastava & Neeraj Budhlakoti

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Sanger Sequencing

 DNA is fragmented

 Cloned to a plasmid vector

 Cyclic sequencing reaction

 Separation by electrophoresis

 Readout with fluorescent tags

Sanger Vs NGS

 ‘Sanger sequencing’ has been the only DNA sequencing method for 30 years but…

 …hunger for even greater sequencing throughput and more economical sequencing

technology…

 NGS has the ability to process millions of sequence reads in parallel rather than 96 at a time

(1/6 of the cost)

NGS Platforms: Different sequencing techniques used for next generation sequencing are:

• Roche/454 FLX: 2004

• Illumina Solexa Genome Analyzer: 2006

• Applied Biosystems SOLiDTM System: 2007

• Helicos HeliscopeTM : 2009

140

• Pacific Biosciencies SMRT: 2010

General Experimental Procedure

Sequencing Technology at a Glance

Method Read

length

Accuracy Time/

run

Cost/1

million

bases

Advantages Dis-

advantages

Chain

termination

(Sanger

sequencing)

400 to

900 bp

99.9% 20

minutes

to 3

hours

Rs

144000

Long

individual

reads.

Useful for

many

applications

.

More

expensive and

impractical

for larger

sequencing

projects.

Pyrosequenci

ng (454)

700 bp 99.9% 24 hours Rs 600 Long read

size. Fast

Runs are

expensive.

Homopolyme

r errors.

Sequencing

by synthesis

(Illumina)

50 to

300 bp

98% 1 to 10

days,

dependi

ng upon

sequenc

er and

specified

read

length

Rs 3 to

9

Potential for

high

sequence

yield,

depending

upon

sequencer

model and

desired

application.

Equipment

can be very

expensive.

Requires high

concentration

s of DNA.

141

Sequencing

by ligation

(SOLiD

sequencing)

50+35

or

50+50

bp

99.9% 1 to 2

weeks

Rs 78 Low cost

per base.

Slower than

other

methods.

Have issue

sequencing

palindromic

sequence.

Single-

molecule

real-time

sequencing

(Pacific Bio)

10,000

bp to

15,000

bp avg.

(14,000

bp);

87% 30

minutes

to 4

hours

Rs 7.8–

36

Longest

read length.

 Fast.

Moderate

throughput.

Equipment

can be very

expensive.

Reads, Contigs and Scaffolds

 Reads are what you start with (35bp-800bp)

 Fragmented assemblies produce contigs that can be kilobases in length

 Putting contigs together into scaffolds is the next step

FASTQ Format

142

Before Assembly

Fragment readout

 DNA characters in a fragment are determined from chromatogram

 Base call is a DNA character that is determined from chromatogram

Fragment readout

 Phred Score- determine the quality value of a base

𝑞 = −10 × 𝑙𝑜𝑔10(p)

 where p is the estimated error probability for the base

 if Phred assigns a quality score of 30 to a base, the chances that this base is called

incorrectly are 1 in 1000

 The most commonly used method is to count the bases with a quality score of 20 and

above

 Phred Score

143

Genome Properties

PASS FAIL

PASS FAIL

Library Quality

144

PASS FAIL

Run Quality

PASS FAIL

Read Quality

PASS FAIL

PASS FAIL

145

PASS FAIL

PASS FAIL

Trimming

 Trimming low-quality sequences

-removal of reads containing poor quality base calls

 Trimming vector sequences

-removal of reads containing vector sequences

146

Genome Annotation

Sanjeev Kumar, D.C. Mishra, Sneha Murmu and Jyotika Bhati

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Introduction

Until the genome revolution, genes were identified by researchers with specific interests in a

particular protein or cellular process. Once identified, these genes were isolated, typically by

cloning and sequencing cDNAs, usually followed by targeted sequencing of the longer

genomics segments that code for the cDNAs. Once an organism’s entire genome sequence

becomes available, there is strong motivation for finding all the genes encoded by a genome at

once rather than in a piecemeal approach. Such catalogue is immensely valuable to researchers,

as they can learn much more from the whole picture than from a much more limited set of

genes. For example, genes of similar sequence can be identified, evolutionary and functional

relationships can be elucidated, and a global picture of how many and what types of genes are

present in a genome can be seen. A significant portion of the effort in genome sequencing is

devoted to the process of annotation, in which genes, regulatory elements, and other features

of the sequence are identifies as thoroughly as possible and catalogued in a standard format in

public databases so that researchers can easily use the information. Functional genomics

research has expanded enormously in the last decade and particularly the plant biology research

community. Functional annotation of novel DNA sequences is probably one of the top

requirements in functional genomics as this holds, to a great extent, the key to the biological

interpretation of experimental results.

Computational Gene Prediction

Computational gene prediction is becoming more and more essential for the automatic analysis

and annotation of large uncharacterized genomic sequences. In the past two decades, many

algorithms have been evolved to predict protein coding regions of the DNA sequences. They

all have in common, to varying degree, the ability to differentiate between gene features like

Exons, Introns, Splicing sites, Regulatory sites etc. Gene prediction methods predicts coding

region in the query sequences and then annotates the sequences databases.

Gene Structure and Expression

The gene structure and the gene expression mechanism in eukaryotes are far more complicated

than in prokaryotes. In typical eukaryotes, the region of the DNA coding for a protein is usually

not continuous. This region is composed of alternating stretches of exons and introns. During

transcription, both exons and introns are transcribed onto the RNA, in their linear order.

Thereafter, a process called splicing takes place, in which, the intron

147

Fig. 1: Representative Diagram of Protein Coding Eukaryotic Gene

sequences are excised and discarded from the RNA sequence. The remaining RNA segments,

the ones corresponding to the exons are ligated to form the mature RNA strand. A typical multi-

exon gene has the following structure (as illustrated in Fig. 1). It starts with the promoter region,

which is followed by a transcribed but non-coding region called 5' untranslated region (5'

UTR). Then follows the initial exon which contains the start codon. Following the initial exon,

there is an alternating series of introns and internal exons, followed by the terminating exon,

which contains the stop codon. It is followed by another non-coding region called the 3' UTR.

Ending the eukaryotic gene, there is a polyadenylation (polyA) signal: the nucleotide Adenine

repeating several times. The exon-intron boundaries (i.e., the splice sites) are signalled by

specific short (2bp long) sequences. The 5'(3') end of an intron (exon) is called the donor site,

and the 3'(5') end of an intron (exon) is called the acceptor site. The problem of gene

identification is complicated in the case of eukaryotes by the vast variation that is found in gene

structure.

Gene Prediction Methods

There are mainly two classes of methods for computational gene prediction (Fig. 2). One is

based on sequence similarity searches, while the other is gene structure and signal-based

searches, which is also referred to as Ab initio gene finding.

Sequence Similarity Searches

Sequence similarity search is a conceptually simple approach that is based on finding similarity

in gene sequences between ESTs (expressed sequence tags), proteins, or other genomes to the

input genome. This approach is based on the assumption that functional regions (exons) are

more conserved evolutionarily than non-functional regions (intergenic or intronic regions).

Once there is similarity between a certain genomic region and an EST, DNA, or protein, the

similarity information can be used to infer gene structure or function of that region. EST-based

sequence similarity usually has drawbacks in that ESTs only correspond to small portions of

the gene sequence, which means that it is often difficult to predict the complete gene structure

of a given region. Local alignment and global alignment are two methods based on similarity

searches. The most common local alignment tool is the BLAST family of programs, which

detects sequence similarity to known genes, proteins, or ESTs. The biggest limitation to this

148

type of approaches is that only about half of the genes being discovered have significant

homology to genes in the databases.

Ab initio Gene Prediction Methods

The second class of methods for the computational identification of genes is to use gene

structure as a template to detect genes, which is also called ab initio prediction. Ab initio gene

predictions rely on two types of sequence information: signal sensors and content sensors.

Signal sensors refer to short sequence motifs, such as splice sites, branch points, poly

pyrimidine tracts, start codons and stop codons. Exon detection must rely on the content

sensors, which refer to the patterns of codon usage that are unique to a species, and allow

coding sequences to be distinguished from the surrounding non-coding sequences by statistical

detection algorithms.

Many algorithms are applied for modeling gene structure, such as Dynamic Programming,

linear discriminant analysis, Linguist methods, Hidden Markov Model and Neural Network.

149

Based on these models, a great number of ab initio gene prediction programs have been

developed.

Fig. 2: Diagrammatic Representation of Gene Prediction and Annotation

Gene Discovery in Prokaryotic Genomes

Discovery of genes in Prokaryote is relatively easy, due to the higher gene density typical of

prokaryotes and the absence of introns in their protein coding regions. DNA sequences that

encode proteins are transcribed into mRNA, and the mRNA is usually translated into proteins

without significant modification. The longest ORFs (open reading frames) running from the

first available start codon on the mRNA to the next stop codon in the same reading frame

generally provide a good, but not assured prediction of the protein coding regions. Several

methods have been devised that use different types of Markov models in order to capture the

compositional differences among coding regions, “shadow" coding regions (coding on the

opposite DNA strand), and noncoding DNA. Such methods, including ECOPARSE, the widely

used GENMARK, and Glimmer program, appear to be able to identify most protein coding

genes with good performance (Fig. 3).

 Fig. 3: Flow Diagram of Prokaryotic Gene Discovery

Gene Discovery in Eukaryotic Genome

It is a quite different problem from that encountered in prokaryotes. Transcription of protein

coding regions initiated at specific promoter sequences is followed by removal of noncoding

sequences (introns) from pre-mRNA by a splicing mechanism, leaving the protein encoding

exons. Once the introns have been removed and certain other modifications to the mature RNA

have been made, the resulting mature mRNA can be translated in the 5` to 3` direction, usually

from the first start codon to the first stop codon. As a result of the presence of intron sequences

150

in the genomic DNA sequences of eukaryotes, the ORF corresponding to an encoded gene will

be interrupted by the presence of introns that usually generate stop codons (Fig.4).

Fig. 4: Flow Diagram of Eukaryotic Gene Discovery

Gene Prediction Program

There are two basic problems in gene prediction: prediction of protein coding regions and

prediction of the functional sites of genes. Gene prediction program can be classified into four

generations. The first generation of programs was designed to identify approximate locations

of coding regions in genomic DNA. The most widely known programs were probably

TestCode and GRAIL. But they could not accurately predict precise exon locations. The second

generation, such as SORFIND and Xpound, combined splice signal and coding region

identification to predict potential exons, but did not attempt to assemble predicted exons into

complete genes. The next generation of programs attempted the more difficult task of

predicting complete gene structures. A variety of programs have been developed, including

GeneID, GeneParser, GenLang, and FGENEH. However, the performance of those programs

remained rather poor. Moreover, those programs were all based on the assumption that the

input sequence contains exactly one complete gene, which is not often the case. To solve this

Algorithms

Predicting

exon/intron

exon intron Initial and

terminal exon

Use of

homology

Start /stop

signals
and
promoters

promoters

Translation/transcription start signals

Translation/transcription stop signals

151

problem and improve accuracy and applicability further, GENSCAN and AUGUSTUS were

developed, which could be classified into the fourth generation.

GeneMark

GeneMark uses a Markov Chain model to represent the statistics of the coding and noncoding

frames. The method uses the dicodon statistics to identify coding regions. Consider the analysis

of a sequence x whose base at the ith position is called xi. The Markov chains used are fifth

order, and consist of a terms such as P(a/x1x2x3x4x5), which represent the probability of the

sixth base of the sequence x being given a given that the previous five bases in the sequence x

where x1x2x3x4x5, resulting in the first dicodon of the sequence being x1x2x3x4x5a. These terms

must be defined for all possible pentamers with the general sequence b1b2b3b4b5. The values of

these terms can be obtained of analysis of data, consisting of nucleotide sequence in which the

coding regions have been actually identified. When there are sufficient data, they are given by

𝑃(
𝑎

𝑏1𝑏2𝑏3𝑏4𝑏5
) =

𝑛𝑏1𝑏2𝑏3𝑏4𝑏5𝑎

∑ 𝑛𝑏1𝑏2𝑏3𝑏4𝑏5𝑎𝑎=𝐴,𝐶,𝐺,𝑇

where, 𝑛𝑏1𝑏2𝑏3𝑏4𝑏5𝑎 is the number of times the sequence b1b2b3b4b5a occurs in the training data.

This is the maximum likelihood estimators of the probability from the training data.

Glimmer

The core of Glimmer is Interpolated Markov Model (IMM), which can be described as a

generalized Markov chain with variable order. After GeneMark introduces the fixed-order

Markov chains, Glimmer attempts to find a better approach for modeling the genome content.

The motivational fact is that the bigger the order of the Markov chain, the more non-

randomness can be described. However, as we move to higher order models, the number of

probabilities that we must estimate from the data increases exponentially. The major limitation

of the fixed-order Markov chain is that models from higher order require exponentially more

training data, which are limited and usually not available for new sequences. However, there

are some oligomers from higher order that occur often enough to be extremely useful

predictors. For the purpose of using these higher-order statistics, whenever sufficient data is

available, Glimmer IMMs.

Glimmer calculates the probabilities for all Markov chains from 0th order to 8th. If there are

longer sequences (e.g. 8-mers) occurring frequently, IMM makes use of them even when there

is insufficient data to train an 8-th order model. Similarly, when the statistics from the 8-th

order model do not provide significant information, Glimmer refers to the lower-order models

to predict genes.

Opposed to the supervised GeneMark, Glimmer uses the input sequence for training. The ORFs

longer than a certain threshold are detected and used for training, because there is high

probability that they are genes in prokaryotes. Another training option is to use the sequences

with homology to known genes from other organisms, available in public databases. Moreover,

the user can decide whether to use long ORFs for training purposes or choose any set of genes

to train and build the IMM.

152

GeneMark.hmm

GeneMark.hmm is designed to improve GeneMark in finding exact gene starts. Therefore, the

properties of GeneMark.hmm are complementary to GeneMark. GeneMark.hmm uses

GeneMark models of coding and non-coding regions and incorporates them into hidden

Markov model framework. In short terms, Hidden Markov Models (HMM) are used to describe

the transitions from non-coding to coding regions and vice versa. GeneMark.hmm predicts the

most likely structure of the genome using the Viterbi algorithm, a dynamic programming

algorithm for finding the most likely sequence of hidden states. To further improve the

prediction of translation start position, GeneMark.hmm derives a model of the ribosome

binding site (6-7 nucleotides preceding the start codon, which are bound by the ribosome when

initiating protein translation). This model is used for refinement of the results.

Both GeneMark and GeneMark.hmm detect prokaryotic genes in terms of identifying open

reading frames that contain real genes. Moreover, they both use pre-computed species-specific

gene models as training data, in order to determine the parameters of the protein-coding and

non-coding regions.

Orpheus

The ORPHEUS program uses homology, codon statistics and ribosome binding sites to

improve the methods presented so far by using information that those programs ignored. One

of the key differences is that it uses database searches to help determine putative genes, and is

thus an extrinsic method. This initial set of genes is used to define the coding statistics for the

organism, in this case working at the level of codon, not dicodons. These statistics are then

used to define a larger set of candidate ORFs. From this set, those ORFs with an unambiguous

start codon end are used to define a scoring matrix for the ribosome-binding site, which is then

used to determine the 5` end of those ORFs where alternative start are present.

EcoParse

EcoParse is one of the first HMM model based gene finder, was developed for gene finding in

E.coli. It focuses on the uses the codon structure of genes. With EcoParse a flora of HMM

based gene finder, usuing dynamic programming and the viterbi algorithm to parse a sequence,

emerged.

Evaluation of Gene Prediction Programs

In the field of gene prediction accuracy can be measured at three levels

a. Coding nucleotides (base level)

b. Exon structure (exon level)

c. Protein product (protein level)

At base level gene predictions can be evaluated in terms of true positives (TP) (predicted

features that are real), true negatives (TN) (non-predicted features that are not real), false

positives (FP) (predicted features that are not real), and false negatives (FN) (real features that

were not predicted) Fig. 5. Usually the base assignment is to be in a coding or non coding

segment, but this analysis can be extended to include non coding parts of genes, or any

functional parts of the sequences.

153

 TN FN TP FP TN FP TP FN TN

Real

 Predicted

Real

Predicted

Fig. 5: Four Possible Comparisons of Real and Predicted Genes

Sensitivity (Sn): The fraction of bases in real genes that are correctly predicted to be in genes

is the sensitivity and interpreted as the probability of correctly predicting a nucleotide to be in

a given gene that it actually is.

Specificity (Sp): The fraction of those bases which are predicted to be in genes that actually

are is called the specificity and interpreted as the probability of a nucleotide actually being in

a gene given that it has been predicted to be.

Care has to be taken in using these two values to assess a gene prediction program because, as

with the normal definition of specificity, extreme results can make them misleading.

Approximate correlation coefficient (AC) has been proposed as a single measure to circumvent

these difficulties. This defined as AC=2(ACP-0.5), where

At the exon level, determination of prediction accuracy depends on the exact prediction of exon

start and end points. There are two measures of sensitivity and specificity used in the field,

each of which measures a different but useful property.

The sensitivity measures used are

Sn1 = CE/AE and Sn2 = ME/AE

The specificity measures used are

Sp1=CE/PE and Sp2=WE/PE

Where,

AE = No of actual exons in the data

PE = No of predicted exons in the data

CE = No of correct predicted exons

ME = No of missing exons (rarely occurs)

WE = No of wrongly predicted exons (Figure-5)



Sn
TP

TP FN



Sp
TP

TP FP



ACP 
1

n

TP

TPFN


TP

TPFP


TN

TN FP


TN

TN FN









,

154

Fig. 6: Real and Predicted Exons

Gene Ontology

The gene ontology (GO, http:www.geneontology.org) is probably the most extensive scheme

today for the description of gene product functions but other systems such as enzyme codes,

KEGG pathways, FunCat, or COG are also widely used. Here, we describe the Blast2GO (B2G,

www.blast2go.org) application for the functional annotation, management, and data mining of

novel sequence data through the use of common controlled vocabulary schemas. The main

application domain of the tool is the functional genomics of nonmodel organisms and it is

primarily intended to support research in experimental labs. Blast2GO strives to be the

application of choice for the annotation of novel sequences in functional genomics projects

where thousands of fragments need to be characterized. Functional annotation in Blast2GO is

based on homology transfer. Within this framework, the actual annotation procedure is

configurable and permits the design of different annotation strategies. Blast2GO annotation

parameters include the choice of search database, the strength and number of blast results, the

extension of the query-hit match, the quality of the transferred annotations, and the inclusion

of motif annotation. Vocabularies supported by B2G are gene ontology terms, enzyme codes

(EC), InterPro IDs, and KEGG pathways.

Fig.7 shows the basic components of the Blast2GO suite. Functional assignments proceed

through an elaborate annotation procedure that comprises a central strategy plus refinement

155

functions. Next, visualization and data mining engines permit exploiting the annotation results

to gain functional knowledge. GO annotations are generated through a 3-step process: blast,

mapping, annotation. InterPro terms are obtained from InterProScan at EBI, converted and

merged to GOs. GO annotation can be modulated from Annex, GOSlim web services and

manual editing. EC and KEGG annotations are generated from GO. Visual tools include

sequence color code, KEGG pathways, and GO graphs with node highlighting and filtering

options. Additional annotation data-mining tools include statistical charts and gene set

enrichment analysis functions.
Fig. 7: Schematic Representation of Blast2GO Application.

The Blast2GO annotation procedure consists of three main steps: blast to find homologous

sequences, mapping to collect GO terms associated to blast hits, and annotation to assign

trustworthy information to query sequences.

Blast Step

The first step in B2G is to find sequences similar to a query set by blast. B2G accepts nucleotide

and protein sequences in FASTA format and supports the four basic blast programs (blastx,

blastp, blastn, and tblastx). Homology searches can be launched against public databases such

as (the) NCBI nr using a query-friendly version of blast (QBlast). This is the default option and

in this case, no additional installations are needed. Alternatively, blast can be run locally against

a proprietary FASTA-formatted database, which requires a working www-blast installation.

The Make Filtered Blast-GO-BD function in the Tools menu allows the creation of customized

databases containing only GO annotated entries, which can be used in combination with the

local blast option. Other configurable parameters at the blast step are the expectation value (e-

value) threshold, the number of retrieved hits, and the minimal alignment length (hsp length)

which permits the exclusion of hits with short, low e-value matches from the sources of

functional terms. Annotation, however, will ultimately be based on sequence similarity levels

as similarity percentages are independent of database size and more intuitive than e-values.

Blast2GO parses blast results and presents the information for each sequence in table format.

Query sequence descriptions are obtained by applying a language processing algorithm to hit

descriptions, which extracts informative names and avoids low content terms such as

“hypothetical protein” or “expressed protein”.

Mapping Step

Mapping is the process of retrieving GO terms associated to the hits obtained after a blast

search. B2G performs three different mappings as follows.

a. Blast result accessions are used to retrieve gene names (symbols) making use of two

mapping files provided by NCBI (geneinfo, gene2accession). Identified gene names are

searched in the species-specific entries of the gene product table of the GO database.

b. Blast result GI identifiers are used to retrieve UniProt IDs making use of a mapping file

from PIR (Non-redundant Reference Protein database) including PSD, UniProt, Swiss-Prot,

TrEMBL, RefSeq, GenPept, and PDB.

c. Blast result accessions are searched directly in the DBXRef Table of the GO database.

156

Annotation Step

This is the process of assigning functional terms to query sequences from the pool of GO terms

gathered in the mapping step. Function assignment is based on the gene ontology vocabulary.

Mapping from GO terms to enzyme codes permits the subsequent recovery of enzyme codes

and KEGG pathway annotations. The B2G annotation algorithm takes into consideration the

similarity between query and hit sequences, the quality of the source of GO assignments, and

the structure of the GO DAG. For each query sequence and each candidate GO term, an

annotation score (AS) is computed (see Figure 8). The AS is composed of two terms. The first,

direct term (DT), represents the highest similarity value among the hit sequences bearing this

GO term, weighted by a factor corresponding to its evidence code (EC). A GO term EC is

present for every annotation in the GO database to indicate the procedure of functional

assignment.

Fig. 8: Blast2GO Annotation Rule

ECs vary from experimental evidence, such as inferred by direct assay (IDA) to unsupervised

assignments such as inferred by electronic annotation (IEA). The second term (AT) of the

annotation rule introduces the possibility of abstraction into the annotation algorithm.

Abstraction is defined as the annotation to a parent node when several child nodes are present

in the GO candidate pool. This term multiplies the number of total GOs unified at the node by

a user defined factor or GO weight (GOw) that controls the possibility and strength of

abstraction. When all ECw’s are set to 1 (no EC control) and the GOw is set to 0 (no abstraction

is possible), the annotation score of a given GO term equals the highest similarity value among

the blast hits annotated with that term. If the ECw is smaller than one, the DT decreases and

higher query-hit similarities are required to surpass the annotation threshold. If the GOw is not

equal to zero, the AT becomes contributing and the annotation of a parent node is possible if

multiple child nodes coexist that do not reach the annotation cutoff. Default values of B2G

annotation parameters were chosen to optimize the ratio between annotation coverage and

annotation accuracy. Finally, the AR selects the lowest terms per branch that exceed a user-

defined threshold.

Blast2GO includes different functionalities to complete and modify the annotations obtained

through the above-defined procedure. Enzyme codes and KEGG pathway annotations are

generated from the direct mapping of GO terms to their enzyme code equivalents. Additionally,

Blast2GO offers InterPro searches directly from the B2G interface. B2G launches sequence

queries in batch, and recovers, parses, and uploads InterPro results. Furthermore, InterPro IDs

can be mapped to GO terms and merged with blast-derived GO annotations to provide one

integrated annotation result. In this process, B2G ensures that only the lowest term per branch

remains in the final annotation set, removing possible parent-child relationships originating

from the merging action.

157

References

 Conesa, S. Gotz, J. M. Garcia-Gomez, J. Terol, M. Talon, and M. Robles, “Blast2GO: a

universal tool for annotation, visualization and analysis in functional genomics research,”

Bioinformatics, vol. 21, no. 18, pp. 3674–3676, 2005.

 Conesa and S. Gotz, "Blast2GO: A Comprehensive Suite for Functional Analysis in Plant

Genomics," International Journal of Plant Genomics, vol. 2008, 2008.

 H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa, “KEGG: Kyoto

Encyclopedia of Genes and Genomes,” Nucleic Acids Research, vol. 27, no. 1, pp. 29–34,

1999.

 J.D. Watson, R.M. Myers, A.A. Caudy and J.A. Witkowski, "Recombinant DNA: Genes

and Genomes - A Short Course," 3rd Ed., 2007.

 M. Ashburner, C. A. Ball, J. A. Blake, et al., “Gene Ontology: tool for the unification of

biology. The Gene Ontology Consortium,” Nature Genetics, vol. 25, no. 1, pp. 25–29, 2000.

 Ruepp, A. Zollner, D. Maier, et al., “The FunCat, a functional annotation scheme for

systematic classification of proteins from whole genomes,” Nucleic Acids Research, vol.

32, no. 18, pp. 5539–5545, 2004.

 R. L. Tatusov, N. D. Fedorova, J. D. Jackson, et al., “The COG database: an updated version

includes eukaryotes,” BMC Bioinformatics, vol. 4, p. 41, 2003.

 Schomburg, A. Chang, C. Ebeling, et al., “BRENDA, the enzyme database: updates and

major new developments,” Nucleic Acids Research, vol. 32, Database issue, pp. D431–

D433, 2004.

 S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment

search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990.

 S. Myhre, H. Tveit, T. Mollestad, and A. Lægreid, “Additional Gene Ontology structure for

improved biological reasoning,” Bioinformatics, vol. 22, no. 16, pp. 2020–2027, 2006.

158

Hands-on Session for Genome Annotation

Sneha Murmu

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Introduction

Genome annotation is the process of identifying functional elements within a genome, such as

genes, regulatory regions, and repeat elements. The goal of genome annotation is to create an

accurate and comprehensive description of the genome's structure and function. This can be a

time-consuming process, but it is essential for understanding how genes and other functional

elements work together to control an organism's biology.

One powerful tool for genome annotation is Blast2GO (Conesa et al., 2005). Blast2GO is a

commercial bioinformatics software suite that provides comprehensive functional annotation

of nucleotide and protein sequences. It combines powerful sequence similarity search

algorithms, such as BLAST (Altschul et al., 1997) and HMMER (Finn et al., 2011), with

functional annotation tools, such as InterProScan (Zdobnov et al., 2001) and Gene Ontology

(GO) mapping, to provide a detailed functional analysis of genomic and transcriptomic data.

Blast2GO works by first performing a sequence similarity search, typically using BLAST, to

identify sequences with homology to known sequences in public databases. The resulting hits

are then annotated using a variety of functional annotation tools, including InterProScan, which

identifies conserved protein domains and functional motifs, and GO mapping, which assigns

GO terms based on the functional categories of annotated genes.

Blast2GO also includes tools for statistical analysis and data visualization, allowing users to

explore functional trends and patterns in their data. It can be used to analyze a wide range of

genomic and transcriptomic data sets. One of the strengths of Blast2GO is its user-friendly

interface, which allows even non-experts to perform complex functional annotation analyses.

Blast2GO is also highly customizable, allowing users to tailor the annotation process to their

specific needs and research questions.

Here are the four broad steps involved in genome annotation using Blast2GO:

 Sequence quality control and assembly: Before annotating a genome, it is important to

ensure that the quality of the sequencing data is high and that the genome has been properly

assembled. This may involve trimming low-quality sequences, filtering out contaminants,

and performing de novo assembly or mapping to a reference genome.

 Sequence similarity search: The first step in genome annotation is to identify sequences

with homology to known sequences in public databases. This is typically done using

BLAST or a similar tool. The resulting hits can provide clues about the function and

evolutionary relationships of the sequences in question.

 Functional annotation: Once sequences have been identified using a sequence similarity

search, functional annotation tools can be used to identify functional domains and motifs,

assign Gene Ontology terms, and perform other types of functional analysis. Blast2GO

includes a number of annotation tools, including InterProScan, which searches for

conserved domains and motifs in protein sequences, and GO mapping, which assigns Gene

Ontology terms based on the functional categories of annotated genes.

159

 Data analysis and visualization: Once the sequences have been annotated with functional

information, the data can be analyzed and visualized in a variety of ways. Blast2GO

includes tools for statistical analysis and data visualization. The results of the analysis can

be exported in a variety of formats for further analysis.

Installation of Blast2GO:

Following are the general steps to install Blast2GO:

1. System requirements: Check that your computer meets the system requirements for

Blast2GO. Blast2GO is compatible with Windows, macOS, and Linux operating systems,

and requires at least 8 GB of RAM.

2. Download Blast2GO: Visit the Blast2GO website (https://www.blast2go.com/) and

download the appropriate installation file for your operating system. You may need to

create an account and purchase a license, depending on your intended use of the software.

3. Install Blast2GO: Double-click the downloaded installation file and follow the on-screen

instructions to install Blast2GO (as depicted in Figure 1). You may need to provide

administrator permissions, depending on your operating system and security settings.

4. Configure Blast2GO: Once Blast2GO is installed, you will need to configure it to work

with your specific computing environment. This may include setting preferences for

sequence databases, annotation tools, and other settings.

5. Activate license: If you have purchased a license for Blast2GO, you will need to activate it

before you can use the software. This typically involves entering a license key or activating

the license through an online portal.

Once Blast2GO is installed and configured, you can begin using it to analyze and annotate your

genomic or transcriptomic data.

https://www.blast2go.com/

160

Figure 1: Installation steps of Blast2GO in Windows system.

Stepwise guide to perform annotation using Blast2GO

1. Open Blast2GO: Launch Blast2GO on your computer.

2. Load sequences: Load your sequence file(s) into Blast2GO. This can be done by clicking

on "Load data" in the main menu and selecting the appropriate file type (e.g., FASTA).

3. Run BLAST search: In the main menu, click on "Run BLAST" and select the appropriate

database for your search (e.g., NCBI non-redundant protein database) as shown in Figure

2. You can choose to run a BLASTP (protein query against protein database) or a BLASTX

(nucleotide query against protein database) search. You can also set various search

parameters, such as the e-value threshold and the maximum number of hits to return.

4. View BLAST results: Once the BLAST search is complete, you can view the results in the

BLAST results table (as shown in Figure 3). The table will show the sequence ID, the best

hit, the e-value, the bit score, and other relevant information. You can sort the table by

various columns to help you identify the best hits.

5. Import BLAST results: To import the BLAST results into the Blast2GO annotation

pipeline, select the sequences you want to annotate and click on "Import selected hits". This

will import the BLAST results and link them to the appropriate sequences in the annotation

pipeline.

Figure 2: BLAST search.

161

Figure 3: BLAST result.

6. Run InterProScan: In the main menu, click on "Run InterProScan" and select the

appropriate database for your search (e.g., InterPro database). You can choose to run the

search on protein or nucleotide sequences (Figure 4a).

7. Set search parameters: You can set various search parameters, such as the e-value threshold,

the maximum number of sequences to align, and the type of analysis to perform (e.g., Pfam,

Prosite, SMART, etc.) (Figure 4b).

Figure 4: InterProScan search.

8. View InterProScan results: Once the InterProScan search is complete, you can view the

results in the InterProScan results table. The table will show the sequence ID, the best

162

match, the e-value, the score, and other relevant information (Figure 5). You can sort the

table by various columns to help you identify the best matches.

Figure 5: InterProScan result.

9. Import InterProScan results: To import the InterProScan results into the Blast2GO

annotation pipeline, select the sequences you want to annotate and click on "Import selected

hits". This will import the InterProScan results and link them to the appropriate sequences

in the annotation pipeline.

10. Perform mapping: Once the BLAST results have been imported, you can use the Blast2GO

mapping tools to map your sequences to Gene Ontology (GO) terms (Figure 6). This

involves using the BLAST results to transfer functional annotations from similar sequences

to your own sequences.

Figure 6: Mapping.

163

11. Edit mappings: You can edit the mappings manually, by adding or removing GO terms, or

by changing the evidence codes. You can also remove or filter out low-confidence

mappings, based on various criteria such as the e-value, the similarity score, or the GO term

specificity.

12. Export mapping results: Once your sequences have been mapped, you can export the results

in a variety of formats, such as tab-delimited text files or FASTA files (Figure 7). These

results can be used for further analysis.

Figure 7: Mapping result.

13. Annotate sequences: Once the InterProScan results have been imported, you can use the

Blast2GO annotation tools to assign functional information to your sequences (Figure 8).

This may include mapping Gene Ontology (GO) terms, performing enrichment analysis,

and performing other types of functional analysis.

164

Figure 8: Annotate.

14. Export annotation results: Once your sequences have been annotated, you can export the

results in a variety of formats, such as tab-delimited text files or FASTA files. These results

can be used for further analysis, visualization, or sharing with collaborators.

165

Figure 9: Annotate result.

15. Generate Gene Ontology (GO) graph: To create a GO graph in Blast2GO, click on

"Graphs" in the main menu and select "GO Graph" (Figure 10). This will generate a

graphical representation of the GO terms assigned to your sequences, based on the

hierarchical structure of the Gene Ontology.

Figure 10. Generate GO graph.

16. Customize GO graph: You can customize the appearance of the GO graph by changing the

colors, font sizes, or layout. You can also filter the GO terms based on various criteria such

as the level in the hierarchy, the number of sequences assigned to the term, or the statistical

significance of the enrichment.

166

17. Analyze GO graph: Once you have generated a GO graph, you can use it to analyze the

functional annotations of your sequences. This can include identifying overrepresented or

underrepresented GO terms, comparing the GO profiles of different datasets or treatments,

or visualizing the relationships between different biological processes, molecular functions,

or cellular components (Figure 11).

Figure 11: GO graph.

18. Export GO graph: Once you have customized and analyzed your GO graph, you can export

it in a variety of formats, such as PNG, PDF, or SVG. These graphs can be used for

presentations, publications, or further analysis with other tools or software.

19. Perform pathway analysis: To perform pathway analysis in Blast2GO, you need to use the

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database. In the main menu,

click on "Annotation" and select "Pathway annotation". This will open the pathway

annotation dialog box (Figure 12).

Figure 12. Run Pathway Analysis.

167

20. Select pathway database: In the pathway annotation dialog box, select the "KEGG"

database and click on "Start". Blast2GO will download and install the latest version of the

KEGG database on your computer.

21. Run pathway analysis: Once the KEGG database is installed, you can use the Blast2GO

pathway analysis tools to identify the KEGG pathways that are enriched in your sequences.

This involves comparing the frequency of KEGG pathway terms in your sequences to the

frequency of these terms in a reference dataset, such as the entire KEGG database.

22. Filter and visualize pathways: Once the pathway analysis is complete, you can use the

Blast2GO pathway analysis tools to filter and visualize the enriched pathways. This can

involve setting statistical thresholds, such as the false discovery rate (FDR) or the p-value,

or selecting specific pathways based on their relevance to your research question.

23. Analyze pathways: Once you have identified the enriched pathways, you can use the

Blast2GO pathway analysis tools to analyze the functional annotations and gene products

associated with these pathways. This can include identifying the key enzymes or regulators,

comparing the pathway profiles of different datasets or treatments, or visualizing the

relationships between different metabolic or signaling pathways (Figure 13).

Figure 13. Pathway graph.

24. Export pathway data: Once you have customized and analyzed your pathway data, you can

export it in a variety of formats, such as Excel, CSV, or XML. These data can be used for

further analysis with other tools or software, or for visualizing and communicating the

results of your pathway analysis.

References

 Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., & Robles, M. (2005).

Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics

research. Bioinformatics, 21(18), 3674-3676.

168

 Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman,

D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic acids research, 25(17), 3389-3402.

 Finn, R. D., Clements, J., & Eddy, S. R. (2011). HMMER web server: interactive sequence

similarity searching. Nucleic acids research, 39(suppl_2), W29-W37.

 Zdobnov, E. M., & Apweiler, R. (2001). InterProScan–an integration platform for the

signature-recognition methods in InterPro. Bioinformatics, 17(9), 847-848.

169

Transcriptomic Data Analysis

Mohammad Samir Farooqi and Sudhir Srivastava

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Introduction

The advent of Next-Generation Sequencing (NGS) technology has transformed genomic

studies. One important application of NGS technology is the study of the transcriptome, which

is defined as the complete collection of all the RNA molecules in a cell. Various types of RNA

that have been classified so far are shown in Fig. 1. All of these molecules are called transcripts

since they are produced by process of transcription.

Fig. 1: Different types of RNA

(Image source: http://scienceblogs.com/digitalbio/2011/01/08/next-gene-sequencing)

Understanding the transcriptome is essential for interpreting the functional elements of the

genome and revealing the molecular constituents of cells and tissues, and also for

understanding development and disease [1]. The main purpose of transcriptomics are: to

catalogue all species of transcript, including mRNAs, non-coding RNAs and small RNAs; to

determine the transcriptional structure of genes, in terms of their start sites, 5′ and 3′ ends,

splicing patterns and other post-transcriptional modifications; and to quantify the changing

expression levels of each transcript during development and under different conditions.

The study of transcriptome is carried out through sequencing of RNAs. RNA sequencing (RNA-

Seq) is a powerful method for discovering, profiling, and quantifying RNA transcripts [2].

RNA-Seq uses NGS datasets to obtain sequence reads from millions of individual RNAs. The

RNA-Seq analysis is performed in several steps: First, all genes are extracted from the

reference genome (using annotations of type gene). Other annotations on the gene sequences

are preserved (e.g.CDS information about coding sequences etc). Next, all annotated transcripts

(using annotations of type mRNA) are extracted [3]. If there are several annotated splice

variants, they are all extracted. An example is shown in below Fig. 2(a).

170

Fig. 2(a): A simple gene with three exons and two splice variants.

The given example is a simple gene with three exons and two splice variants. The transcripts

are extracted as shown in Fig. 2(b).

Fig. 2(b): All the exon-exon junctions are joined in the extracted transcript.

Next, the reads are mapped against all the transcripts plus the entire gene [see Fig. 2(c)].

Fig. 2(c): The reference for mapping: all the exon-exon junctions and the gene.

(Image source: CLC Genomic workbench tutorials)

From this mapping, the reads are categorized and assigned to the genes and expression values

for each gene and each transcript are calculated and putative exons are then identified.

RNA Sequencing Experiment

In a standard RNA-seq experiment, a sample of RNA is converted to a library of

complementary DNA fragments and then sequenced on a high-throughput sequencing

platform, such as Illumina's Genome Analyzer, SOLiD or Roche 454 [4]. Millions of short

sequences, or reads, are obtained from this sequencing and then mapped to a reference genome

(Fig. 3). The count of reads mapped to a given gene measures the expression level of this gene.

The unmapped reads are usually discarded and mapped reads for each sample are assembled

into gene-level, exon-level or transcript-level expression summaries, depending on the

objectives of the experiment. The count of reads mapped to a given gene/exon/transcript

measures the expression level for this region of the genome or transcriptome.

One of the primary goals for most RNA-seq experiments is to compare the gene expression

levels across various treatments. A simple and common RNA-seq study involves two

treatments in a randomized complete design, for example, treated versus untreated cells, two

different tissues from an organism, plants, etc. In most of the studies, researchers are

particularly interested in detecting gene with differential expressions (DE). A gene is declared

differentially expressed if an observed difference or change in read counts between two

experimental conditions is statistically significant, i.e. if the difference is greater than what

171

would be expected just due to random variation [5]. Detecting DE genes can also be an

important pre-step for subsequent studies, such as clustering gene expression profiles or testing

gene set enrichments.

Fig. 3: General RNA-seq experiment. mRNA is converted to cDNA, and fragments from

that library are used to generate short sequence reads. Those reads are assembled into

contigs which may be mapped to reference sequences (Wang et al., 2009).

Analysing RNA-Seq data

RNA-seq experiments must be analyzed with robust, efficient and statistically correct

algorithms. Fortunately, the bioinformatics community has been striving hard at work for

incorporating mathematics, statistics and computer science for RNA-seq and building these

ideas into software tools. RNA-seq analysis tools generally fall into three categories: (i) those

for read alignment; (ii) those for transcript assembly or genome annotation; and (iii) those for

transcript and gene quantification. Some of the open source softwares available for RNA-seq

analysis are as follows:

• Data preprocessing

• Fastx toolkit

• Samtools

• Short reads aligners

• Bowtie, TOPHAT, Stampy, BWA, Novoalign, etc

172

• Expression studies

• Cufflinks package

• R packages (DESeq, edgeR, more…)

• Visualisation

• CummeRbund, IGV, Bedtools, UCSC Genome Browser, etc.

Besides there are commercially data analysis pipelines like GenomeQuest, CLCBio etc

available for researchers to use. The most commonly used pipeline is to identify protein coding

genes by aligning RNA-Seq data to annotate data from sources like RefSeq. After generating

the alignments, the number of aligning sequences is counted for each position. Since each

alignment represents a transcript, the alignments allow to count the number of RNA molecules

produced from every gene.

Using NGS technology, RNA-Seq enables to count the number of reads that align to one of

thousands of different cDNAs, producing results similar to those of gene expression

microarrays [6]. Sequences generated from an RNA-Seq experiment are usually mapped to

libraries of known exons in known transcripts. RNA-Seq can be used for discovery applications

such as identifying alternative splicing events, allele-specific expression, and rare and novel

transcripts [7]. The sequencing output files (compressed FASTQ files) are the input for

secondary analysis. Reads are aligned to an annotated reference genome, and those aligning to

exons, genes and splice junctions are counted. The final steps are data visualisation and

interpretation, consisting of calculating gene- and transcript-expression and reporting

differential expression. A general Bioinformatics workflow to map transcripts from RNA-seq

data is shown in Fig. 4.

Fig. 4: RNA-seq workflow (Adapted from Advancing RNA-Seq analysis Brian J.

Haas and Michael C. Zody Nature Biotechnology 28, 421-423 (2010)

173

RPKM (Reads per KB per million reads)

RNA-Seq provides quantitative approximations of the abundance of target transcripts in the

form of counts. However, these counts must be normalized to remove technical biases inherent

in the preparation steps for RNA-Seq, in particular the length of the RNA species and the

sequencing depth of a sample. The most commonly used is RPKM (Reads Per Kilobase of

exon model per Million mapped reads). The RPKM measure of read density reflects the molar

concentration of a transcript in the starting sample by normalizing for RNA length and for the

total read number in the measurement [8]. RPKM is mathematically represented as:

RPKM =
𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑜𝑛 𝑟𝑒𝑎𝑑𝑠

𝑚𝑎𝑝𝑝𝑒𝑑 𝑟𝑒𝑎𝑑𝑠 (𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠) X 𝑒𝑥𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ (𝐾𝐵)

Total exon reads

This is the number of reads that have been mapped to a region in which an exon is annotated

for the gene or across the boundaries of two exons or an intron and an exon for an annotated

transcript of the gene. For eukaryotes, exons and their internal relationships are defined by

annotations of type mRNA.

Exon length

This is calculated as the sum of the lengths of all exons annotated for the gene. Each exon is

included only once in this sum, even if it is present in more annotated transcripts for the gene.

Partly overlapping exons will count with their full length, even though they share the same

region.

Mapped reads

The total gene reads for a gene is the total number of reads that after mapping have been

mapped to the region of the gene. A gene's region is that comprised of the flanking regions, the

exons, the introns and across exon-exon boundaries of all transcripts annotated for the gene.

Thus, the sum of the total gene reads numbers is the number of mapped reads for the sample.

Applications of RNA-seq

This technique can be used to:

 Measure gene expression

 Transcriptome assembly, gene discovery and annotation

 Detect differential transcript abundances between tissues, developmental stages,

genetic backgrounds, and environmental conditions

 Characterize alternative splicing, alternative polyadenylation, and alternative

transcription.

Future Directions

Although RNA-Seq is still in the infancy stages of use, it has clear advantages over previously

developed transcriptomic methods. Compared with microarray, which has been the dominant

approach of studying gene expression in the last two decades, RNA-seq technology has a wider

measurable range of expression levels, less noise, higher throughput, and more information to

detect allele-specific expression, novel promoters, and isoforms [9]. For these reasons, RNA-

seq is gradually replacing the array-based approach as the major platform in gene expression

studies. The next big challenge for RNA-Seq is to target more complex transcriptomes to

174

identify and track the expression changes of rare RNA isoforms from all genes. Technologies

that will advance achievement of this goal are pair-end sequencing, strand-specific sequencing

and the use of longer reads to increase coverage and depth. As the cost of sequencing continues

to fall, RNA-Seq is expected to replace microarrays for many applications that involve

determining the structure and dynamics of the transcriptome.

References

 https://www.genome.gov/13014330

 Wang Z., Gerstein M., Synder M. (2009). Rna-seq: a revolutionary tool for transciptomics,

Nat Rev Genet 10(1): 57–63.

 http://scienceblogs.com/digitalbio/2011/01/08/next-gene-sequencing-results-a/

 Shendure J, Ji H (2008) Next-generation RNA sequencing. Nature Biotechnology 26: 2514-

2521

 Anders S, Huber W (2010). Differential expression analysis for sequence count data.

Genome Biol. 11:R106.

Illumina, Inc,. (2011). Getting started with RNA-Seq Data Analysis. Pub. No. 470-2011-

003.

 Illumina, Inc,. (2011). RNA-Seq Data Comparison with Gene Expression Microarrays. A

cross-platform comparison of differential gene expression analysis. Pub. No. 470-2011-

004

 Yaqing Si (2012). Statistical analysis of RNA-seq data from next-generation sequencing

technology. PhD thesis. Iowa State University, Ames, Iowa.

 Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping

and quantifying mammalian transcriptomes by rna-seq. Nat Methods, 5(7):621-628.

 Wang L., Si Y., Dedow L.K., Shao Y., Liu P., Brutnell T.P. (2010). A low-cost library

construction protocol and data analysis pipeline for Illumina-based strand-specific multiplex

RNA-seq. PLoS One 6(10):e26426.

 Brian J. H. and Michael C. Z. (2010). Advancing RNA-Seq analysis Nature Biotechnology

28, 421-423.

175

Hands-on Session for Transcriptomic Data Analysis

Soumya Sharma and Ritwika Das

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Identification of differentially expressed genes from the RNA-Seq data is an important area of

bioinformatics data analysis. There are several packages available in R to carry out the

differential gene expression analysis, like DESeq2 (Love et al., 2014), edgeR (Robinson et al.,

2010), limma (Smyth et al., 2005) etc. After preprocessing and quantification of reads in RNA-

Seq data, we get a matrix of read counts of each gene in every sample. Then we can use the

“DESeq2” package to identify differentially expressed genes. Here, we demonstrate the

differential gene expression analysis with R using a sample dataset available in the R package

airway (Himes et al., 2014) in following steps.

i) Download the sample dataset from the “airway” package. The package contains 2 data files.

One file contains read counts of 64102 genes in 8 samples obtained from the RNA-Seq

experiment on 4 primary human airway smooth muscle cell lines treated with 1 micromolar

dexamethasone for 18 hours. Another file contains sample-wise metadata information, viz.,

treated or untreated. Import the count matrix and metadata file into RStudio.

R code to collect sample dataset from “airway” package:

installing Bioconductor packages

if (!requireNamespace("BiocManager", quietly=TRUE))

install.packages("BiocManager")

BiocManager::install("airway")

library(airway)

data(airway)

airway

sample_info <- as.data.frame(colData(airway))

sample_info <- sample_info[,c(2,3)]

sample_info$dex <- gsub('trt', 'treated', sample_info$dex)

sample_info$dex <- gsub('untrt', 'untreated', sample_info$dex)

names(sample_info) <- c('cellLine', 'dexamethasone')

Get the samplewise metadata file

write.table(sample_info, file = "/sample_info.csv", sep = ',', col.names = T, row.names = T,

quote = F)

Get the matrix of read counts for each gene in every sample

countsData <- assay(airway)

write.table(countsData, file = "/counts_data.csv", sep = ',', col.names = T, row.names = T,

quote = F)

ii) Then we have to load the package “DESeq2” to perform the subsequent differential gene

expression analysis. We have to create a DESeqDataSet object and then run the ‘DESeq()’

function to perform the said analysis.

176

Differential gene expression analysis using the “DESeq2” package in R

BiocManager::install("DESeq2")

library(DESeq2)

read in counts data

counts_data <- read.csv('/counts_data.csv')

read in sample info

colData <- read.csv('/sample_info.csv')

making sure the row names in colData matches to column names in counts_data

all(colnames(counts_data) %in% rownames(colData))

are they in the same order?

all(colnames(counts_data) == rownames(colData))

dds <- DESeqDataSetFromMatrix(countData = counts_data, colData = colData, design = ~

dexamethasone)

dds

#pre-filtering: removing rows with low gene counts

keeping rows that have at least 10 reads total

keep <- rowSums(counts(dds)) >= 10

dds <- dds[keep,]

set the factor level

dds$dexamethasone <- relevel(dds$dexamethasone, ref = "untreated")

--------Run DESeq ----------------------

dds <- DESeq(dds)

res <- results(dds)

res

summary(res)

res0.01 <- results(dds, alpha = 0.01) # When padj = 0.01

summary(res0.01)

Here, we are trying to find the genes which are differentially expressed in Dexamethasone

treated conditions as compared to untreated conditions. Hence, the reference level is set as

‘untreated’. After the analysis, the result contains base means, log2FoldChange values, p-

values, adjusted p-values, etc. for each gene. If at 1% level, the adjusted p-value for a gene is

found as > 0.01, it means the result has been obtained purely by chance, i.e., a non-significant

result. Otherwise, that gene is differentially expressed if the adjusted p-value is < 0.01. In the

latter case, if the log2FoldChange value is > 0, the gene is upregulated and if it is < 0, then that

gene is downregulated. Thus, we can find out differentially expressed genes using R.

iii) Visualization of differentially expressed genes in R. After identifying differentially expressed

genes, we can visualize the result in terms of various plots such as MA plot, volcano plot,

heatmap, etc. Several R packages are available to develop these plots. MA plot can be generated

using the ‘plotMA()’ function. We can use the “ggplot2” package to develop volcano plot.

Similarly, R package “heatmap2”, “pheatmap” etc. are useful to create heatmaps. MA plot

(fig 1), volcano plot (fig 2) and heatmap (fig 3) created from the result of the previous analysis.

177

R code to visualize the result of differential gene expression analysis

MA plot

plotMA(res)

Volcano plot

library(ggplot2)

library(tidyverse)

df<-as.data.frame(res)

df$diffexpressed <- "non-significant"

if log2Foldchange > 0 and padj < 0.01, set as "UP"

df$diffexpressed[df$log2FoldChange > 0 & df$padj < 0.01] <- "UP"

if log2Foldchange < 0 and padj < 0.01, set as "DOWN"

df$diffexpressed[df$log2FoldChange < 0 & df$padj < 0.01] <- "DOWN"

ggplot(df, aes(log2FoldChange, -log10(padj), col=

diffexpressed))+geom_point()+scale_color_manual(values = c("red", "black", "green"))

Developing Heatmap of first 10 genes for better demonstration

library(pheatmap)

library(RColorBrewer)

breaksList = seq(-0.4, 0.5, by = 0.04)

rowLabel = row.names(counts_data[1:10,])

pheatmap(df$log2FoldChange[1:10], color = colorRampPalette(c("dark blue", "white",

"yellow"))(25), breaks = breaksList, border_color = "black", cellheight = 25, cellwidth = 25,

cluster_rows = F,cluster_cols = F, fontsize = 12, labels_row = rowLabel)

Fig 1: MA plot showing significantly upregulated and downregulated genes as blue dots.

178

Fig 2: Volcano plot representing upregulated genes as green, downregulated genes as red and

non-significant genes as black dots.

Fig 3: Heatmap representing the expression levels of first 10 genes in terms of

log2FoldChange values in a scale of -0.4 to 0.4 where, blue colour represents downregulated

genes, yellow represents upregulated genes and expression levels of remaining genes are

represented by gradation of colour between blue and yellow.

References

 Himes, B. E., Jiang, X., Wagner, P., Hu, R., Wang, Q., Klanderman, B., & Lu, Q. (2014).

RNA-Seq transcriptome profiling identifies CRISPLD2 as a glucocorticoid responsive gene

that modulates cytokine function in airway smooth muscle cells. PloS one, 9(6), e99625.

 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. Genome biology, 15(12), 1-21.

 Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package

for differential expression analysis of digital gene expression data. bioinformatics, 26(1),

139-140.

 Smyth, G. K. (2005). Limma: linear models for microarray data. Bioinformatics and

computational biology solutions using R and Bioconductor, 397-420.

179

Genomic Selection

Neeraj Budhlakoti, Anil Rai and D C Mishra

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Abstract

Since the inception of the theory and conceptual framework of genomic selection (GS),

extensive research has been done on evaluating its efficiency for utilization in crop

improvement. Though marker-assisted selection has proven its potential for improvement of

qualitative traits that are controlled by one to few genes with large effects, its role in improving

quantitative traits that are controlled by several genes with small effects is limited. In this

regard, GS that utilizes genomic-estimated breeding values of individuals obtained from

genome-wide markers to choose candidates for the next breeding cycle is a powerful approach

to improve quantitative traits. In the past 20 years, GS has been widely adopted in animal

breeding programs globally because of its potential to improve selection accuracy, minimize

phenotyping, reduce cycle time and increase genetic gains. Improved statistical models that

leverage the genomic information to increase the prediction accuracies are critical for the

effectiveness of GS-enabled breeding programs.

Keywords: GEBVs, GS, LD, MAS, QTL, SNP.

Introduction

As it is known earlier selection based on phenotypic data has been successfully used in past.

As abundance of DNA and marker data, trend slightly shifted to marker assisted selection

(MAS). MAS is an indirect selection process where a trait of interest is selected, not based on

the trait itself, but on a marker linked to it. MAS has been shown to be efficient and effective

for traits that are associated with one or a few major genes with large effect but does not

perform as well when it is used for selection of polygenic traits (Bernardo 2008).As most

economic traits are influenced by many genes, tracking a small number of these through DNA

markers will only explain a small proportion of the genetic variance. In addition, individual

genes are likely to have small effects and so a large amount of data is needed to accurately

estimate their effects. To overcome these difficulties, Meuwissen et al. (2001) proposed a

variant of MAS that they called genomic selection. The key features of this method are that

markers covering the whole genome are used so that potentially all the genetic variance is

explained by the markers and the markers are assumed to be in linkage disequilibrium (LD)

with the Quantitative trait loci (QTL), so that the number of effects per QTL to be estimated is

small.

Any successful GS program, starts with forming a training population in such a way that

individuals/lines/variety are genotyped for genomic markers distributed over entire genome

and should be representative of whole population. The training individuals are further subjected

to extensive phenotyping for underlying trait of interest. The information of individual

genotype and phenotype is used for identification and building of suitable statistical model

using phenotype as a response and genotype as independent variable whereas part of training

data can also be used for validation of fitted model. Genomic Estimated Breeding Values

(GEBVs) of the individuals of the breeding population (where only information of genotyped

individuals is available with no phenotypic records) is being calculated using their genotyped

180

information where marker effect are estimated from developed model. Ultimately

individuals/line/variety from the breeding population can be selected based on superiority of

their estimated value of GEBVs.

Fig. 1: Basic schema of genomic selection process

The major limitation to the implementation of genomic selection has been the large number of

markers required and the cost of genotyping these markers are very high. Recently both these

limitations have been overcome in most livestock and plant species following the sequencing

of the livestock genomes, the subsequent availability of hundreds of thousands of single

nucleotide polymorphisms (SNP), and dramatic improvements in development of SNP

genotyping technology. Various regression methods have been developed for predicting

phenotype. Methods are based on analysis of data consist of genotype and phenotype

information. These methods are primarily based on linear models, which are easy to interpret

and able to fit to the data without over fitting. However, the relationship between breeding

value and genetic markers is likely to be more complex than a simple linear relationship,

particularly when large numbers of SNPs are fitted simultaneously in the model. To answer

these issues, model-free or so-called nonparametric methods which side-step linearity and

require lesser genetic assumptions have gained more attention (Gianola et al, 2006).

Statistical model for Genomic Selection

Process of selecting the suitable individuals in GS starts with a simple linear model sometime

also called as least squares regression or ordinary least squares regression (OLS).

181

𝑌 = 1𝑛µ + 𝑋𝛽 + 𝜀

where, Y = 𝑛 × 1 vector of observations; µ is the mean; 𝜷 = 𝑝 × 1 vector of marker

effects; 𝜀 = 𝑛 × 1 vector of random residual effects; 𝑿 = design matrix of order

𝑛 × 𝑝 (where each row represents the genotype/individuals/lines (n) and column corresponds

to marker (p)), 𝜀~𝑁(0, 𝜎𝑒
2).

One major problem in linear models using several thousands of genome-wide markers is that

number of markers (p) exceed the number of observations (n) i.e. genotype/individuals/lines

and this creates the problem of over-parameterization (large ‘p’ and small ‘n’ problem (p>>n)).

Using a subset of the significant markers can be an alternative for dealing with large ‘p’ and

small ‘n’ problem. Meuwissen et al. (2001) used a modification of the least squares regression

for GS. They performed least squares regression analysis on each maker separately with

following model

𝑌 = 𝑋𝑗𝛽𝑗 + 𝜀

where,

𝑋𝑗 = 𝑗𝑡ℎcolumn of the design matrix of marker

𝛽𝑗 = genetic effect of 𝑗𝑡ℎ marker

Marker with significant effects are selected using the log likelihood of this model and those are

further used for estimation of breeding values. However, it has to be noted that some crucial or

key information may be lost by selection based on subset of markers.

Hence, an efficient solution for the over-parameterization problem in linear models is using

ridge regression (RR), which is a penalized regression-based approach (Meuwissen et al.,

2001). It also solves the problems of multicollinearity at the same time (i.e. correlated

predictors e.g. SNP or markers). RR shrinks the coefficients of correlated predictors equally

towards zero and solves the regression problem using ℓ2 penalized least squares. Here, the goal

is to derive an estimator of parameter 𝛽 with smaller variance than the least square estimator.

Similar to RR, least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996; Usai

et al., 2009) is other variant of penalized regression, which uses the ℓ1 penalized least squares

criterion to obtain a sparse solution. LASSO sometime may not work well highly correlated

predictors (e.g. SNPs in high linkage disequilibrium) (Ogutu et al., 2012). The elastic net

(ENET) is an extension of the lasso that is robust to extreme correlations among the predictors

(Friedman et al., 2010) and it is a compromise between ℓ1 penalty (lasso) and ℓ2 penalty (ridge

regression) (Zou and Hastie, 2005).

The RR model considers that each marker contribute to equal variance, which is not the case

for all traits. Therefore, the variance of the markers based on the trait genetic architecture has

to be modeled. For this purpose, several Bayesian models have been proposed where it is

assumed that there is some prior distribution of marker effects. Further, inferences about model

parameters are obtained on the basis of posterior distributions of the marker effects. There are

several variants of Bayesian models for genomic prediction such as Bayes A, Bayes B, Bayes

182

Cπ and Bayes Dπ (Meuwissen et al., 2001; Habier et al., 2011) and other derivatives e.g.

Bayesian LASSO, Bayesian ridge regression (BRR). Besides the marker-based models, the

best linear unbiased prediction (BLUP), is one of the most commonly used genomic prediction

method. There are many variants of BLUP available for this purpose e.g. genomic BLUP

(GBLUP), single-step GBLUP (ssGBLUP), ridge regression BLUP (RRBLUP), GBLUP with

linear ridge kernel regression (rrGBLUP), of which is GBLUP is very frequently used. While

the BLUP has been used in other plant and animal breeding studies traditionally for various

purposes (Henderson et al., 1959), the GBLUP uses the genomic relationships calculated using

markers instead of the conventional pedigree-based BLUP which uses the pedigree

relationships to obtain the GEBVs of the lines or individuals (Meuwissen et al., 2001).

The genomic prediction models discussed so far perform well for traits with additive genetic

architecture but their performance becomes very poor in case of epistatic genetic architectures.

Hence, Gianola et al. (2006) first used nonparametric and semiparametric methods for

modeling complex genetic architecture. Subsequently, several statistical methods were

implemented to model both main and epistatic effects for genomic selection (Xu, 2007; Cai et

al., 2011; Legarra and Reverter, 2018). There are several nonparametric methods have been

studied in relation to genomic selection e.g. NW (Nadaraya-Watson) estimator (Gianola et al.,

2006), RKHS (Reproductive Kernel Hilbert Space) (Gianola et al., 2006), SVM (support vector

machine) (Maenhout et al., 2007; Long et al., 2011), ANN (Artificial Neural Network)

(Gianola et al., 2011) and RF (Random Forest) (Holliday et al., 2012) among them

nonparametric methods SVM, NN and RF are based on machine learning approach.

Methods discussed earlier in this section are based on genomic information where information

is available for single-trait i.e. single-trait genomic selection (STGS). As performance of STGS

based methods may be affected significantly in case of pleiotropy i.e., one gene linked to

multiple traits. A mutation in a pleiotropic gene may have an effect on several traits

simultaneously. It was also observed that low heritability traits can borrow information from

correlated traits and consequently achieve higher prediction accuracy can be achieved. Also

STGS based methods considers the information of each trait independently. Hence we may

lose crucial information which may ultimately result in poor genomic prediction accuracy.

Now-a-days we are also getting data on multiple traits, so multi-trait genomic selection

(MTGS) based methods may provide more accurate GEBVs and subsequently the higher

prediction accuracy. Several MTGS based methods have been studied in relation to GS e.g.

Multivariate mixed model approach (Jia and Jannink, 2012; Klápště et al., 2020), Bayesian

multi-trait model (Jia and Jannink, 2012; Cheng et al., 2018), MRCE (Multivariate Regression

with Covariance Estimation)(Rothman et al., 2010), cGGM (conditional Gaussian Graphical

Models) (Chiquet et al., 2017). Jia et al. (2012) presented three multivariate linear models (i.e.,

GBLUP, Bayes A, and Bayes Cπ) and compared them to uni-variate models and a detailed

comparison of various STGS and MTGS based methods has also been studied by Budhlakoti

et al. (2019). A brief structure of different STGS and MTGS based methods used in GS studies

are given in Fig. 2.

183

Fig. 2: Overall summary of the most commonly used models in Genomic Selection

Tools and packages to implement Genomic Selection

Several tools and packages have been developed for the evaluation of genomic prediction and

implementation of GS, some of which are discussed below.

Tools/Package

s

Description URL Reference

GMStool It is a genome-wide association

study (GWAS)-based tool for

genomic prediction using genome-

wide marker data

https://github.com/

JaeYoonKim72/GM

Stool

Jeong et al.

(2020)

rrBLUP R package based on BLUP models

its and other derivatives

https://CRAN.R-

project.org/

package=rrBLUP

Endelman,

(2011)

BWGS It has a wide choice of totally 15

parametric and nonparametric

statistical models for estimation of

GEBV for selection candidates.

https://CRAN.R-

project.org/package

=BWGS

Charmet

et al.

(2020)

BGLR This package is an extension of the

BLR package (Perezand Campos,

https://CRAN.R-

project.org/package

=BGLR

Perez

184

2014) and can be used to implement

several Bayesian models
and

Campos,

(2014)

GenSel Used for estimation of molecular

marker–based breeding values of

animals for trait under evaluation

https://github.com/

austin-putz/GenSel

Fernando

and

Garrick,

(2009)

lme4GS This package can be used for fitting

mixed models with covariance

structures with user defined

parameter

https://github.com/p

erpdgo/lme4GS

Caamal-Pat

et al.

(2021)

GSelection Package comprises of a set of

functions to select the important

markers and estimates the GEBV of

selection candidates using an

integrated model framework

https://

CRAN.R-

project.org/package

=GSelection

Majumdar

et al.

(2019)

STGS It is a comprehensive package which

gives a single-step solution for

genomic selection based on most

commonly used statistical methods

(i.e., RR, BLUP, LASSO, SVM,

ANN, and RF).

https://CRAN.Rproj

ect.

org/package=STGS

Budhlakoti

et al.

(2019a)

MTGS MTGS is a comprehensive package

which gives a single-step solution

for genomic selection using various

MTGS-based methods (MRCE,

MLASSO, i.e., multivariate

LASSO, and KMLASSO, i.e.,

kernelized multivariate LASSO).

https://CRAN.R-

project.org/

package=MTGS

Budhlakoti

et al.

(2019)

Issues and challenges in genomic selection

Genomic selection is a powerful tool for plant and animal breeding, but it also presents a

number of challenges and issues. Some of the key challenges and issues in genomic selection

include:

1. Data quality and quantity: Genomic selection requires large amounts of high-quality

genomic data. However, obtaining this data can be challenging, especially in species

with complex genomes or limited genomic resources.

2. Genetic diversity: Genomic selection works best when there is a large amount of genetic

diversity in the population. However, in some species, there may be limited genetic

diversity, which can limit the effectiveness of genomic selection.

3. Phenotyping: In order to train genomic selection models, accurate and consistent

phenotypic data is required. However, phenotyping can be time-consuming, expensive,

and difficult to standardize.

185

4. Trait heritability: The effectiveness of genomic selection depends on the heritability of

the trait being selected. Some traits may have low heritability, making it difficult to

accurately predict their values using genomic data.

5. Statistical model used: The choice of statistical model used in genomic selection is

important because it can impact the accuracy of the predictions and the efficiency of

the analysis. Some of the key concerns related to the type of statistical model used in

genomic selection include:

i. Overfitting: Overfitting can occur when a model is too complex for the data,

leading to high accuracy in the training set but poor performance on new data.

This can be a concern in genomic selection, particularly when using models

with a large number of parameters or when the sample size is small.

ii. Model assumptions: Different statistical models have different assumptions

about the data, and violating these assumptions can lead to biased or inaccurate

predictions. For example, linear regression assumes that the residuals are

normally distributed and homoscedastic, and violating these assumptions can

lead to poor performance.

iii. Scalability: Some statistical models are computationally intensive and may not

be feasible for very large datasets. This can be a concern in genomic selection,

particularly as the amount of genomic data continues to grow.

iv. Interpretability: Some statistical models are more interpretable than others,

which can be important for understanding the biological basis of the trait being

predicted. For example, linear regression models can provide insight into which

genomic regions are associated with the trait, while more complex models may

be more difficult to interpret.

v. Incorporation of external information: Some statistical models can incorporate

external information, such as gene annotation or pathway information, to

improve predictions. However, the quality and relevance of this external

information can impact the performance of the model.

6. Integration with traditional breeding: Genomic selection is most effective when it is

integrated with traditional breeding methods. However, this can be challenging,

especially in species with long breeding cycles or complex genetic architectures.

Conclusion and perspectives

Genomic selection has improved genetic gains in plant and animal breeding research over the

past two decades. Advances in cheaper next-generation sequencing technologies have resulted

in the availability of high-density SNP genotyping chips and completely sequenced crop and

animal genomes, boosting the predictive ability of a genomic selection model. However, there

is still scope for improvement in the methodology of genomic selection, such as imputation of

missing genotypic value and implementation of GxE interaction, to successfully implement it

in breeding programs. Regular updating of the training set and evaluation under controlled

conditions is necessary for better performance. To achieve fruitful outcomes, a structured

program is needed that includes human resource development, advanced data recording

methodologies, and trait phenotyping.

186

Reference

 Bernardo, R. (2008). Molecular markers and selection for complex traits in plants: Learning

from the last 20 years. Crop Science 48, 1649–1664. doi:10.2135/CROPSCI2008.03.0131.

 Budhlakoti, N., Mishra, D. C., Rai, A., Lal, S. B., Chaturvedi, K. K., and Kumar, R. R.

(2019). A Comparative Study of Single-Trait and Multi-Trait Genomic Selection. Journal

of Computational Biology 26, 1100–1112. doi:10.1089/CMB.2019.0032.

 Budhlakoti, N, Mishra, D. C., Rai, A. and Chaturvedi, K.K. (2019a) Package ‘STGS’, 1-11.

 Budhlakoti, N., Mishra, D. C., and Rai, A. (2019b). Package ‘MTGS’, 1–6.

 Caamal-Pat, D., Pérez-Rodríguez, P., Crossa, J., Velasco-Cruz, C., Pérez-Elizalde, S., and

Vázquez-Peña, M. (2021). lme4GS: An R-Package for Genomic Selection. Frontiers in

Genetics 12, 982. doi:10.3389/FGENE.2021.680569/BIBTEX.

 Cai, X., Huang, A., and Xu, S. (2011). Fast empirical Bayesian LASSO for multiple

quantitative trait locus mapping. BMC Bioinformatics 12, 1–13. doi:10.1186/1471-2105-

12-211/FIGURES/5.

 Charmet, G., Tran, L. G., Auzanneau, J., Rincent, R., and Bouchet, S. (2020). BWGS: A R

package for genomic selection and its application to a wheat breeding programme. PLOS

ONE 15, e0222733. doi:10.1371/JOURNAL.PONE.0222733.

 Cheng, H., Kizilkaya, K., Zeng, J., Garrick, D., and Fernando, R. (2018). Genomic

prediction from multiple-trait Bayesian regression methods using mixture priors. Genetics

209, 89–103. doi:10.1534/GENETICS.118.300650/-/DC1.

 Chiquet, J., Mary-Huard, T., St´, S., and Robin, S. (2017). Structured regularization for

conditional Gaussian graphical models. Statistics and Computing 27, 789-804.

 Endelman, J. B. (2011). Ridge Regression and Other Kernels for Genomic Selection with R

Package rrBLUP. The Plant Genome 4, 250–255.

doi:10.3835/PLANTGENOME2011.08.0024.

 Fernando, R. and Garrick, D. (2009). GenSel- User Manual for a portfolio of

Genomic Selection related Analyses.

(http://taurus.ansci.iastate.edu/Site/Welcome_files/GenSel%20 Manual%20v2.pdf)

 Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized

Linear Models via Coordinate Descent. Regularization Paths for Generalized Linear Models

via Coordinate Descent. Journal of statistical software 33, 1.

 Gianola, D., Fernando, R. L., and Stella, A. (2006). Genomic-Assisted Prediction of Genetic

Value With Semiparametric Procedures. Genetics 173, 1761.

doi:10.1534/GENETICS.105.049510.

 Gianola, D., Okut, H., Weigel, K. A., and Rosa, G. J. M. (2011). Predicting complex

quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat.

BMC Genet. 12, 87. doi:10.1186/1471-2156-12-87.

 Habier, D., Fernando, R. L., Kizilkaya, K., and Garrick, D. J. (2011). Extension of the

bayesian alphabet for genomic selection. BMC Bioinformatics 12, 1–12. doi:10.1186/1471-

2105-12-186/FIGURES/2.

 Henderson, C. R., Kempthorne, O., Searle, S. R. and von Krosigk, C. M. (1959). The

estimation of environmental and genetic trends from records subject to culling. Biometrics,

15: 192.

187

 Holliday, J. A., Wang, T., and Aitken, S. (2012). Predicting Adaptive Phenotypes From

Multilocus Genotypes in Sitka Spruce (Picea sitchensis) Using Random Forest.

doi:10.1534/g3.112.002733.

 Jeong, S., Kim, J. Y., and Kim, N. (2020). GMStool: GWAS-based marker selection tool

for genomic prediction from genomic data. Scientific Reports 10, 1–12.

doi:10.1038/s41598-020-76759-y.

 Jia, Y., and Jannink, J. L. (2012). Multiple-Trait Genomic Selection Methods Increase

Genetic Value Prediction Accuracy. Genetics 192, 1513.

doi:10.1534/GENETICS.112.144246.

 Klápště, J., Dungey, H. S., Telfer, E. J., Suontama, M., Graham, N. J., Li, Y., et al. (2020).

Marker Selection in Multivariate Genomic Prediction Improves Accuracy of Low

Heritability Traits. Front. Genet. 11, 499094. doi:10.3389/FGENE.2020.499094/FULL.

 Legarra, A., and Reverter, A. (2018). Semi-parametric estimates of population accuracy and

bias of predictions of breeding values and future phenotypes using the LR method 01

Mathematical Sciences 0104 Statistics. Genetics Selection Evolution 50, 1–18.

doi:10.1186/S12711-018-0426-6/FIGURES/3.

 Long, N., Gianola, D., Rosa, G. J. M., and Weigel, K. A. (2011). Application of support

vector regression to genome-assisted prediction of quantitative traits. Theor. Appl. Genet.

123, 1065–1074. doi:10.1007/S00122-011-1648-Y.

 Maenhout, S., De Baets, B., Haesaert, G., and Van Bockstaele, E. (2007). Support vector

machine regression for the prediction of maize hybrid performance. Theor. Appl. Genet.

115, 1003–1013. doi:10.1007/s00122-007-0627-9.

 Majumdar, S. G., Rai, A., and Mishra, D. C. (2019). Package ‘GSelection’, 1–14.Available

at: https://rdrr.io/cran/GSelection/man/GSelection-package.html.

 Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E. (2001). Prediction of total genetic

value using genome-wide dense marker maps. Genetics 157, 1819–1829.

doi:10.1093/GENETICS/157.4.1819.

 Ogutu, J. O., Schulz-Streeck, T., and Piepho, H. P. (2012). Genomic selection using

regularized linear regression models: ridge regression, lasso, elastic net and their extensions.

BMC Proc. 6, S10. doi:10.1186/1753-6561-6-S2-S10.

 Perez, P., and Campos, G. (2014). BGLR : A Statistical Package for Whole Genome

Regression and Prediction. Genetics 198, 483–495.

 Rothman, A. J., Levina, E., and Zhu, J. (2010). Sparse Multivariate Regression With

Covariance Estimation. J. Comput. Graph. Stat. 19, 947. doi:10.1198/JCGS.2010.09188.

 Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of Royal

Statistical Society, 58: 267–288.

 Usai, M. G., Goddard, M. E., and Hayes, B. J. (2009). LASSO with cross-validation for

genomic selection. Genet. Res. (Camb). 91, 427–436. doi:10.1017/S0016672309990334.

 Xu, S. (2007). An Empirical Bayes Method for Estimating Epistatic Effects of Quantitative

Trait Loci. Biometrics 63, 513–521. doi:10.1111/J.1541-0420.2006.00711.X.

 Zou, H., and Hastie, T. (2005). Regularization and variable selection via the elastic net. J.

R. Stat. Soc. B 67, 301–320.

188

Genome-Wide Association Studies

Soumya Sharma

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Genome-wide association study (GWAS) is a research strategy to find genetic variations that

are statistically linked to a disease or a particular trait. The approach involves scanning the

genomes of a large number of individuals in search of genetic variants that are more prevalent

in persons with a particular disease or trait than in people without the disease or trait. These

genomic variants are often utilised to look for neighbouring variants that are directly

responsible for the disease or trait once they have been found.

Linkage disequilibrium (LD) between the markers being studied and the functional

polymorphisms of the causal genes is the basis for GWAS. On the chromosome, loci that are

physically close to one another are separated by recombination less frequently than loci that

are farther apart. Gametic-phase disequilibrium, often known as LD, is the nonrandom

connection of alleles at two loci. The SNPs close to the causal locus may have strong LD with

the functional polymorphisms and hence be linked to the desired trait. These relationships are

discovered through genome-wide association studies, which also highlight the genomic areas

that contain the significant SNPs and the relevant genes.

Genome-wide association study (GWAS) attempts to predict association of specific traits

(phenotype) with genetic variants (genotype) by statistical analysis at population level.

Phenotypic information can be obtained by systematically measuring the phenotype (physical

and physiological traits) that can be influenced by various genetic and environmental factors.

Individual genotyping is usually done with microarrays for common variations or next-

generation sequencing technologies like WES or WGS for rare variants. Due to the current

expense of next-generation sequencing, microarray-based genotyping is the most frequently

used approach for retrieving genotypes for GWAS. However resequencing the entire genome

has the ability to uncover almost all genetic variations. This genotypic information along with

phenotypic data can be analysed to identify the genetic markers (SNPs, SSRs etc.), QTLs or

candidate genes associated with a specific trait.

The input files for GWA studies usually include the genotype file i.e., marker information and

the phenotype file i.e., trait information and also coded family relations between individuals.

Following the data input, producing reliable GWAS results requires meticulous quality control.

Testing for associations.

The biometrical model underpins the genetic association theory. Depending on whether the

phenotype is continuous (such as plant height, grain yield etc.) or binary (such as the presence

or absence of disease), linear or logistic regression models are typically employed in GWAS

to test for associations. To account for stratification and eliminate confounding effects from

demographic characteristics, covariates such as age, sex, and ancestry are added, with the

caveat that this may impair statistical power for binary traits in ascertained samples. Adding an

additional individual-specific random effect term to linear or logistic mixed models to account

for genetic relatedness among individuals might improve statistical power for genome

discovery and boost control for stratification at the expense of increased complexity. Adding

an additional individual-specific random effect term to linear or logistic mixed models to

189

account for genetic relatedness between people might boost statistical power for genome

discovery and increase control for stratification at the cost of more processing resources. When

doing a GWAS, it's important to remember that genotypes of genetic variants that are

physically close together aren't independent because they are in linkage disequilibrium; this

test dependency should be taken into account as well.

The following equation depicts the linear regression model for testing the association between

a marker and a trait:

𝑌~𝑋𝛼 + 𝑍𝑠𝛽𝑠 + 𝑒

𝑒~𝑁(0, 𝜎𝑒
2𝐼)

where, for each individual, Y is a vector of phenotype values, X is a matrix assigning records

to phenotypes fixed effect, α is a corresponding vector of fixed effects sizes (e.g., the mean,

population structure effects, and age), 𝑍𝑠 is a vector of genotype values for all individuals at

genetic variations, 𝛽𝑠 is the corresponding fixed effect size of genetic variants, 𝜎𝑒
2 measures

residual variance and I is an identity matrix.

The underlying assumption is that if the marker will have effect on trait only if it is in linkage

disequilibrium with an unseen QTL. The null hypothesis for the study asserts that marker has

no effect on the trait, while the alternative hypothesis states that it does have an effect on the

trait (as it is in LD with a QTL). If F > 𝐹𝛼;1;2 where F is the F statistic obtained from the data

and 𝐹𝛼;1;2 is the value from a F distribution at  level of significance and 1, 2 degrees of

freedom, the null hypothesis is rejected.

There are numerous statistical models to find associations between marker loci and a variety

of traits, ranging from simple to highly complex. Accurate decoding of complex traits in

diverse population requires more comprehensive statistical models which takes care of false

positives arising from family relatedness and population structure, at the same time also keeps

in check the number of false negatives due to over correction. Confounding effects due to

population structure and kinship among individuals is taken into account by using these

covariates in the statistical model. STRUCTURE (Pritchard et al., 2000), PCA (Price et al.,

2006), and a discriminant analysis of principal components (DAPC) (Jombart et al., 2010) are

methods for determining population organisation by using genetic markers. False positives

arising due to common ancestry and family relatedness can be addressed by incorporating

kinship matrix into the statistical model. One of the most often used methods for estimating

family relatedness among individuals in a diverse population is identity-by-state (Loiselle et

al., 1995).

Inclusion of population structure and a kinship matrix as covariates in mixed linear models

(MLM) to reduce false positives is a widely used approach. Many MLM-based approaches

have been presented since Yu et al. (2006) published the first MLM of association mapping

(Zhang et al., 2010; Wang et al., 2014). All of these models are called single-locus models as

they do a unidimensional genome scan by examining one marker at a time and then iterate the

process for each marker in the dataset. But the true genetic model of complex traits that are

governed by multiple loci at the same time cannot be explained by single locus models.

Multilocus association mapping models have been suggested as a solution to this problem since

they consider the input from all loci at the same time (Wang et al., 2016). One more constraint

190

of MLM based models is increase in number of false negatives due to overfitting which may

lead to omission of certain potentially valuable association (Liu et al., 2016). False negatives

may arise during multiple comparison adjustments for evaluating statistical significance.

Bonferroni correction (Holm, 1979) and false discovery rate (FDR) (Benjamini and Hochberg,

1995) are two commonly used multiple comparison approaches in association mapping for

determining the significant threshold. Highly conservative standards can result in a high rate

of false negatives. As a result, selection of a proper model and threshold are critical steps in

detecting true trait associated markers that may be located inside or in high LD with genes that

govern trait variation, while minimizing both false-positive and false-negative associations.

Statistical models for GWAS

Some popular models for GWAS include:

(1) analysis of variance (ANOVA)

(2) general linear model with principle component analysis (GLM + PCA) (Price et al., 2006),

(3) MLM with principle component analysis and Kinship matrix for family relatedness

estimates (GLM+PCA+K) (Yu et al., 2006)

(4) compressed MLM (Zhang et al., 2010)

(5) enriched compressed MLM (Li et al., 2014)

(6) settlement of MLM under progressively exclusive relationship (SUPER) (Wang et al.,

2014)

(7) multiple loci MLM (MLMM) (Segura et al., 2012)

(8) fixed and random model circulating probability unification (FarmCPU) (Liu et al., 2016).

Models from (1) to (6) are single locus models, while (7) and (8) are multilocus models.

Among these popular models of GWAS, the GLM and MLM are said to have a better control

of false positives than ANOVA (Price et al., 2006; Yu et al., 2006). The GLM with PCA model

is supposed to lower the number of false positives caused by population structure alone (Price

et al., 2006). The kinship matrix is included in the MLM with PCA and K model, which is

intended to reduce false positives caused by family relatedness (Yu et al., 2006). By controlling

false positives, the MLM model is said to perform better than the GLM model alone (Yu et al.,

2006). The benefit of MLM model in controlling false positives disappears when complex

qualities are connected with population structure with considerable genetic divergence, The

MLM approach does a good job of controlling P-value inflation, but it also produces false

negatives, making it difficult to identify actual correlations (Zhang et al., 2010). The

compressed MLM model (CMLM), which clusters individuals into groups and fits genetic

values of groups as random effects in the model, was created to address this challenge (Zhang

et al., 2010). When compared to traditional MLM methods, the CMLM method boosts

statistical power (Zhang et al., 2010). Another option for dealing with P-value deflation caused

by MLM is to adopt a SUPER model, in which just the linked genetic markers are utilised as

pseudo–Quantitative Trait Nucleotides (QTNs) to determine kinship, rather than all of the

markers (Wang et al., 2014). When a pseudo QTN is associated with the testing marker, it is

not included in the kinship analysis. Between the pseudo QTNs and the testing marker, the

SUPER model applies an LD threshold. When compared to using total kinship from all

191

markers, this strategy improves statistical power. FarmCPU is a multilocus model that was

created to reduce false positives while keeping false negatives to a minimum (Liu et al.,2016).

To partially minimise the confusion between testing markers and kinship, the FarmCPU model

use a modified MLM method called multiple loci linear mixed model (MLMM), which

combines many markers simultaneously as covariates in a stepwise MLM. When compared to

other models, this model is said to improve statistical power, computing efficiency, and the

capacity to control false positives and false negatives (Liu et al., 2016).

Single-locus models, such as the general linear model (GLM) and the mixed linear model

(MLM) require multiple tests that undergo a Bonferroni correction (Bradbury et al., 2007) for

multiple comparison adjustments. The typical Bonferroni correction is often too conservative,

which results in many important loci associated with the target traits being eliminated because

they do not satisfy the stringent criterion of the significance test. The multi-locus models are

better alternatives for GWASs because they do not require the Bonferroni correction, and thus

more marker-trait associations may be identified. Recently, several new multi-locus GWAS

models, such as multi-locus RMLM (mrMLM, Wang et al., 2016), fast multi-locus random-

SNP-effect EMMA (FASTmrEMMA, Wen et al., 2017), and Iterative modified-Sure

Independence Screening EM-Bayesian LASSO (ISIS EM-BLASSO, Tamba et al., 2017), have

been developed.

Representation of GWAS Results

GWAS results are typically represented as two types of p-value plots: genome-wide association

plots (Manhattan plots) and quantile-quantile (QQ) plots. In Manhattan plot marker loci are

represented as chromosomes and position on the chromosome in genomic order on x-axis and

negative logarithm of their p values (-log10P) on y-axis (Fig1). The Manhattan plot resembles

the Manhattan skyline because clusters of significant P values tend to ascend to the top due to

local correlation of the genetic variants brought on by linkage.

Fig 1: An illustration of a Manhattan plot depicting several strongly associated loci to the trait

https://www.frontiersin.org/articles/10.3389/fpls.2018.01083/full#B8
https://www.frontiersin.org/articles/10.3389/fpls.2018.01083/full#B71
https://www.frontiersin.org/articles/10.3389/fpls.2018.01083/full#B64

192

Quantile-quantile plots (QQ plots) are widely used to display the proportion of significant

results in relation to the projected number of significant results at a specific P value (Fig 2).

The figure unambiguously demonstrated that, at levels more than P 0.001, more significant

SNP were discovered in their analysis than would have been expected by chance.

Fig 2: Quantile-quantile (QQ) plot. Comparison of GWAS P-values (black dotted line) to those

expected for a null distribution (red line).

References

 Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate, A practical and

powerful approach to multiple testing. J. R. Stat. Soc. Series. B. Stat. Methodol. 57, 289–

300. doi: 10.1111/j.2517-6161.1995.tb02031.x

 Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., et al. (2006).

Principal components analysis corrects for stratification in genome-wide association

studies. Nat. Genet. 38 (8), 904–909. doi: 10.1038/ng1847

 Zhang, Z., Ersoz, E., Lai, C. Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., et al. (2010).

Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42,

355–360. doi: 10.1038/ng.546

 Kaler, A. S., Gillman, J. D., Beissinger, T., & Purcell, L. C. (2020). Comparing different

statistical models and multiple testing corrections for association mapping in soybean and

maize. Frontiers in plant science, 10, 1794.

 Yu, J., Pressoir, G., Briggs, W. H., Vroh, B. I., Yamasaki, M., Doebley, J. F., et al. (2006).

A unifed mixed-model method for association mapping that accounts for multiple levels of

relatedness. Nat. Genet. 38, 203–208. doi: 10.1038/ng1702

 Liu, X., Huang, M., Fan, B., Buckler, E. S., Zhang, Z. (2016). Iterative usage of fixed and

random effect models for powerful and efficient genome-wide association studies. PLoS

Genet. 12 (2), e1005767. doi: 10.1371/journal.pgen.1005767

193

 Li, M., Liu, X., Bradbury, P., Yu, J., Zhang, Y.-M., Todhunter, R. J., et al. (2014).

Enrichment of statistical power for genome-wide association studies. BMC Biol. 12, 73.

doi: 10.1186/s12915-014-0073-5

 Wang, Q., Tian, F., Pan, Y., Buckler, E. S., Zhang, Z. (2014). A SUPER powerful method

for genome wide association study. PLoS ONE 9, e107684. doi:

10.1371/journal.pone.0107684

 Segura, V., Vilhjálmsson, B. J., Platt, A., Korte, A., Seren, Ü., Long, Q., et al. (2012). An

efficient multi-locus mixed-model approach for genome-wide association studies in

structured populations. Nat. Genet. 44, 825–830. doi: 10.1038/ng.2314

 Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6,

65–70.

 Wen, Y. J., Zhang, H., Ni, Y. L., Huang, B., Zhang, J., Feng, J. Y., et al. (2018).

Methodological implementation of mixed linear models in multi-locus genome-wide

association studies. Brief. Bioinform. 19, 700–712. doi: 10.1093/bib/bbw145

 Tamba, C. L., Ni, Y. L., Zhang, Y. M. (2017). Iterative sure independence screening EM-

Bayesian LASSO algorithm for multi-locus genome-wide association studies. PLoS

Comput. Biol. 13, e1005357. doi: 10.1371/journal.pcbi.1005357

194

Hands-on Session for GWAS

Soumya Sharma

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

TASSEL also known as Trait Analysis by aSSociation, Evolution and Linkage is a powerful

statistical software to conduct association mapping such as General Linear Model (GLM) and

Mixed Linear Model (MLM). The GUI (graphical user interface) version of TASSEL is very

well built for anyone who does not have a background or experience in working in command

line. The following section demonstrates how to prepare input files and run association analysis

in TASSEL in stepwise manner.

1. Download and install TASSEL software

Download and install the latest version of the TASSEL software at this link:

https://www.maizegenetics.net/tassel

2. Preparing the Input files

Phenotype file

Phenotype file can be prepared as shown below in the figure below

https://www.maizegenetics.net/tassel

195

Please remember if your data has covariates such as sex, age or treatment, then, please

categories them with header name factor.

Genotype file

TASSEL supports various genotype file formats such as VCF (variant call format), .hmp.txt,

and plink. We are using the hmp.txt version of the genotype file for this demonstration. The

below screenshot of the hmp.txt genotype file.

3. Importing phenotype and genotype files

Import the files by following the steps shown below.

Start Tassel -> go to “file” menu -> select “open” -> specify the “folder” where files are located

-> choose the “files” to open holding CTRL button -> click on “open”

196

4. Phenotype distribution plot

It is always a wise idea to look at the phenotype distribution by plotting to check for any

outliers.

Select the “phenotype” file -> go to “Results” -> go to “Charts” -> select graph type as

“Histogram” -> select the trait under “Series 1”

5. Genotype summary analysis

Next crucial step is to look at the genotype data by simply following the steps shown.

Select genotype data -> go to “Data” menu -> click “Geno Summary”

The output will be as shown in the figure below. The arrow depicts missing genotypic data to

see if it requires to be imputed.

197

Minor allele frequency distribution

Select genotype _SiteSummary -> go to “Results” -> click on “Charts” -> select “Minor Allele

Frequency” under “Series 1”

Proportion of heterozygous in the samples to check for selfed samples.

Select genotype_TaxaSummary -> go to “Results” -> click on “Charts” -> select “Proportion

Heterozygous” under “Series 1”

198

6. Imputation of missing values

Select genotype file -> go to “impute” -> click on “LD KNNi imputation” -> set parameters -

>click “okay”

7. Filter Markers based on Minor allele frequency (MAF)

Steps to filter markers based on Minor allele frequency (MAF) are shown below:

0.05 Minor allele Frequency (set filter thresholds for rare alleles)

Select genotype file -> go to “filter” -> click on “Filter Genotype Table Sites” -> set parameters

-> click “OK”

199

Conduct GWAS analysis

8. Principal component analysis (PCA)

PCA output can be used as the covariate in the GLM or MLM to correct for population

structure. Please follow the steps shown below:

Select genotype file -> go to “Analysis” -> go to “Relatedness” -> click on “PCA”-> set

parameters -> click “ok”

9. Intersecting the files

Intersect the genotype, phenotype and PCA files by following the steps below:

MAF filter

Heterozygosity

filter

200

Select genotype, phenotype and PCA files simultaneously by holding ‘CTRL’ button -> go to

“Data” -> click on “Intersect join”

10. Running General Linear Model (GLM)

Run the GLM analysis by selecting the intersected files following the steps below:

Select the intersect joined file “mdp_traits + PC_mdp_genotype + mdp_genotype” -> go to

“Analysis” -> go to “association” -> click on “GLM” -> set parameters -> click “ok”

The output of the GLM analysis is produced under the Result node. The GLM association test

can be evaluated by plotting Q-Q plot and the Manhattan plot as shown below.

Select the association analysis output file -> go to “Results” -> click on “Manhattan plot”->

select the trait

201

Select the association analysis output file -> go to “Results” -> click on “QQ plot”-> select the

trait -> click “okay”

11. Mixed Linear Model (MLM)

Calculating Kinship matrix

Follow the below steps to calcuate the kinship matrix:

Select genotype file -> go to “Analysis” ->go to “Relatedness” -> click on “kinship” -> set

parameters -> click “ok”

202

Running Mixed Linear Model (MLM)

MLM model includes the PCA and the kinship matrix i.e. MLM (PCA+K).

Therefore, once the Kinship matrix has been calculated, MLM can be now be conducted by

following below steps:

Select the intersect joined file “mdp_traits + PC_mdp_genotype + mdp_genotype” and kinship

file simultaneously by holding ‘CTRL’ button -> go to “Analysis” -> go to “Association” ->

click on “MLM” -> set parameters -> click “okay”

Plot the output (MLM stats file in the Results branch following the steps shown for GLM).

12. Exporting results

One may export the results in .txt format by the following the below steps:

Select the file -> go to “File” -> click on “ Save As” ->browse the folder to save the file ->

name the file ->click “okay”

203

13. Plotting GWAS results in R using qqman package

The R code to plot GWAS result using QQMAN package is below:

library(qqman)

library(dplyr)

import TASSEL results

note

TASSEL_MLM_Out <- read.table("mlm_out.txt", header = T, sep = "\t")

Number of traits

head(unique(TASSEL_MLM_Out$Trait))

note: for each plot trait name must be specificed

first trait as example (i.e., EarHT)

Trait1 <- TASSEL_MLM_Out %>% filter(.$Trait == "EarHT")

Bonferroni correction threshold

nmrk <- nrow(Trait1)

(GWAS_Bonn_corr_threshold <- -log10(0.05 / nmrk))

Manhattan plot

(Mann_plot <- manhattan(

 TASSEL_MLM_Out,

 chr = "Chr",

 bp = "Pos",

 snp = "Marker",

 p = "p",

 col = c("red", "blue"),

 annotateTop = T,

 genomewideline = GWAS_Bonn_corr_threshold,

 suggestiveline = F

204

)

)

QQ plot

QQ_plot <- qq(TASSEL_MLM_Out$p)

Manhattan and Q-Q plot arranged in 1 rows and 2 columns

old_par <- par()

par(mfrow=c(1,2))

(Mann_plot <- manhattan(

 TASSEL_MLM_Out,

 chr = "Chr",

 bp = "Pos",

 snp = "Marker",

 p = "p",

 col = c("red", "blue"),

 annotateTop = T,

 genomewideline = GWAS_Bonn_corr_threshold,

 suggestiveline = F,

 main = "EarHT" # trait name

)

)

(QQ_plot <- qq(TASSEL_MLM_Out$p, main = "EarHT"))

The output plot will be as shown below:

Reference

 Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E.

S. (2007). TASSEL: software for association mapping of complex traits in diverse

samples. Bioinformatics, 23(19), 2633-2635.

205

DNA Signature based SNP and SSR Mining

M A Iquebal, Sarika, Anil Rai and Dinesh Kumar

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

1. Introduction

Molecular characterisation of genetic resources has been adding objectivity and rationality in

decision making for conservation. Plant, animal, fish and microbial genetic resources are being

characterised by various molecular markers, predominantly by microsatellite, AFLP and SNP

covering both nuclear genome as well as mitochondrial genome. These molecular markers have

inbuilt “molecular clock” entrained with evolutionary time scale having “pictures” or

“signatures” of speciation and differentiation of dynamic germplasm in evolutionary pace and

scale. Bioinformatics has not only revolutionised the germplasm characterisation, but had been

proven as indispensable tool for molecular identification of species. Bioinformatics has become

most powerful tool of taxonomy right from microbial meta-genome analysis of hitherto

uncultured microbes, plant, animal and fish species identification. Advances in genome

analysis technology are providing an unprecedented amount of information about animals,

bacterial and viral organisms, and hold great potential for pathogen detection and identification.

Here, a rational approach to the development and application of nucleic acid signatures is

described based on SNP and STR nucleotides. Other bioinformatics tools for classification and

prediction of such molecular data has also been discussed.

2. DNA barcoding of species and its origin

DNA barcoding is a taxonomic method that uses a short genetic marker in an organism's

mitochondrial DNA to identify it as belonging to a particular species. It is based on a relatively

simple concept: most eukaryote cells contain mitochondria and mitochondrial DNA (mtDNA)

has a relatively fast mutation rate, which results in significant variance in mtDNA sequences

between species and, in principle, a comparatively small variance within species. A 648-bp

region of the cytochrome c oxidase subunit I gene (COI) was initially proposed as a potential

'barcode'.

The use of nucleotide sequence variations to investigate evolutionary relationships is not a new

concept. Carl Woese used sequence differences in ribosomal RNA (rRNA) to discover archaea,

which in turn led to the redrawing of the evolutionary tree, and molecular markers (e.g.,

allozymes, rDNA, and mtDNAvage). DNA barcoding provides a standardised method for this

process via the use of a short DNA sequence from a particular region of the genome to provide

a 'barcode' for identifying species. In 2003, Paul D.N. Hebert from the University of Guelph,

Ontario, Canada, proposed the compilation of a public library of DNA barcodes that may be

linked to named specimens. This library would “provide a new master key for identifying

species, one whose power will rise with increased taxon coverage and with faster, cheaper

sequencing”.

2.1 Identification of birds by species bar code

In an effort to find a correspondence between traditional species boundaries established by

taxonomy and those inferred by DNA barcoding, Hebert and co-workers sequenced DNA

barcodes of 260 of the 667 bird species that breed in North America (Hebert et al. 2004a). It

206

was found that every single one of the 260 species had a different COI sequence. 130 species

were represented by two or more specimens. In all of these species, COI sequences were either

identical or were most similar to sequences of the same species. COI variations between species

averaged 7.93%, whereas variation within species averaged 0.43%. In four cases, there were

deep intraspecific divergences, indicating possible new species. Three out of these four

polytypic species are already split into two by some taxonomists. Hebert et al.'s (2004a) results

reinforce these views and strengthen the case for DNA barcoding. They also proposed a

standard sequence threshold to define new species, this threshold, the so-called "barcoding

gap", was defined as 10 times the mean intraspecific variation for the group under study.

2.2 Delimiting cryptic species by DNA bar code

The next major study into the efficacy of DNA barcoding was focused on the neotropical

skipper butterfly, Astraptesfulgerator at the Area Conservacion de Guanacaste (ACG) in north-

western Costa Rica. This species was already known as a cryptic species complex, due to subtle

morphological differences, as well as an unusually large variety of caterpillar food plants.

However, several years would have been required for taxonomists to completely delimit

species. Hebert et al. (2004b) sequenced the COI gene of 484 specimens from the ACG. This

sample included “at least 20 individuals reared from each species of food plant, extremes and

intermediates of adult and caterpillar color variation, and representatives” from the three major

ecosystems where Astraptesfulgeratorwas found. Hebert et al. (2004b) concluded that

Astraptesfulgerator consists of 10 different species in north-western Costa Rica. This

highlights that the results of DNA barcoding analyses can be dependent upon the choice of

analytical methods used by the investigators, so the process of delimiting cryptic species using

DNA barcodes can be as subjective as any other form of taxonomy.

2.3 Identifying flowering plants by species DNA bar code

Kress et al. (2005) suggest that the use of the COI sequence “is not appropriate for most species

of plants because of a much slower rate of cytochrome c oxidase I gene evolution in higher

plants than in animals”. A series of experiments was then conducted to find a more suitable

region of the genome for use in the DNA barcoding of flowering plants.

Three criteria were set for the appropriate genetic loci:

i. Significant species-level genetic variability and divergence

ii. An appropriately short sequence length so as to facilitate DNA extraction and

amplification, and

iii. The presence of conserved flanking sites for developing universal primers.

At the conclusion of these experiments, Kress et al. (2005) proposed the nuclear internal

transcribed spacer region and the plastid trnH-psbAintergenic spacer as a potential DNA

barcode for flowering plants. These results suggest that DNA barcoding, rather than being a

'master key' may be a 'master keyring', with different kingdoms of life requiring different keys.

2.4 Strain identification of fungi

Pucciniagraminis, the causal agent of stem rust, has caused serious disease of small cereal

grains (wheat, barley, oat, and rye) worldwide. P. graminis is the first sequenced representative

of the rust fungi (Uredinales), which are obligate plant pathogens. The rust fungi comprise

207

more than 7000 species and are one of the most destructive groups of plant pathogens. Stem

rust of wheat has been a serious problem wherever wheat is grown and has caused major

epidemics in North America. In 1999, a new highly virulent race TTKS (Ug99) of P. graminis

was identified in Uganda, and since then has spread, causing a widening epidemic in Kenya

and Ethiopia.

Bioinformatics can play very critical role in identification of species as well as strains and also

its dynamics across globe. The plethora of data both from host and parasite generated by using

latest molecular or biotechnological tools can easily be analysed by bioinformatics tools. The

talk will focus on Ug99 race of P. graminis. How the genome of it can be used to track the

movement of this fungal species and how the bioinformatics tools can be helpful in strain

identifcationP. graminis including Ug99 identification.

3. DNA based signature of domestic species and animal breeds

Mitochondrial DNA markers have been proved to be successful in many species of domestic

animals, being used especially for meat identification, poaching of wild animals, adulteration

of dairy milk, dairy products(like cheese) of various domestic animal species.

The prevalent markers used for the breeds are almost STR but very recently the SNP based

chip has proven its accuracy for breed signature along with details of admixture as well as very

powerful for parentage and pedigree.

3.1 STR based signatures of breeds

A question has generally been asked at various scientific fora with regard to molecular

characterization of breeds as to whether a livestock breed can be identified from a sample of

blood, semen, hair, blood spot, carcass etc. Various attempts have been made in the last couple

of years by the molecular geneticists of the world to answer this question. Some studies have

succeeded in developing a technology for breed certification and breed-specific genetic/DNA

signature in different breeds of cattle in Spain, Portugal and France; horses in Norway, sheep

in Spain, and camel in Kenya. The degree of accuracy of certification of a breed in these studies

was very high ranging between 95% to 99%.

Three methods viz (i) Frequency method (Paetkau et al., 1995), (ii) Bayesian method (Rannala

et al, 1997) and (iii) Distance methods (Goldstein et al 1995) have been used for developing

breed specific signatures. The Bayesian method has been reported to be more accurate with

microsatellite data to the extent of > 99% confidence limits (Corander et al., 2003, Bustamante

et al., 2003).

In the foreign countries, few attempts have been made to develop genetic signatures of some

breeds of livestock in the recent past. For cases of doubtful breed identity where it becomes

difficult to assign an individual to a particular breed due to individual being an admixture of

breeds, the studies have been made to develop breed hybrid index. The review of literature has

therefore been made under two headings: (i) Development of breed-specific signatures/profiles

and (ii) Development of breed hybrid index.

3.2 SNP chip based DNA signature of breeds

In Japan, Japanese Black and Holstein cattle are appreciated as popular sources of meat, and

imported beef from Australia and the United States is also in demand in the meat industry.

208

Since the BSE outbreak, the problem of false sales has arisen: imported beef has sometimes

been mislabelled as domestic beef due to consumer concerns. A method is needed to correctly

discriminate between Japanese and imported cattle for food safety. The SNP 50K based chip

can discrimination markers between Japanese and US cattle. There is a report where five US-

specific markers (BISNP7, BISNP15, BISNP21, BISNP23, and BISNP26) has been developed

with allelic frequencies that ranged from 0.102 (BISNP15) to 0.250 (BISNP7) and averaged

0.184. The combined use of the five markers would permit discrimination between Japanese

and US cattle with a probability of identification of 0.858. This result indicates the potential of

the bovine 50K SNP array as a powerful tool for developing breed identification markers.

These markers would contribute to the prevention of falsified beef displays in Japan

(Suekawaet al 2010, Sasazakiet al 2011).

4. DNA based signature of plant variety, example-Basmati rice

Basmati rice has a typical pandan-like (Pandanusamaryllifolius leaf) flavour caused by the

aroma compound 2-acetyl-1-pyrroline.Difficulty in differentiating genuine traditional basmati

from pretenders and the significant price difference between them has led fraudulent traders to

adulterate traditional basmati. To protect the interests of consumers and trade, a PCR-based

assay similar to DNA fingerprinting in humans allows for the detection of adulterated and non-

basmati strains. Its detection limit for adulteration is from 1% upwards with an error rate of

±1.5%. Exporters of basmati rice use 'purity certificates' based on DNA tests for their basmati

rice consignments.It was developed at the Centre for DNA Fingerprinting and Diagnostics,

Labindia, an Indian company has released kits to detect basmati adulteration. World's First

Single-tube, Multiplex(co-amplify eight microsatellite loci) Microsatellite Assay-based Kit for

Basmati Authentication.

The Basmati Verifiler™ Kit is the world's first product for establishing the authenticity of

Basmati rice samples via a molecular assay. The kit uses a PCR amplification technique based

on Simple Sequence Repeats (SSR) that provides the single most discriminating assay for

Basmati genotyping.

5. DNA based bar-coded signature of fishes

Ward et al (2005) described in a paper the potential of cox1 sequencing, or ‘barcoding’, in to

identification of fish species. In this study, two hundred and seven species of fish, mostly

Australian marine fish, were sequenced (bar coded) for a 655 bp region of the mitochondrial

cytochrome oxidase subunit I gene (cox1). Most species were represented by multiple

specimens, and 754 sequences were generated. The GC content of the 143 species of teleosts

was higher than the 61 species of sharks and rays (47.1% versus 42.2%), largely due to a higher

GC content of codon position 3 in the former (41.1% versus 29.9%). Rays had higher GC than

sharks (44.7% versus 41.0%), again largely due to higher GC in the 3rd codon position in the

former (36.3% versus 26.8%). Average within-species, genus, family, order and class Kimura

two parameter (K2P) distances were 0.39%, 9.93%, 15.46%, 22.18% and 23.27%, respectively.

All species could be differentiated by their cox1 sequence, although single individuals of each

of two species had haplotypes characteristic of a congener. Although DNA barcoding aims to

develop species identification systems, some phylogenetic signal was apparent in the data. In

the neighbour-joining tree for all 754 sequences, four major clusters were apparent: chimaerids,

rays, sharks and teleosts. Species within genera invariably clustered, and generally so did

209

genera within families. Three taxonomic groups—dogfishes of the genus Squalus, flatheads of

the family Platycephalidae, and tunas of the genus Thunnus—were examined more closely.

The clades revealed after bootstrapping generally corresponded well with expectations.

Individuals from operational taxonomic units designated as Squalus species B through F

formed individual clades, supporting morphological evidence for each of these being separate

species. This paper is still widely cited for DNA based fish signature.

6. Different bioinformatics tool for classification and prediction of molecular data

Advances in genome analysis technology are providing an unprecedented amount of

information about animals, bacterial and viral organisms, and hold great potential for pathogen

detection and identification. In this section, a rational approach to the development and

application of nucleic acid signatures is described based on SNP and STR nucleotides.

Regardless of the origin of the SNPs (e.g., sequencing and public databases), once SNPs from

a target organism and its nearest neighbours have been collected, it is necessary to identify

those SNPs that will be useful for species and strain identification. The approach that has been

taken is to use a database of SNP markers to enable phylogenetic analysis to identify

evolutionary clades and the SNPs that define them. The need for large data storage capability,

which facilitates data accessibility, automated SNP prediction (with reduction in manual

intervention), signature delineation and facilitated complex query capability, has been

recognized. Many databases exist as local resources, although some universal databases

housing eukaryotic SNP data have been established (e.g., dbSNP). Such global databases have

not been developed for microbial SNP data. Each database created for SNP discovery and

phylogenetic analysis will have different content and different structure that are determined by

the uses of the data. There is no single correct way to design a database but essential content is

necessary not only to allow different polymorphism databases to communicate but to provide

essential information for analysis of the data. Four essential core elements have been defined

and include:

 A unique SNP identifier (allele)

 The data source (e.g., experimental or computational)

 The sequence flanking the allele and the allele(s)

Many databases have been created for the storage and analysis of eukaryotic SNP data, some

are comprehensive or genomewide, and others are specialized or locus-specific. Both types of

databases are essential. The comprehensive database will provide a genome-wide view of

polymorphism, ideal for strain typing and identification. The locus-specific database will

provide a more in-depth view of polymorphisms at a particular locus. A database should

incorporate accurate information that can be used for downstream analyses and have the ability

to integrate with other databases. Some additional information associated with SNPs should be

implemented in the databases. A database and its associated pipeline should be able to process

and store data from a variety of sources, not only from a sequencing machine but external

sequence databases (e.g., GenBank, dbEST). The database should track the organism and

project to which a SNP belongs along with genome-, gene- and exon-specific information

related to a SNP. A downstream analysis requires not just flanking sequences but also a

reference sequence. Other information useful for quality assurance purposes and general data

analysis include the algorithm by which a SNP was discovered and whether it was validated

210

experimentally or not validated but computationally predicted and the method by which it was

validated (e.g., genotyping assay or sequencing). The type of SNP should also be included

(e.g., homozygous or heterozygous) along with the average allele frequency. Useful

information, such as the position of the SNP relative to its reference sequence, contig or

amplicon and whether the SNP is silent or pathogenic should be incorporated. To meet the

needs of signature development, a relational database has been created to store information

related to SNP discovery and downstream assay development. The information specific to SNP

discovery and assay design is stored logically in database tables or entities enabling complex

queries on SNPs and related data. Specifically, the SNP table includes, in addition to the SNP

site alleles, the 5´ and 3´ flanking sequences for assay design. Information related to the gene,

exon and project are stored to facilitate downstream analysis, such as population studies.

Algorithm-specific rank values and method are included, which enable the investigator to

assess the actual quality of each SNP. The SNP table is the central entity in the database.

Associated with each SNP is a name where each SNP can have more than one name. Each SNP

can also be associated with one or more reference sequences. Reference sequences have

multiple purposes including:

 Serving as a template for PCR primer design

 Providing flanking sequence around a SNP

 Being included in a Phrap assembly to ensure an accurate assembly

Reference sequences also provide a starting point for functional annotation. The reference

sequence has associated with it a name, GenBank accession or GI number, description and

sequence. Amplicons are sequences used for SNP prediction. Associated with an amplicon is

information, such as the name and description of each amplicon, primers used for its

amplification and its expected size. Even though this database was designed for higher

eukaryotes and their viruses, the data relationships will remain the same for prokaryotic SNP

data. The SNP marker database serves as the repository of information required for downstream

signature development and assay design activities.

Protocols and basic information of Bioinformatics tools which are important to search SNP,

Sequence data analysis, STR data Analysis, and to develop SNP/STR based DNA signatures

are shown below:

6.1GeneClass 2.0

The effectiveness of Single Nucleotide Polymorphisms (SNPs) for the assignment of various

breeds of cattle and buffalo has already been investigated by analysing numerous SNPs. Breed

assignment has been performed by comparing the Bayesian and frequency methods

implemented in the STRUCTURE 2.2 and GENECLASS 2 software programs. The use of

SNPs for the reallocation of known individuals to their breeds of origin and the assignment of

unknown individuals has already been tested. Exampleisgiven with GeneClass2 in Buffalo

having reference and unknown data of buffalo breeds (Figure 1 and Figure 2). The steps are as

follows

Step 1: Download the GeneClass2 Software(Freely available at

 http://www.montpellier.inra.fr/URLB/geneclass/geneclass.html).

Step 2. Preparation of data files for reference and unknown samples.

Step 3. Open the main window of the software (Figure 1) and import both files.

http://www.montpellier.inra.fr/URLB/geneclass/geneclass.html

211

Step 4.Choice of the parameters like Computational goal, Criteria for computation, Probability

computation and Selection Criteria.

Step 5. By clicking on the start button we can see the result (Figure 2) and finally interpretation

of the result can be drawn.

Figure 1. Main window of GeneClass2.0 Software

Figure 2. Identification of 5 unknown breeds of Buffalo with reference data.

6.2 BioEdit

BioEdit is a mouse-driven, easy-to-use sequence alignment editor and sequence analysis tool.

This tool can handle most simple sequence and alignment editing and manipulation functions

that researchers are likely to do on a daily basis, as well as a few basic sequences analyses. For

example alignment of different nucleotide sequence of various bacterial strains in Figure 1 and

Figure 2. The steps are as follows:

File→Newalignment→Import→AccessaryApplications→ClustalWAlignment→Multiple

Alignment (Figure 3) and to see the Alignment result View→ViewMode→Identity/similarity

(Figure 4).

212

Figure 3. Nucleotide Sequence Data (16 Different Microbial strains) import in the main

window

Figure 4. Alignment of all sequences showing nucleotide differences

6.3 Cleaver

Cleaver is an application for identifying restriction endonuclease recognition sites that occur

in some taxa (Jarman, 2006). Differences in DNA fragment restriction patterns among taxa are

the basis for many diagnostic assays for taxonomic identification; and are used in some

procedures for removing the DNA of some taxa from pools of DNA from mixed sources.

Cleaver analyses restriction digestion of groups of orthologous DNA sequences simultaneously

to allow identification of differences in restriction pattern among the fragments derived from

different taxa. Cleaver is freely available without registration from its website

(http://cleaver.sourceforge.net/). The program can be run as a script for computers that have

Python 2.3 and necessary extra modules installed. This allows it to run on Gnu/Linux, Unix,

MacOSX and Windows platforms. Standalone executable versions for Windows and MacOSX

operating systems are also available. The protocol for using the software is shown in Figure 5

and Figure 6.

http://cleaver.sourceforge.net/

213

Figure 5. Main Window of Cleaver Software

Figure 6.Restriction Map analysis of variable sequences of different Bacterial genomes

using Cleaver software.

6.4 FastPCR

The FastPCRis an integrated tool for PCR primers or probe design, in silicoPCR,

oligonucleotide assembly and analyses, alignment and repeat searching (Figure 7). The

software utilizes combinations of normal and degenerated primers for all tools and for the

melting temperature calculation are based on the nearest neighbour thermodynamic

parameters.The “in silico” (virtual) PCR primers or probe searching or in silico PCR against

whole genome(s) or a list of chromosome - prediction of probable PCR products and search of

potential mismatching location of the specified primers or probes. Comprehensive primer test,

the melting temperature calculation for standard and degenerate oligonucleotides, primer PCR

efficiency, primer's linguistic complexity, and dilution and resuspension calculator.

Primers (probes) are analyzed for all primer secondary structures including G-

quadruplexes detection, hairpins, self-dimers and cross-dimers in primer pairs.

FastPCR has the capacity to handle long sequences and sets of nucleic acid or protein sequences

and it allowed the individual task and parameters for each given sequences and joining several

different tasks for single run. It also allows sequence editing and databases analysis. Efficient

and complete detection of various types of repeats developed (for DNA based signature) and

applied to the program with a visualisation.

The program includes various bioinformatics tools for analysis of sequences with GC or AT

skew, CG content and purine-pyrimidine skew, the linguistic sequence complexity; generation

random DNA sequence, restriction analysis and supports the clustering of sequences and

consensus sequence generation and sequences similarity and conservancy analysis.

214

Figure 7.Main Window of FastPCR software.

For SSR search or any other analysis just we need to prepare data file in notepad file and import

in the main window. As per our need we can import the data and analyse by clicking on

Run/SSR search/Primer list analysis etc. option looking in main window.

References

 Bustamante, CD., Nielsen, R. and Hartl, DL.(2003). Maximum likelihood and Bayesian

methods for estimating the distribution of selective effects among classes of mutations using

DNA polymorphism data.Theoretical Population Biology.63: 91-103.

 Corander, J.,Waldmann, P. and Sillanpaa, MJ.(2003). Bayesian analysis of genetic

differentiation between populations.Genetics.163: 367-374.

 Goldstein, DB., Linares, AR.,Cavalli-Sforza, LL. and Feldman, MW. (1995). Genetic

absolute dating based on microsatellites an origin of modern humans. PNAS USA.92: 6723-

6727.

 Hebert, PDN., Penton, EH., Burns, JM., Janzen, DH. AndHallwachs, W. (2004a). Ten

Species in One: DNA Barcoding Reveals Cryptic Species in the Neotropical Skipper

Butterfly Astraptesfulgerator. Proc. Natl. Acad. Sci. USA101(41): 14812-14817.

 Hebert, PDN.,Stoeckle, MY.,Zemlak, TS. and Francis, CM. (2004b). Identification of Birds

Through DNA Barcodes. PLoS Biol. 2(10): 1657-1663.

 Jarman.(2006). Cleaver: software for identifying taxon specific restrictionendonuclease

recognition sites. Bioinformatics Advance Access

(http://bioinformatics.oxfordjournals.org/content/early/2006/06/20/bioinformatics.btl330.f

ull.pdf.)

 Kress, WJ.,Wurdack, KJ., Zimmer, EA.,Weigt, LA. and Janzen, DH. (2005). Use of DNA

Barcodes to Identify Flowering Plants.Proc. Nat. Acad. Sci. USA,102(23): 8369-8374.

 Paetkau, D., Calvert, W., Stirling, I. and Strobeck, C. (1995). Microsatellite analysis of

population structure in Canadian polar bears.Molecular Ecology.4: 347-354.

 Rannala, B. and Mountain, JL. (1997). Detecting immigration by using multi locus

genotypes PNAS, USA. 94: 9197-9221.

 Sasazaki S., Hosokawa D., Ishihara R., Aihara H., Oyama K., Mannen, H.

(2011).Development of discrimination markers between Japanese domestic and imported

beef.Animal Science Journal,82(1):67-72.

 Suekawa, Y., Aihara, H., Araki, M., Hosokawa, D., Mannen, H., Sasazaki, S. (2010).

Development of breed identification markers based on a bovine 50K SNP array .Meat

Science,85(2), 285–288.

215

Analysis of non-coding sequencing data

Sarika Sahu

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Non-coding RNAs (ncRNAs) are RNA molecules that do not code for proteins. They are

transcribed from DNA and can be categorized into two main types: long non-coding RNAs

(lncRNAs) and small non-coding RNAs (sncRNAs). While sncRNAs are shorter than 200

nucleotides, lncRNAs are usually longer than 200 nucleotides. Non-coding RNAs have been

found to play important roles in a variety of cellular processes, including gene expression, cell

differentiation, and development.

One of the most well-studied classes of sncRNAs are microRNAs (miRNAs). miRNAs are

single-stranded RNA molecules that are about 21-25 nucleotides long. They play important

roles in post-transcriptional regulation of gene expression by targeting mRNAs for degradation

or translational repression. This means that miRNAs can control the amount of protein that is

produced from a particular gene. miRNAs have been implicated in a variety of biological

processes, including cell proliferation, differentiation, and apoptosis. Dysregulation of miRNA

expression has been linked to various diseases, such as cancer, neurological disorders, and

cardiovascular disease.

Another type of sncRNA is the small interfering RNA (siRNA). Like miRNAs, siRNAs are

about 21-25 nucleotides long and are involved in gene regulation by inducing degradation of

specific mRNAs. However, siRNAs are usually exogenously introduced into cells for

therapeutic purposes or for use in research. They can be used to specifically target and silence

disease-causing genes or to study gene function in experimental systems.

Piwi-interacting RNAs (piRNAs) are a class of sncRNAs that interact with a family of proteins

known as Piwi proteins. piRNAs are typically longer than miRNAs or siRNAs and are

expressed primarily in the germ cells of animals. They play important roles in protecting the

genome from transposable elements (mobile genetic elements that can cause mutations) by

inducing their silencing or degradation. piRNAs have also been implicated in other processes

such as epigenetic regulation and germ cell development.

In addition to sncRNAs, lncRNAs have also been found to play important roles in various

biological processes. They are involved in gene regulation at multiple levels, including

transcription, splicing, and chromatin remodeling. lncRNAs can interact with DNA, RNA, and

proteins to modulate gene expression. Dysregulation of lncRNA expression has been

implicated in a variety of diseases, such as cancer, cardiovascular disease, and neurological

disorders.

One example of a lncRNA is Xist, which is involved in X chromosome inactivation in female

mammals. Xist is expressed from one of the two X chromosomes in female cells and coats the

same chromosome it is transcribed from, leading to silencing of most genes on that

chromosome. Another example is HOTAIR, which is involved in regulating gene expression

during development and has been found to be dysregulated in various types of cancer.

In conclusion, non-coding RNAs are a diverse group of RNA molecules that play important

roles in a variety of cellular processes. While sncRNAs like miRNAs and siRNAs are involved

in post-transcriptional regulation of gene expression, piRNAs are involved in transposon

silencing in germ cells. lncRNAs, on the other hand, are involved in gene regulation at multiple

216

levels and have been implicated in various diseases. With the continued development of new

technologies for studying RNA, we can expect to uncover many more functions and roles for

these fascinating molecules in the future.

Long non-coding RNAs (lncRNAs) are a diverse class of RNA molecules that have been found

to play important roles in gene regulation and other biological processes in many different

organisms, including plants. In this discussion, we will explore the current understanding of

lncRNAs in plants, their functions, and their potential applications in agriculture.

Plant lncRNAs are typically longer than 200 nucleotides and are transcribed from intergenic

regions, introns, and other non-coding regions of the genome. They can be classified into

several different categories based on their genomic origin and structure, including natural

antisense transcripts (NATs) and long intergenic non-coding RNAs (lincRNAs).

One of the most well-studied plant lncRNAs involved in growth and development is

COOLAIR, a natural antisense transcript (NAT) of the FLOWERING LOCUS C (FLC) gene

in Arabidopsis thaliana. FLC is a key regulator of flowering time, and the expression of

COOLAIR promotes FLC mRNA decay, leading to earlier flowering. COOLAIR is also

involved in regulating the expression of other genes related to plant development, such as genes

involved in the biosynthesis of gibberellins, a class of plant hormones that promote stem

elongation and other growth processes.

Another lncRNA involved in the regulation of flowering time is IPS1 (Induced by Phosphate

Starvation 1) in Arabidopsis. IPS1 is a lincRNA that is induced by phosphate starvation and

negatively regulates the expression of miR399, a microRNA that targets a gene involved in

phosphate homeostasis. The downregulation of miR399 by IPS1 promotes the expression of

genes involved in phosphate uptake and transport, leading to earlier flowering.

LINC5 is another lincRNA involved in the regulation of flowering time in Arabidopsis. LINC5

is specifically expressed in the shoot apical meristem, where it interacts with the transcription

factor WUSCHEL (WUS) to promote its expression. WUS is a key regulator of stem cell

maintenance and differentiation in the shoot apical meristem, and the expression of LINC5 is

required for normal shoot development. Similarly, in rice, a lincRNA called LDMAR is

involved in the regulation of lateral root development. LDMAR is specifically expressed in

lateral root primordia and promotes the expression of genes involved in lateral root

development. Knockdown of LDMAR leads to a reduction in the number of lateral roots,

indicating its importance in this process.

In addition to their roles in plant growth and development, lncRNAs have also been implicated

in stress responses. For example, a lincRNA called COLDAIR in Arabidopsis is involved in

the regulation of the COLD-REGULATED (COR) genes in response to cold stress. COLDAIR

interacts with a transcription factor called CBF1 to promote the expression of COR genes,

which are involved in protecting plants from freezing damage.

LincRNAs, on the other hand, are transcribed from intergenic regions of the genome and can

interact with DNA, RNA, and proteins to modulate gene expression. They can act as scaffolds

for the assembly of regulatory complexes, as well as serve as guides for chromatin-modifying

enzymes. In rice, a lincRNA called NERICA1 is involved in promoting nodulation in response

to symbiotic bacteria by interacting with chromatin-modifying enzymes to regulate gene

expression.

217

Plant lncRNAs have also been found to play important roles in stress responses, such as

drought, salt, and cold stress. For example, in Arabidopsis, a lincRNA called COLDAIR is

involved in regulating the expression of COLD-REGULATED (COR) genes in response to

cold stress. COLDAIR interacts with a transcription factor called CBF1 to promote the

expression of COR genes, which are involved in protecting plants from freezing damage.

The roles of plant lncRNAs in development have also been extensively studied. In maize, a

lincRNA called Zm401 is involved in regulating the expression of key genes during the

transition from vegetative growth to reproductive development. Zm401 interacts with a

chromatin-modifying complex to regulate the expression of genes involved in flowering and

other developmental processes.

One study identified 285 lncRNAs in potato leaves and tubers and analyzed their expression

patterns during potato development. The researchers found that many lncRNAs were

differentially expressed in different tissues and developmental stages, indicating their potential

roles in regulating potato growth and development.

Another study investigated the role of a potato lncRNA called lncRNA1604 in response to

potato virus Y (PVY) infection. The researchers found that lncRNA1604 was induced in

response to PVY infection and was involved in regulating the expression of genes involved in

defense responses. Knockdown of lncRNA1604 resulted in increased susceptibility to PVY

infection, indicating its role in potato resistance to viral infections.

In addition to their roles in development and stress responses, lncRNAs in potato have also

been implicated in other biological processes. For example, a recent study identified a potato

lncRNA called StTILLING1 that was involved in regulating the production of starch in potato

tubers. Knockdown of StTILLING1 resulted in reduced starch content and altered starch

granule morphology, indicating its role in starch synthesis.

Overall, the study of lncRNAs in plants is still in its early stages, and much remains to be

learned about their functions and mechanisms of action. However, the identification of

lncRNAs involved in growth and development processes in plants provides new insights into

the regulatory networks underlying these processes and offers new targets for crop

improvement and genetic engineering.

Circular RNAs (circRNAs) are a relatively new class of lncRNAs that are formed by back-

splicing events, in which a downstream splice acceptor is joined to an upstream splice donor.

circRNAs can act as sponges for microRNAs (miRNAs) and other RNA-binding proteins,

thereby regulating gene expression. In tomato, a circRNA called ciRs-7 is involved in

regulating fruit ripening by sequestering miR-7, which targets several genes involved in fruit

ripening. Some of the known functions of circRNAs in plants include regulating gene

expression at both the transcriptional and post-transcriptional levels, modulating alternative

splicing, and participating in stress responses. For example, a circRNA called

circRNA_022653 has been shown to regulate the expression of the transcription factor

WRKY40 in response to salt stress in Arabidopsis thaliana.

In addition, circRNAs have been implicated in plant development, particularly in the regulation

of flowering time. A circRNA called circFTO has been found to play a role in the photoperiodic

flowering pathway in Arabidopsis, by regulating the expression of a key flowering-time

regulator called CONSTANS.

218

References

 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local

alignment search tool. Journal of Molecular Biology 215, 403–410. doi:10.1016/S0022-

2836(05)80360-2.

 Baulcombe, D. (2004). RNA silencing in plants. Nature 431, 356–363.

doi:10.1038/nature02874.

 Bader GD, Hogue CW. An automated method for finding molecular complexes in large

protein interaction networks. BMC bioinformatics. 2003 Dec;4(1):1-27.

 Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for

Illumina sequence data. Bioinformatics 30, 2114–2120. doi:10.1093/bioinformatics/btu170.

 Denman, R. B. (1993). Using RNAFOLD to predict the activity of small catalytic RNAs.

BioTechniques 15, 1090–5.

 Dong, P., Wang, H., Fang, T., Wang, Y., and Ye, Q. (2019). Assessment of extracellular

antibiotic resistance genes (eARGs) in typical environmental samples and the transforming

ability of eARG. Environment International 125, 90–96. doi:10.1016/j.envint.2019.01.050.

 Du L, Zhang C, Liu Q, Zhang X, Yue B. Krait: an ultrafast tool for genome-wide survey of

microsatellites and primer design. Bioinformatics. 2018 Feb 15;34(4):681-3.

 Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M. M., Seki, M., et al. (2005).

AREB1 Is a Transcription Activator of Novel ABRE-Dependent ABA Signaling That

Enhances Drought Stress Tolerance in Arabidopsis . The Plant Cell 17, 3470–3488.

doi:10.1105/tpc.105.035659.

 Gkirtzou K, Tsamardinos I, Tsakalides P, Poirazi P. MatureBayes: a probabilistic algorithm

for identifying the mature miRNA within novel precursors. PloS one. 2010 Aug

6;5(8):e11843.

 Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., et al.

(2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity

platform for reference generation and analysis. Nature Protocols 8, 1494–1512.

doi:10.1038/nprot.2013.084.

 Hill, R. M., and Rawate, P. D. (1982). Evaluation of food potential, some toxicological

aspects, and preparation of a protein isolate from the aerial part of amaranthus (pigweed).

Journal of Agricultural and Food Chemistry 30, 465–469. doi:10.1021/jf00111a014.

 Jain P., Hussain S., Nishad J., Dubey H., Bisht D.S., Sharma T.R., Mondal T.K. (2021)

Identification and functional prediction of long non-coding RNAs of rice (Oryza sativa L.)

at reproductive stage under salinity stress. Molecular Biology Reports. 10.1007/s11033-021-

06246-8 .

 Jain P., Sharma V., Dubey H., Singh P.K., Kapoor R., Kumari M., Singh J., Pawar D., Bisht

D., Solanke A.U., Mondal T.K., Sharma T.R. (2017) Identification of long non-coding RNA

in rice lines resistant to Rice blast pathogen Magnaporthe oryzae. Bioinformation. 13:249-

55.

 Jeyaraj, A., Liu, S., Zhang, X., Zhang, R., Shangguan, M., and Wei, C. (2017). Genome-

wide identification of microRNAs responsive to Ectropis oblique feeding in tea plant

(Camellia sinensis L.). Scientific Reports 7, 13634. doi:10.1038/s41598-017-13692-7

219

 Ramírez Gonzales L, Shi L, Bergonzi SB, Oortwijn M, Franco‐Zorrilla JM, Solano‐Tavira

R, Visser RG, Abelenda JA, Bachem CW. Potato CYCLING DOF FACTOR 1 and its

lncRNA counterpart StFLORE link tuber development and drought response. The Plant

Journal. 2021 Feb;105(4):855-69.

 Loewen G, Jayawickramarajah J, Zhuo Y, Shan B. Functions of lncRNA HOTAIR in lung

cancer. Journal of hematology & oncology. 2014 Dec;7(1):1-0.

 Zhang G, Diao S, Zhang T, Chen D, He C, Zhang J. Identification and characterization of

circular RNAs during the sea buckthorn fruit development. RNA biology. 2019 Mar

4;16(3):354-61.

 Meng X, Li X, Zhang P, Wang J, Zhou Y, Chen M. Circular RNA: an emerging key player

in RNA world. Briefings in bioinformatics. 2017 Jul 1;18(4):547-57.

220

Overview of Metagenomics Data Analysis

Md. Samir Farooqi and Sudhir Srivastava

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Introduction

Metagenomics is the study of overall genomes present in any environment without the need for prior

individual identification or amplification. It encompasses microbial communities sampled directly from

their natural environment, without prior culturing. Community genomics, environmental

genomics, and population genomics are synonyms for the same approach. Metagenomics term

was first used by Jo Handelsman et al. and first appeared in publication in 1998. The field

initially started with the cloning of environmental DNA, followed by functional expression

screening and was then quickly complemented by direct random shotgun sequencing of

environmental DNA. The idea of cloning DNA directly from environmental samples was first

proposed by Pace in 1991.There has been remarkable progress in this field of research due to recent

advances in Next Generation Sequencing (NGS) technologies. Since over 99.8% of microbes in some

environments are still far from culturing in the media, metagenomics offers a path to the study of

microbial community structure, phylogenetic composition, species diversity and abundance, metabolic

capacity and functional diversity.

Metagenomics helps in knowing about the functional gene composition of the microbial

communities and thus gives more information about the phylogenetic surveys, which are more

often based on the diversity of one gene like 16s rRNA gene. It gives genetic information on

potentially novel biocatalysts or enzymes, genomic linkages between function and phylogeny

for uncultured organisms, and evolutionary profiles of community function and structure. So it

acts as novel tool for generating novel hypothesis of microbial function.

Majority of microorganisms have not been cultivated in the laboratory, and almost all of our

knowledge of microbial life is based on organisms raised in pure culture. Metagenomics

provides an additional set of tools to study uncultured species. Metagenomics entails extraction

of DNA from a community so that all of the genomes of organisms in the community are

pooled. These genomes are usually fragmented and cloned into an organism that can be

cultured to create ‘metagenomic libraries’, and these libraries are then subjected to analysis

based on DNA sequence or on functions conferred on the surrogate host by the metagenomic

DNA.

For a typical sequence-based metagenome project one need to go through sampling and

processing, sequencing technology, assembly, binning, annotation, experimental design,

statistical analysis, and data storage and sharing.

These steps are described as follow:

Sampling and Processing

DNA extracted should represent all cell present in the sample and sufficient amount of high-

quality nucleic acids must be obtained for subsequent library production and sequencing. Also

processing requires specific protocols for each sample type. The physical and chemical

structure of each microbial community affects the quality, size, and amount of microbial DNA

that can be extracted.

221

Sequencing Technology

High-throughput sequencing technologies has improved the capabilities of metagenomic studies to a

greater strength but at the same time, it has led to generation of huge and big data sets that largely

require high end algorithms and computational tools for data analysis and storage. Metagenome

sequencing, also called shotgun sequencing, refers to sequencing DNA fragments extracted

from microbial populations. Over the past few years metagenomic shotgun sequencing has

gradually shifted from classical Sanger sequencing technology to next-generation sequencing

(NGS). However, Sanger sequencing is still best because of its low error rate, long read length

(> 700 bp) and large insert sizes (e.g. >30 Kb for fosmids or bacterial artificial chromosomes

(BACs)). The only drawback associated is the labor intensive cloning process.

Bioinformatics Approach

Metagenomic projects running worldwide pose several levels of challenges with respect to the

processing, analyzing and storing huge data being accumulated. Some of the major computational

challenges include the assembly of the whole data, phylogenetic surveys, gene finding and comparative

metagenomic analysis for the metabolic pathways.

The data generated by metagenomics experiments are both enormous and inherently noisy.

Collecting, curating, and extracting useful biological information from datasets as well as pre-

filtering steps in which low-quality sequences and sequences of probable eukaryotic origin

(especially in metagenomes of human origin) are removed.

Assembly

DNA sequence data from genomic and metagenomic projects are essentially the same, but

genomic sequence data offers higher coverage while metagenomic data is usually highly non

redundant. Furthermore, the increased use of second-generation sequencing technologies with

short read lengths means that much of future metagenomic data will be error-prone. Taken in

combination, these factors make the assembly of metagenomic sequence reads into genomes

difficult and unreliable. Mis-assemblies are caused by the presence of repetitive DNA

sequences that make assembly especially difficult because of the difference in the relative

abundance of species present in the sample. Mis-assemblies can also involve the combination

of sequences from more than one species into chimeric contigs.

Two strategies can be employed for metagenomics samples:

i) Reference-based assembly (co-assembly)

ii) De novo assembly

Reference-based assembly can be done with software packages such as Newbler (Roche),

AMOS (http://sourceforge.net/projects/amos/), or MIRA. It works well, if the metagenomic

dataset contains sequences where closely related reference genomes are available. De novo

assembly typically requires larger computational resources. Tools based on the de Bruijn

graphs was specifically created to handle very large amounts of data. Machine requirements

for the de Bruijn assemblers Velvet or SOAP are still significantly higher than for reference-

based assembly (co-assembly), often requiring hundreds of gigabytes of memory in a single

machine and run times frequently being days.

http://sourceforge.net/projects/amos/

222

In metagenomics single reads have generally lower quality and hence lower confidence in

accuracy than do multiple reads that cover the same segment of genetic information. Therefore,

merging reads increases the quality of information. So in a complex community with low

sequencing depth or coverage, it is unlikely to actually get many reads that cover the same

fragment of DNA. Hence assembly may be of limited value for metagenomics. Hence there is

a need for metagenomic assembly to obtain high-confidence contigs that enable the study of,

e.g., major repeat classes.

Binning

Taxonomic binning is another problem in metagenomics analysis. Sequence binning refers to the

separation of sequences into taxon specific groups. A binning step may be part of the assembly process

of metagenomic data or may be used for separating the genomes of a few members in order to study the

biological processes carried by each one of them. Various algorithms have been developed, which

employ two types of information contained within a given DNA sequence.

i) First compositional binning makes use of the fact that genomes have conserved nucleotide

composition (e.g. a certain GC or the particular abundance distribution of k-mers).

ii) Secondly, the unknown DNA fragment might encode for a gene and the similarity of this

gene with known genes in a reference database can be used to classify and hence bin the

sequence.

Important considerations for using any binning algorithm are the type of input data available

and the existence of a suitable training datasets or reference genomes. In general, composition-

based binning is not reliable for short reads, as they do not contain enough information. It can

however be improved, if training datasets (e.g. a long DNA fragment of known origin) exist

and that is used to define a compositional classifier. These “training” fragments can either be

derived from assembled data or from sequenced fosmids and should ideally contain a

phylogenetic marker (such as rRNA gene) that can be used for high-resolution, taxonomic

assignment of the binned fragment.

Annotation

For annotation of metagenomics two approaches are used for annotation of coding regions in

the assembled contigs. First, if assembly has produced large contigs and reconstructed genomes

are the objective of the study then it is preferable to use existing pipelines for genome

annotation, such as RAST or IMG. For this, minimal contigs length of 30,000 bp or longer are

required. Second, annotation can be performed on the entire community and relies on

unassembled reads or short contigs. Here the tools for genome annotation are significantly less

useful than those specifically developed for metagenomic analyses.

Experimental Design and Statistical Analysis

For the reduction of sequencing cost and a much wider appreciation of the utility of

metagenomics to address fundamental questions in microbial ecology require proper

experimental designs with appropriate replication and statistical analysis. The data from

multiple metagenomic shotgun-sequencing projects can be reduced to tables, where the

columns represent samples and the rows indicate either a taxonomic group or a gene function

(or groups thereof) and the fields containing abundance or presence/absence data. As

metagenomic data often contain many more species or gene functions then the number of

223

samples taken, so appropriate corrections for multiple hypothesis testing have to be

implemented (e.g. Bonferroni correction for t-test based analyses).

Sometimes variation between sample types can be due to true biological variation and technical

variation and this should be carefully considered when planning the experiment. One should

kept in mind that many microbial systems are highly dynamic, so temporal aspects of sampling

can have a substantial impact on data analysis and interpretation. Taking multiple samples and

then pooling them will lose all information on variability and hence will be of little use for

statistical purposes. Ultimately, good experimental design of metagenomic projects will

facilitate integration of datasets into new or existing ecological theories. One of the ultimate

aims of metagenomics is to link functional and phylogenetic information to the chemical,

physical, and other biological parameters that characterize an environment.

Sharing and Storage of Data

Data sharing is important for the genomic research, there is a requirement for whole new level

of organization and collaboration to provide metadata and centralized services (e.g., IMG/M,

CAMERA and MG-RAST) as well as sharing of both data and computational results. Once

this has been achieved, researchers will be able to download intermediate processed results

from any one of the major repositories for local analysis or comparison. A suite of standard

languages for metadata is currently provided by the Minimum Information about any (x)

Sequence checklists (MIxS). MIxS is an umbrella term to describe MIGS (the Minimum

Information about a Genome Sequence), MIMS (the Minimum Information about a

Metagenome Sequence) and MIMARKS (Minimum Information about a MARKer Sequence)

and contains standard formats for recording environmental and experimental data. The latest

of these checklists, MIMARKS builds on the foundation of the MIGS and MIMS checklists,

by including an expansion of the rich contextual information about each environmental sample.

The US National Center for Biotechnology Information (NCBI) is mandated to store all

metagenomic data, however, the sheer volume of data being generated means there is an urgent

need for appropriate ways of storing vast amounts of sequences. As the cost of sequencing

continues to drop while the cost for analysis and storing remains more or less constant,

selection of data storage in either biological (i.e. the sample that was sequenced) or digital form

in (de-) centralized archives might be required. Ongoing work and successes in compression

of (meta-) genomic data, help in the storage of digital information cost-efficiently.

Applications of Metagenomics

Among the enormous applications of metagenomics the most important ones include environmental

studies, human health, identification of novel microbes, genes, pathways and mechanisms of their

survival, biodegradation of sewage, ocean pollutants, plastics, garbage, energy generation and bio-fuels

and biotechnological and industrial implications of the huge meta-sequence data coming out from the

unseen microbial communities.

Community Metabolism

In many bacterial communities, natural or engineered (such as bioreactors), there is significant

division of labor in metabolism (Syntrophy), during which the waste products of some

organisms are metabolites for others. Eg. in methanogenic bioreactor.

224

Metatranscriptomics

Metagenomics allows researchers to access the functional and metabolic diversity of microbial

communities, but it cannot show which of these processes are active. The extraction and

analysis of metagenomic mRNA (the metatranscriptome) provides information on the

regulation and expression profiles of complex communities apart from its technical difficulties

(e g. the short half-life of mRNA).

Viruses

Metagenomic sequencing is particularly useful in the study of viral communities. As viruses

lack a shared universal phylogenetic marker (as 16S RNA for bacteria and archaea, and 18S

RNA for eukarya), the only way to access the genetic diversity of the viral community from an

environmental sample is through metagenomics. Viral metagenomes (also called viromes)

should thus provide more and more information about viral diversity and evolution.

Advantages of Metagenomics in Different Areas

Metagenomics has the potential to advance knowledge in a wide variety of fields. It can also

be applied to solve practical challenges in medicine, engineering, agriculture, sustainability and

ecology.

Agriculture

As one gram of soil contains around 109-1010 microbial cells which comprise about one

gigabase of sequence information. They perform a wide variety of ecosystem services

necessary for plant growth, including fixing atmospheric nitrogen, nutrient cycling, disease

suppression, and sequester iron and other metals. Metagenomic approaches can contribute to

improved disease detection in crops and livestock and the adaptation of enhanced farming

practices which improve crop health by harnessing the relationship between microbes and

plants.

Biotechnology

Recent progress in mining the rich genetic resource of non-culturable microbes has led to the

discovery of new genes, enzymes, and natural products. The application of metagenomics has

allowed the development of fine chemicals, agrochemicals and pharmaceuticals etc.

Ecology

Metagenomics can provide valuable insights into the functional ecology of environmental

communities. eg. Breaking down of defecations helps to release the nutrients in the faeces into

a bioavailable form that can be taken up into the food chain.

Environmental remediation

Metagenomics can improve strategies for monitoring the impact of pollutants on ecosystems

and for cleaning up contaminated environments. Increased understanding of how microbial

communities cope with pollutants improves assessments of the potential of contaminated sites

to recover from pollution and increases the chances of bioaugmentation or biostimulation trials

to succeed.

Medicine

225

Metagenomic sequencing of human microbiome helps to determine the core human

microbiome. It also helps to understand the changes in the human microbiome that can be

correlated with human health, and to develop new technological and bioinformatics tools to

support these goals.

Biofuels

Biofuels are fuels derived from biomass conversion, as in the conversion of cellulose contained

in corn stalks, switchgrass, and other biomass into cellulosic ethanol. Metagenomic approaches

helps in the analysis of complex microbial communities thus allowing the targeted screening

of enzymes with industrial applications in biofuel production, such as glycoside hydrolases.

Conclusion

Metagenomics has changed the way microbiologists approach many problems, redefined the

concept of a genome, and accelerated the rate of gene discovery. The potential for application

of metagenomics to human benifit seems endless. Metagenomics gives genetic information on

potentially novel biocatalysts or enzymes, genomic linkages between function and phylogeny for

uncultured organisms and evolutionary profile of community function and structure. It can also be

complemented with metatranscriptomic or metaproteomic approaches to describe expressed activities.

Metagenomics is also a powerful tool for generating novel hypotheses of microbial functions,

remarkable discoveries of proteorhodopsin-based photoheterotrophy or ammonia-oxidizing Archaea.

One of the primary goals of metagenomics projects is to perform a comparative analysis of microbial

communities residing in diverse ecological niches. Assessing such differences can not only yield

valuable insights into the inherent structure of these microbial communities, but can also identify

genes/proteins/organisms that may confer specific functional characteristics to a given environment.

Insights gained from such comparative studies are expected to have immense potential in several

important areas of biological research, ranging from healthcare (e.g., disease diagnostics, detection of

pathogenic contamination and characterization of novel pathogens), industrial biotechnology (bio-

prospecting) and bio-remediation studies.

References

 Chen, K.; Pachter, L. (2005). "Bioinformatics for Whole-Genome Shotgun Sequencing of

Microbial Communities". PLoS Computational Biology, 1 (2): e24,

doi:10.1371/journal.pcbi.0010024

 Field D, Amaral-Zettler L, Cochrane G, et al., (2011). The Genomic Standards Consortium:

Minimum information about a marker gene sequence (MIMARKS) and minimum

information about any (x) sequence (MIxS) specifications. PLoS Biol, 9(6):e1001088.

 Gilbert J.A., Field D., Huang Y., Edwards R., Li W., Glina P. and Joint I. (2008). Detection

of large numbers of novel sequences in the metatranscriptomes of complex marine microbial

communities. PLoS ONE, 3: e3042.

 Glass EM, Wilkening J, Wilke A, Antonopoulos D, Meyer F, 2010(1). Using the

metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring

Harb Protocol, pdb prot5368.

 Huson DH, Auch AF, Qi J, Schuster SC, (2007). MEGAN analysis of metagenomic data.

Genome Research, 17(3):377-386.

 Kristiansson E, Hugenholtz P, Dalevi D, (2009). ShotgunFunctionalizeR, An Rpackage for

functional comparison of metagenomes. Bioinformatics, 25(20):2737-2738.

226

 Markowitz VM, Ivanova NN, et al. (2008). IMG/M: a data management and analysis system

for metagenomes. Nucleic Acids Res, 36 Database: D534-538.

 Morris R. M., Nunn B. L., Frazar C., Goodlett D. R., Ting Y. S., Rocap G. (2010).

Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and

energy transduction. ISME Journal, 4: 673–685.

 Rho M, Tang H, Ye Y, (2010). FragGeneScan: predicting genes in short and error prone

reads. Nucleic Acids Research, 38(20):e191.

 Thomas et al., (2012). Metagenomics - a guide from sampling to data analysis. Microbial

Informatics and Experimentation 2:3.

 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., & Glöckner, F. O.

(2012). The SILVA ribosomal RNA gene database project: improved data processing and

web-based tools. Nucleic acids research, 41(D1): D590-D596.

 Z L Sabree, M R Rondon, and J Handelsman, University of Wisconsin-Madison, Madison,

WI, USA (2009). Metagenomics. Elsevier Inc.

227

Metagenomics Data Analysis using QIIME

Anu Sharma

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

1. Introduction

QIIME 2 is a completely reengineered microbiome bioinformatics platform based on the

popular QIIME platform, which it has replaced. QIIME 2 facilitates comprehensive and fully

reproducible microbiome data science, improving accessibility to diverse users by adding

multiple user interfaces.

Fig. 1: Pipeline for amplicon data analysis

Key features:

 Integrated and automatic tracking of data provenance

 Semantic type system

 Plugin system for extending microbiome analysis functionality

 Support for multiple types of user interfaces (e.g. API, command line, graphical)

2. Data files: QIIME 2 artifacts

Data produced by QIIME 2 exist as QIIME 2 artifacts. A QIIME 2 artifact contains data and

metadata. The metadata describes things about the data, such as its type, format, and how it

was generated (provenance). A QIIME 2 artifact typically has the .qza file extension when

stored in a file.

Since QIIME 2 works with artifacts instead of data files (e.g. FASTA files), data can be

imported at any step in an analysis, though typically it start by importing raw sequence data.

QIIME 2 also has tools to export data from an artifact. By using QIIME 2 artifacts instead of

simple data files, QIIME 2 can automatically track the type, format, and provenance of data for

228

researchers. Using artifacts instead of data files enables researchers to focus on the analyses

they want to perform, instead of the particular format the data needs to be in for an analysis.

2.1 Data files: visualizations

Visualizations are another type of data generated by QIIME 2. When written to disk,

visualization files typically have the .qzv file extension. Visualizations contain similar types of

metadata as QIIME 2 artifacts, including provenance information. Similar to QIIME 2 artifacts,

visualizations are standalone information that can be archived or shared with collaborators.

In contrast to QIIME 2 artifacts, visualizations are terminal outputs of an analysis, and can

represent, for example, a statistical results table, an interactive visualization, static images, or

really any combination of visual data representations. Since visualizations are terminal outputs,

they cannot be used as input to other analyses in QIIME 2.

2.2 Semantic types

Every artifact generated by QIIME 2 has a semantic type associated with it. Semantic types

enable QIIME 2 to identify artifacts that are suitable inputs to an analysis. For example, if an

analysis expects a distance matrix as input, QIIME 2 can determine which artifacts have a

distance matrix semantic type and prevent incompatible artifacts from being used in the

analysis (e.g. an artifact representing a phylogenetic tree). Semantic types also help users avoid

semantically incorrect analyses. For example, a feature table could contain presence/absence

data (i.e., a 1 to indicate that an OTU was observed at least one time in a given sample, and a

0 to indicate than an OTU was not observed at least one time in a given sample). However, if

that feature table were provided to an analysis computing a quantitative diversity metric where

OTU abundances are included in the calculation (e.g., weighted UniFrac), the analysis would

complete successfully, but the result would not be meaningful.

This guide assumes that QIIME 2 have been installed using one of the procedures in the install

documents at https://docs.qiime2.org/2022.8/install/.

3. Obtaining and importing data

wget \

 -O 'emp-single-end-sequences.zip' \

 'https://docs.qiime2.org/2021.11/data/tutorials/moving-pictures-

usage/emp-single-end-sequences.zip'

unzip -d emp-single-end-sequences emp-single-end-sequences.zip

qiime tools import \

 --type 'EMPSingleEndSequences' \

 --input-path emp-single-end-sequences \

 --output-path emp-single-end-sequences.qza

4. Demultiplexing sequences

To demultiplex sequences we need to know which barcode sequence is associated with each

sample. This information is contained in the sample metadata file. You can run the following

https://docs.qiime2.org/2022.8/install/
https://data.qiime2.org/2022.8/tutorials/moving-pictures/sample_metadata

229

commands to demultiplex the sequences (the demux emp-single command refers to the fact

that these sequences are barcoded according to the Earth Microbiome Project protocol, and are

single-end reads). The demux.qza QIIME 2 artifact will contain the demultiplexed sequences.

qiime demux emp-single \

 --i-seqs emp-single-end-sequences.qza \

 --m-barcodes-file sample-metadata.tsv \

 --m-barcodes-column barcode-sequence \

 --o-per-sample-sequences demux.qza \

 --o-error-correction-details demux-details.qza

After demultiplexing, it’s useful to generate a summary of the demultiplexing results. This

allows you to determine how many sequences were obtained per sample, and also to get a

summary of the distribution of sequence qualities at each position in your sequence data.

qiime demux summarize \

 --i-data demux.qza \

 --o-visualization demux.qzv

5. Sequence quality control and feature table construction

QIIME 2 plugins are available for several quality control methods, including DADA2, Deblur,

and basic quality-score-based filtering. In this tutorial we present this step using DADA2. These

steps are interchangeable, so you can use whichever of these you prefer. The result of both of

these methods will be a FeatureTable[Frequency] QIIME 2 artifact, which contains counts

(frequencies) of each unique sequence in each sample in the dataset, and

a FeatureData[Sequence] QIIME 2 artifact, which maps feature identifiers in

the FeatureTable to the sequences they represent.

qiime dada2 denoise-single \

 --i-demultiplexed-seqs demux.qza \

 --p-trim-left 0 \

 --p-trunc-len 120 \

 --o-representative-sequences rep-seqs.qza \

 --o-table table.qza \

 --o-denoising-stats stats.qza

qiime metadata tabulate \

 --m-input-file stats.qza \

 --o-visualization stats.qzv

6. FeatureTable and FeatureData summaries

qiime feature-table summarize \

 --i-table table.qza \

 --m-sample-metadata-file sample-metadata.tsv \

 --o-visualization table.qzv

qiime feature-table tabulate-seqs \

http://earthmicrobiome.org/
https://www.ncbi.nlm.nih.gov/pubmed/27214047
http://msystems.asm.org/content/2/2/e00191-16
https://www.nature.com/nmeth/journal/v10/n1/abs/nmeth.2276.html
https://www.ncbi.nlm.nih.gov/pubmed/27214047

230

 --i-data rep-seqs.qza \

 --o-visualization rep-seqs.qzv

7. Generate a tree for phylogenetic diversity analyses

qiime phylogeny align-to-tree-mafft-fasttree \

 --i-sequences rep-seqs.qza \

 --output-dir phylogeny-align-to-tree-mafft-fasttree

8. Alpha and beta diversity analysis

qiime diversity core-metrics-phylogenetic \

 --i-phylogeny phylogeny-align-to-tree-mafft-fasttree/rooted_tree.qza

\

 --i-table table.qza \

 --p-sampling-depth 1103 \

 --m-metadata-file sample-metadata.tsv \

 --output-dir diversity-core-metrics-phylogenetic

9. Taxonomic analysis

wget \

 -O 'gg-13-8-99-515-806-nb-classifier.qza' \

 'https://docs.qiime2.org/2021.11/data/tutorials/moving-pictures-

usage/gg-13-8-99-515-806-nb-classifier.qza'

qiime feature-classifier classify-sklearn \

 --i-classifier gg-13-8-99-515-806-nb-classifier.qza \

 --i-reads rep-seqs.qza \

 --o-classification taxonomy.qza

qiime metadata tabulate \

 --m-input-file taxonomy.qza \

 --o-visualization taxonomy.qzv

qiime taxa barplot \

 --i-table table.qza \

 --i-taxonomy taxonomy.qza \

 --m-metadata-file sample-metadata.tsv \

 --o-visualization taxa-bar-plots.qzv

References

 https://docs.qiime2.org/2022.8/tutorials/moving-pictures-usage/

 https://docs.qiime2.org/2022.8/concepts/#data-files-qiime-2-artifacts

 Mehrbod Estaki,Lingjing Jiang,Nicholas A. Bokulich,Daniel McDonald,Antonio

González,Tomasz Kosciolek,Cameron Martino,Qiyun Zhu,Amanda Birmingham,Yoshiki

https://docs.qiime2.org/2022.8/tutorials/moving-pictures-usage/
https://docs.qiime2.org/2022.8/concepts/#data-files-qiime-2-artifacts

231

Vázquez-Baeza,Matthew R. Dillon,Evan Bolyen,J. Gregory Caporaso,Rob Knight (2020).

QIIME 2 Enables Comprehensive End-to-End Analysis of Diverse Microbiome Data and

Comparative Studies with Publicly Available Data. Current Protocols in Bioinformatics.

Current Protocols in Bioinformaticse100, Volume 70, Published in Wiley Online Library

(wileyonlinelibrary.com).doi: 10.1002/cpbi.100

232

MG-RAST for Metagenomics Analysis

Ratna Prabha

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Introduction

MG-RAST (https://mg-rast.org) facilitates 'Science as a Service for environmental DNA

(“metagenomic sequences”)'. MG-RAST server hosts more than 77,940 public and 480,100

total metagenomes containing 2,060 billion sequences and 303.81 Tbp (https://help.mg-

rast.org/user_manual.html). MG-RAST (Meyer et al. 2008) allows researchers across the globe

to perform analysis of function and composition of microbial communities. The MG-RAST

portal facilitates users with automated quality control, annotation, comparative analysis, and

archiving services.

Users can upload raw sequence data in MG-RAST portal as fastq, fasta and sff format. The

user-input sequences are normalized (quality controlled), processed and automatically

generates summaries for them. It hosts different approaches for assessing different data types,

including phylogenetic and metabolic reconstructions, along with the ability to compare the

metabolism and annotations of one or more metagenomes, individually or in groups. Data

access is password protected unless the owner has made it public, and all data generated by the

automated pipeline is available for download in variety of common formats.

URL: https://mg-rast.org/ http://metagenomics.anl.gov/

Fig. Pipeline followed by MG-RAST (https://help.mg-rast.org/user_manual.html)

https://mg-rast.org/
https://mg-rast.org/
http://metagenomics.anl.gov/

233

Fig. 1. Home page of MG-RAST

Fig 2. Registration page of MG-RAST. User account is needed for upload and analysis of data.

234

Fig 3. Login window of MG-RAST

Fig 4. Upload page of MG-RAST

235

Fig 5. Download page of MG-RAST

Fig 6. Analysis page of MG-RAST

236

Rank Abundance Plot

Fig 7. Rank Abundance Plot generated by MG-RAST

Rarefaction Curve

Fig 7. Rarefaction curve generated by MG-RAST

237

Fig 8. Alpha diversity generated by MG-RAST

Fig 9. Taxonomic hits distribution generated by MG-RAST

238

Fig 10. Data display by MG-RAST

Fig 11. Upload data page of MG-RAST

239

Fig 12. Analysis page of MG-RAST

Fig 13. Analysis page of MG-RAST

240

Fig 14. Annotation page of MG-RAST

Fig 15. Organism heatmap generated by MG-RAST

241

Reference

 F. Meyer, D. Paarmann, M. D’Souza, R. Olson , E. M. Glass, M. Kubal, T. Paczian, A.

Rodriguez, R. Stevens, A. Wilke, J. Wilkening, and R. A. Edwards. BMC Bioinformatics

2008, 9:386. http://www.biomedcentral.com/1471-2105/ 9/386

Fig 16. Rarefaction curve generated by MG-RAST

http://www.biomedcentral.com/1471-2105/9/386

242

Statistical Analysis of Metagenomics Data

Ms. Ritwika Das

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Statistical Analysis of Metagenomic Profiles

Taxonomic and functional differences between metagenomic samples can highlight the

influence of ecological factors on patterns of microbial life in a wide range of habitats.

Statistical hypothesis tests help to distinguish ecological influences from sampling artifacts,

but knowledge of only the p-value is insufficient to make inferences about biological relevance.

Biological relevance of a feature requires consideration of effect sizes and their associated

confidence intervals. Interpretation of statistical results can also benefit from transforming raw

p-values to superior interpretations and by allowing interactive filtering that permits focusing

on features with specific statistical properties. p-value indicates the probability of an observed

difference occurring simply by chance. Features in a profile with p-values below 0.05 are

termed as statistically significant and can reasonably be assumed to be enriched in one of the

metagenomes due to ecological or taxonomic differences as opposed to being the result of a

sampling artifact. Fisher’s exact test uses hypergeometric distribution to efficiently calculate

the exact p-value without the requirement of all possible permutation of sequences in a pair of

metagenomic samples. The chi-square test and G-test are well-known large sample

approximations to Fisher’s exact test. Barnard’s test is computationally prohibitive for the

majority of features in a typical metagenomic profile. So, we need to decide between an

approximation to Barnard’s exact test (e.g., bootstrapping) and Fisher’s exact test.

A typical metagenomic profile consists of several hundred features. When performing multiple

hypothesis tests, it is useful to modify the p-values so that they reflect a particular

interpretation. If we wish to examine a list of features where the probability of observing one

or more false positive is less than a specified probability, we can use a correction method.

Commonly applied correction methods include Bonferroni, Holm-Bonferroni and Šidák (Abdi,

2007). Alternatively, during exploratory analysis, we may be willing to accept a specific

percentage of false positives. This can be achieved using the Benjamini–Hochberg false

discovery rate (FDR) procedure (Benjamini and Hochberg, 1995) or the Storey FDR approach

(Storey and Tibshirani, 2003). These approaches complement each other while performing an

exploratory analysis. The list of significant features obtained without any multiple test

correction method gives us an initial global look at those features which may be differentially

abundant between our samples. An FDR approach can be used to refine this initial list and to

make the number of expected false positives explicit. Finally, a correction technique can be

applied to focus our attention to only those features where the observed enrichment or depletion

is highly unlikely to be a sampling artifact.

Effect Size and Confidence Intervals

To assess if a feature is of biological relevance, we should consider the magnitude of the

observed difference (i.e., an effect size statistic). An arbitrarily small effect can be statistically

significant if the sample sizes are sufficiently large. So, biological significance of a feature

must be supported by effect size statistics as well as p-values.

243

Table 1: Contingency table summarising data for a feature of interest

Table 2: Effect size statistics of a feature of interest

The most intuitive effect size statistic is the difference between proportions (DP) of sequences

assigned to a given feature in the two samples. Ratio of proportions (RP) is also a measure that

provides complementary information to the DP. Consideration of multiple effect size statistics

is often essential while assessing biological relevance as features can have a small (or, large)

DP, but a large (or, small) RP. The odds ratio (OR) has many desirable mathematical properties.

However, RP is preferred over OR due to the difficulty in interpretation of the latter.

Confidence interval (CI) indicates the range of effect size values that have a specified

probability of being compatible with the observed data. A 95% CI gives a lower and upper

bound in which the true effect size will be contained 19 times out of 20. There is a close

relationship between p-values and CI. CI that encompasses the identity effect size (e.g., DP =

0 or RP = OR = 1) will have a p-value > (1 – the coverage of the CI) (i.e., a p-value ≥ 0.05 for

a 95% CI). If the identity effect size is outside the CI, the p-value will be ≤ 0.05 for a 95% CI.

Critically, CI provides a mean to infer the biological relevance of a feature even when it is

marginally statistically significant.

Software: STAMP (Parks et al., 2010)

• Concept of STAMP

STAMP is a open source software package for analyzing various metagenomic profiles,

viz., taxonomic profiles indicating the number of marker genes assigned to different

taxonomic units or functional profiles indicating the number of sequences assigned to

different subsystems or pathways. A user-friendly, graphical interface permits easy

exploration of statistical results and generation of publication quality plots for inferring

biological relevant features present in a metagenomic profile. STAMP facilitates statistical

hypothesis tests to identify features (e.g., taxa or metabolic pathways) that differ

significantly between

244

1. Pairs of profiles (Two Sample)

2. Sets of profiles organized into two groups (Two Groups)

3. Sets of profiles organized into multiple groups (Multiple Groups)

• Software Installation

STAMP is implemented in Python and can be installed in any operating system, i.e.,

Windows/ MacOS/Linux. Source codes and executable binary file can be downloaded

from the following link:

https://github.com/dparks1134/STAMP/releases/tag/v2.1.3

Upon installation of the software, some example datasets also get downloaded in the

installation folder. Here, profile and metadata for the dataset EnterotypeArumugam is used

for the demonstration of this software.

• Input files

STAMP requires 2 input files:

1. Metagenomic profile file

2. Metadata file

• Metagenomic profile file:

https://github.com/dparks1134/STAMP/releases/tag/v2.1.3

245

STAMP can analyze both taxonomic and functional profiles. User defined input files

should be text files in tab-separated values (TSV) format. It can contain hierarchical

profile information for two or more samples. The first row of the file contains headers

for each column. First few columns indicate the hierarchical structure of a feature in

an arrangement of the highest to the lowest level. There are no restrictions on the depth

of the hierarchy but it must form a strict tree structure. Reads that have an unknown

classification at any point in the hierarchy should be marked as unclassified (case

insensitive). The parent of a classified child in the hierarchy must also be classified.

Other columns contain abundance values of features in different samples.

STAMP can analyze taxonomic or functional profiles obtained from MG-RAST software in

.tsv format. First column of this MG-RAST profile is the metagenome column. To perform

statistical analysis using STAMP, MG-RAST profile needs to be converted into a STAMP

compatible profile (.spf) using: File → Create STAMP profile from... → MG-RAST profile

Similarly, taxonomic and functional profiles from BIOM, Rita, CoMet and mothur can also be

analyzed using STAMP. It can directly process abundance profiles for multiple samples

obtained from the JGI IMG/M web portal. COG profiles from IMG/M do not contain

information about which COG category or higher level class a COG belongs to. STAMP can

add this information using: Append COG categories to IMG/M profile.

Metadata file:

STAMP requires additional data associated with each sample to perform statistical analysis of

metagenomic samples organized in two or more groups. These additional information are

provided in a metadata file in .tsv format. First column of this file indicates Sample Ids. Other

columns provide information about various grouping categories and corresponding values.

246

If metadata file is not provided, STAMP assumes all samples contained in a single group and

performs only “Two Sample” tests.

Analyzing Metagenomic Profiles:

Upload both profile file and metadata file to the STAMP software to perform various statistical

analysis for multiple groups/ two groups/ two samples.

 Statistical Analysis for Multiple Groups

Statistical properties can be set through the Properties window. It helps to set a number of

properties related to performing statistical tests:

 Parent Level: The proportion of sequences assigned to a feature will be calculated

relative to the total number of sequences assigned to its parent category. By default, it is

set as Entire sample.

 Profile Level: The hierarchical level at which statistical tests will be performed. It

facilitates analysis of metagenomic profile at different depths of the hierarchy.

 Unclassified: Unclassified sequences can be handled in 3 ways: a) retained in the

profile (Retain unclassified reads), removed from the profile (Remove unclassified reads),

or removed from consideration except when calculating a profile (Use only for calculating

frequency profiles).

 Statistical Properties: The statistical test, post-hoc test along with the confidence

interval width, effect size, and multiple test correction method to use can be specified in

this section. A list of methods provided in STAMP for analyzing multiple groups is given

in Table 3.

247

Filtering: This section provides a number of filters for identifying features that

satisfy a set of criteria (i.e., desired p-value and effect size).

Table 3: Multiple groups statistical techniques available in STAMP

248

 Graphical exploration of results:

Statistical analysis results can be graphically represented with the help of various plots. The

Group legend window helps to select the particular grouping category for which we want

to explore the results.

The following plots can be generated for exploring the analysis results of multiple

groups:

 PCA plot: Principal component analysis (PCA) plot of the samples. Clicking on a marker

within the plot indicates the sample represented by the marker. Markers of different colours

belong to different groups.

249

 Heatmap plot: It represents the proportion of sequences assigned to each feature in every

sample. Dendrograms can be shown along the sides of the heatmap and are used to cluster

both the features and samples.

 Bar plot: Bar plot represents the proportion of sequences assigned to a particular feature

in every sample.

 Box plot: It is similar to a bar plot. Box plot provides a more concise summary of the

distribution of sequence proportions of a feature in various groups. The box-and-whiskers

250

graphics show the median of the data as a line, the mean of the data as a star, the 25th and

75th percentiles of the data as the top and bottom of the box, and uses whiskers to indicate

the most extreme data point within 1.5*(75th – 25th percentile) of the median. Data points

outside of the whiskers are shown as crosses.

 Post hoc plot: Upon rejection of the null hypothesis, post hoc tests are performed to identify

which pairs of groups are differing significantly from each other. Post hoc plot shows the

results of such a test. It provides p-value and effect size measure for each pair of groups for

a particular feature.

Each of these plots provides a number of customization options. To customize a plot, click the

Configure plot button below the plot. Plots can also be sent to a new window using the Send

plot to window command under the View menu. This allows multiple plots to be viewed at

once. Plots can be saved in raster (PNG) and vector (PDF, PS, EPS, SVG) formats (File →

 Save plot).

 Statistical Analysis for Two Groups

To analyze a pair of groups, click on the Two groups tab in the Properties window. In the

Profile section, we have to specify which pair of groups will be analyzed. Data points of

these 2 groups will be represented by 2 different colours. Groupings are determined by the

251

value of the Group field present in the Group legend window. Here, the filtering section

provides a large number of filters for identifying features that satisfy a set of criteria.

Sequence filter removes features that have been assigned fewer than the specified number of

sequences. Parent sequence filter does the filtering of sequence counts within parental

categories. Effect size filters remove features with small effect sizes. Here, two different effect

size statistics are used. It allows one to filter features based on both absolute (i.e., difference

between proportions) and relative (i.e., ratio of proportions) measure of effect size.

A list of methods for statistical analysis of metagenomic profiles present in two groups is given

in Table 4.

252

Table 4: Two groups statistical techniques available in STAMP

 Graphical exploration of results:

Similar to multiple groups, here, bar plot, box plot, PCA plot and heatmap plot can be

generated to explore the result of statistical analysis for two groups.

253

Other

plots:

 Scatter plot:

It indicates the mean proportion of sequences within each group which are assigned to each

feature. This plot is useful for identifying features that are clearly enriched in one of the two

groups. The spread of the data within each group can be shown in various ways (e.g.,

standard deviation, minimum and maximum proportions).

254

 Extended error bar plot:

It indicates the difference in mean proportion between two groups along with the

associated confidence interval of this effect size and the p-value of the specified

statistical test. In addition, a bar plot indicates the proportion of sequences assigned

to a feature in each group of samples.

 Statistical Analysis for Two Samples

To analyze a pair of samples, click on the Two samples tab in the Properties window.

The Profile section is used to specify which pair of samples will be analyzed. Data

points (features) belonging to these 2 samples will be represented by 2 different

colours.

255

Similar to the previous analyses, various statistical properties and filtering criteria can

be explicitly mention for the analysis of metagenomic profiles belonging to two

different samples.

A list of statistical techniques for the analysis of metagenomic profiles belonging to

two different samples is given in Table 5.

256

Table 5: Two samples statistical techniques available in STAMP

 Graphical exploration of results:

Similar to the statistical analysis for two groups, here, bar plot, scatter plot and

extended error bar plot can be generated to explore the result of statistical analysis of

metagenomic profiles belonging to two different samples.

Other plots:

 Profile bar plot: It is a grouped bar plot indicating the proportion of sequences

assigned to each feature in the two selected samples. It is recommended for

investigating higher hierarchical levels of a profile where the number of features is

257

relatively small. Confidence intervals for each proportion are calculated using the

Wilson score method.

 Sequence histogram: It gives a general overview of the number of sequences

assigned to each feature in both the samples.

 Multiple comparison plots: It can be used to analyze the results of applying a

multiple test correction technique, e.g., Benjamini-Hochberg FDR.

258

 p-value histogram: It shows the distribution of p-values and corrected p-values

(i.e., number of features corresponding to a particular p-value) in a metagenomic

profile.

References:

 Abdi, H. (2007). Encyclopedia of Measurement and Statistics. Sage, Thousand Oaks, CA.

 Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and

powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57,

289 – 300.

 Parks, D. H. and Beiko, R. G. (2010). Identifying biologically relevant differences between

metagenomic communities. Bioinformatics, 26, 715 – 721.

 Storey, J. D. and Tibshirani, R. (2003). Statistical significance for genomewide studies.

Proceedings of the National Academy of Sciences of the United States of America, 100, 9440

– 9445.

259

Protein Structure Prediction and Molecular Docking

Sunil Kumar

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Protein structure prediction is one of the most significant technologies pursued by

computational structural biologist and theoretical chemist. It has the aim of determining the

three-dimensional structure of proteins from their amino acid sequences. In other words, this

is expressed as the prediction of protein tertiary structure from primary structure.

The practical role of protein structure prediction is now more important than ever. Massive

amounts of protein sequence data have been derived from modern large-scale DNA

sequencing efforts such as the Human Genome Project. But, the output of experimentally

determined protein structures, by time-consuming and relatively expensive X-ray

crystallography or NMR spectroscopy, is lagging far behind the output of protein sequences.

Due to exponentially improving computer power, and new algorithms, much progress is being

made to overcome these factors by the many research groups that are interested in the task.

Prediction of structures for small proteins is now a perfectly realistic goal. A wide range of

approaches are routinely applied for such predictions. These approaches may be classified into

two broad classes; ab initio modeling and comparative or homology modeling.

Ab initio Method

Ab initio- or de novo- protein modeling methods seek to build three-dimensional protein models

"from scratch", i.e., based on physicochemical principles rather than (directly) on previously

solved structures. There are many possible procedures that either attempt to mimic protein

folding or apply some stochastic method to search possible solutions (i.e., global optimization

of a suitable energy function). These procedures tend to require vast computational resources,

and have thus only been carried out for tiny proteins. To attempt to predict protein structure de

novo for larger proteins, we will need better algorithms and larger computational resources like

those afforded by either powerful supercomputers (such as Blue Gene or MDGRAPE-3).

Comparative protein modeling

Comparative protein modeling uses previously solved structures as starting points, or

templates. This is effective because it appears that although the number of actual proteins is

vast, there is a limited set of tertiary structural motifs to which most proteins belong. It has

been suggested that there are only around 2000 distinct protein folds in nature, though there

are many millions of different proteins.

These methods may also be split into two groups:

 Homology modeling is based on the reasonable assumption that two homologous proteins

will share very similar structures. Because a protein's fold is more evolutionarily conserved

than its amino acid sequence, a target sequence can be modeled with reasonable accuracy

on a very distantly related template, provided that the relationship between target and

template can be discerned through sequence alignment. It has been suggested that the

primary bottleneck in comparative modeling arises from difficulties in alignment rather

260

than from errors in structure prediction given a known-good alignment. Homology

modeling is most accurate when the target and template have similar sequences.

 Protein Threading scans the amino acid sequence of an unknown structure against a

database of solved structures. In each case, a scoring function is used to assess the

compatibility of the sequence to the structure, thus yielding possible three-dimensional

models. This type of method is also known as 3D-1D fold recognition due to its

compatibility analysis between three-dimensional structures and linear protein sequences.

This method has also given rise to methods performing an inverse folding search by

evaluating the compatibility of a given structure with a large database of sequences, thus

predicting which sequences have the potential to produce a given fold.

Homology Modeling: General Procedures

The steps to creating a homology model are as follows:

1) Identify homologous proteins and determine the extent of their sequence similarity with

one another and the unknown.

2) Align the sequences.

3) Identify structurally conserved and structurally variable regions.

4) Generate coordinates for core (structurally conserved) residues of the unknown structure

from those of the known structure(s).

5) Generate conformations for the loops (structurally variable) in the unknown structure.

6) Build the side-chain conformations.

7) Refine and evaluate the unknown structure.

1) Identifying Homologues

Several computerized search methods are available to assist in identifying homologues.

In most cases of homology modeling, we have the sequence of a protein for which we want to

model the three-dimensional structure (the unknown or target). We then apply sequence search

methods to identify proteins with which the unknown has some degree of sequence similarity

and for which the three-dimensional structures are available (the templates). We then assume

that these proteins are homologous with our unknown and use the three-dimensional structures

of these proteins to develop a model of the structure of our unknown. Ideally, one should have

several homologues with which to develop a homology model, but modeling can be done with

only one known structure.

2) Aligning Sequences

 A critical step in the development of a homology model is the alignment of the unknown

sequence with the homologues. Many methods are available for sequence alignment. Factors

to be considered when performing an alignment are-

1) Which algorithm to use for sequence alignment,

2) Which scoring method to apply, and

3) Whether and how to assign gap penalties.

Algorithms for Alignments

Sequence alignments generally are based on the dynamic programming algorithm of

Needleman and Wunsch. Current methods include FASTA, Smith-Waterman, and BLASTP,

with the last method differing from the first two in not allowing gaps.

261

Scoring Alignments

Scoring of alignments typically involves construction of a 20x20 matrix in which identical

amino acids and those of similar character (i.e., conservative substitutions) may be scored

higher than those of different character. Four general types of scoring have been applied to

alignments:

Identity: considers only identical residues

Genetic Code: considers the number of base changes in DNA or RNA to interconvert the

codons for the amino acids

Chemical Similarity: considers the physico-chemical properties (e.g., polarity, size, charge)

with greater weight given to alignment of similar properties

Observed Substitutions: considers substitution frequencies observed in alignments of

sequences. The substitution schemes are generally considered to be the best methods for

scoring alignments. These methods are based on an analysis of the frequency with which a

given amino acid is observed to be replaced by other amino acids among proteins for which

the sequences can be aligned.

PAM Matrices

One of the first substitution scoring schemes to be developed was the Dayhoff mutation data

matrix. Dayhoff and co-workers developed this method during analysis of the evolution of

proteins. The mutation probability matrix that they derived gives the probability of one amino

acid mutating to a second amino acid within a particular evolutionary time. The scoring

schemes are denoted PAM (Percentage of Acceptable point Mutations) followed by a number.

For example, if alignments were scored using PAM40 and PAM250, the lower PAM matrix

would recognize short alignments of highly similar sequences and the higher PAM matrix

would find longer, weaker local alignments

BLOSUM Matrices

The PAM substitution matrix is based on substitution frequencies from global alignments of

very similar sequences. Henikoff and Henikoff extended this approach by developing

substitution matrices using local multiple alignments of more distantly related sequences. A

database was assembled that contained multiple alignments (without gaps) of short regions of

related sequences. These sequences were clustered into groups (blocks) based on their

similarity at some threshold value of percentage identity. Blocks substitution matrices

(BLOSUM) were derived based on substitution frequencies for all pairs of amino acids within

a group. The different BLOSUM matrices were obtained by varying the threshold. For

example, a BLOSUM80 matrix is derived using a threshold of 80% identity.

Evaluating the Alignment

The final aspect of sequence alignment that should be considered is evaluation of the accuracy

of the alignment. The best way to assess the accuracy is to compare alignments from sequence

comparisons with alignments from protein three-dimensional structures. Of course this

assessment is possible only if you are working with a family of proteins for which three-

dimensional structures are known for at least two members of the family. In fact, this approach

to evaluation of alignments can be applied during the alignment process.

262

3) Identification of Structurally Conserved and Structurally Variable Regions

After the known structures are aligned, they are examined to identify the structurally conserved

regions (SCRs) from which an average structure, or framework, can be constructed for these

regions of the proteins. Variable regions (VRs), in which each of the known structures may

differ in conformation, also must be identified because special techniques must be applied to

model these regions of the unknown protein.

When only one known structure is available for homology modeling, it is more difficult to

identify the SCRs. Based on analyses of other homologues for which multiple structures are

available; we know that the SCRs generally correspond to the elements of secondary structure,

such as alpha-helices and beta-sheets, and to ligand- and substrate-binding sites. Thus, these

regions are used as the SCRs in the cases where only one structure is available. The VRs usually

lie on the surface of the proteins and form the loops where the main chain turns.

4) Generate coordinates for core (structurally conserved) residues of the unknown

structure from those of the known structure(s)

When generating coordinates for the unknown structure, one needs to model main chain

atoms and side chain atoms, both in SCRs and VRs.

For the SCRs, it is straightforward to generate the coordinates of the main chain atoms of the

unknown structure from those of the known structure(s). Side chain coordinates are copied if

the residue type in the unknown is identical or very similar to that in the known homologues.

For other side chain coordinates one can apply a side chain rotamer library in a systematic

approach to explore possible side chain conformations. It may be desirable to weight the

contribution of each homologue in each SCR based on the extent of similarity with the

unknown. In the event that some coordinates in the unknown are undefined in the SCRs,

regularization can be used to build and relax both main chain and side chain atoms in those

regions. Note that this procedure should be used only if the region of undefined atoms is one

or two residues in length.

5) Generate conformations for the loops (structurally variable) in the unknown structure

For the VRs, a variety of approaches may be applied in assigning coordinates to the unknown.

These regions will correspond most often to the loops on the surface of the protein. If a loop in

one of the known structures is a good model for that of the unknown, then the main chain

coordinates of that known structure can be copied. Side chain coordinates of residues that are

similar in length and character also may be copied. Rotamer libraries can be used to define

other side chain coordinates.

When a good model for a loop cannot be found among the known structures, one can search

fragment databases for loops in other proteins that may provide a suitable model for the

unknown. A residue range is chosen to include the undefined loop as well as a few residues

(e.g., three) on either side of the loop for which coordinates have been defined. Fragments are

examined for their ability to fit in the undefined region without making bad contacts with other

atoms and to overlap well with the residues on either side of the loop. The loop may then be

subjected to conformational searching to identify low energy conformers if desired.

Coordinates for side chain atoms in these loop regions may be copied if residues are similar,

though it is likely that considerable application of side chain rotamer libraries will be required

to define coordinates in these regions.

263

6) Evaluation and Refinement of the Structure

For a homology model from any source, it is important to demonstrate that the structural

features of the model are reasonable in terms of what is know about protein structures in

general. That is, researchers have analyzed three-dimensional structures of proteins from which

basic principles of protein structure and folding have been developed. Several programs are

available to assist in this analysis of correctness of a homology model.

The criteria for analysis of correctness can include:

1) Main chain conformations in acceptable regions of the Ramachandran map.

2) Planar peptide bonds.

3) Side chain conformations that correspond to those in the rotamer library

4) Hydrogen-bonding of polar atoms if they are buried

5) Proper environments for hydrophobic and hydrophilic residues

6) No bad atom-atom contacts

7) No holes inside the structure.

Programs that provide structure analysis along with output includePROCHEK and 3D-Profiler.

PROCHECK is based on an analysis of (phi, psi) angles, peptide bond planarity, bond lengths,

bond angles, hydrogen-bond geometry, and side-chain conformations of known protein

structures as a function of atomic resolution. Thus, the expected values of these parameters are

known and can be compared to a modeled structure based on the atomic resolution of the

structures from which the model was developed. 3D-profiler compares a homology model to

its sequence using a 3D profile. The profile is based on the statistical preferences of each of the

20 amino acids for particular environments within the protein. Each residue position in a 3D

model can be characterized by its environment. Preferred environments for amino acids are

derived from known three-dimensional structures and are defined by three parameters: (1) the

area of each residue that is buried, (2) the fraction of side-chain area that is covered by polar

atoms (i.e., O and N), and (3) the local secondary structure. Based on these environment

variables, a 3D structure is converted into a 1D profile that describes each residue in the folded

protein structure. Examination of these profiles reveals which regions of a sequence appear to

be folded correctly and which do not.

Once any irregularities have been resolved, the entire structure may then be subjected to further

refinement. This process may consist of energy minimization with restraints, especially for the

SCRs. The restraints then may be gradually removed for subsequent minimizations. It also may

be advantageous to apply molecular dynamics in conjunction with energy minimization. For

any of these refinement procedures, the structure should be solvated, using for example

crystallographic waters from the known homologues, a solvent shell, or a periodic box of pre-

equilibrated water molecules.

Databases of Structures from Homology Modeling

Databases are now available that contain large numbers of protein structures that have been

obtained by comparative (homology) modeling. Two of these databases are listed here:

1) ModBase - It is a query able database of annotated protein structure models. The models

are derived by Modpipe,an automated modeling pipeline relying on the programs PSI-

BLAST and MODELLER.The database also includes fold assignments and alignments on

264

which the models were based.MODBASE contains theoretically calculated models, which

may contain significant errors, not experimentally determined structures.

2) 3DCrunch - It is a large scale modeling project that aims to submit all entries from protein

sequence databases to SWISS-MODEL. Currently the database contains 64,000 entries.

Automated Web-Based Homology Modeling

Web-based tools are now available to generate models of protein 3-dimensional structures

using comparative modeling techniques.

1) SWISS-MODEL - It is a fully automated protein structure homology-modeling server,

accessible via the ExPASy web server, or from the program Deep View (Swiss Pdb-

Viewer). The purpose of this server is to make Protein Modeling accessible to all

biochemists and molecular biologists World Wide. The present version of the server is

3.5 and is under constant improvement and debugging. SWISS-MODEL was initiated in

1993 by Manuel Peitsch

2) WHAT IF - It is available on EMBL servers, includes three components, one to generate

the homology models, one to evaluate the quality of the homology models, and one to

evaluate models of proteins for which the structure is already known, thereby providing

for evaluation of the quality of the modeling program.

Source:-

1) http://en.wikipedia.org/wiki/Homology_modeling

2) http://en.wikipedia.org/wiki/Protein_structure_prediction

3) http://cmbi.kun.nl/gvteach/hommod/index.shtml

4) http://bioinfo.se/kurser/swell/homology.html

5) Sali A, Blundell TL. (1993). Comparative protein modelling by satisfaction of spatial

restraints. J Mol Biol 234(3):779-815

6) Fiser A, Sali A. (2003). ModLoop: automated modeling of loops in protein structures.

Bioinformatics 19(18):2500-2510

7) John B, Sali A. (2003). Comparative protein structure modeling by iterative

alignment, model building and model assessment. Nucleic Acids Res 31(14):3982-

3992

Protein- Ligand Interaction by Performing Docking Studies

Objective:

To find the interaction between the protein and a ligand molecule by performing docking

studies.

Theory

A molecule is a small chemical element that is made up of two or more atoms held together by

chemical bonds. A molecule can be composed of either single kind of element (e.g. H2) or

different kinds of elements (e.g. CO2). Molecules can be found in both living things and non

living things. A drug is a small molecule that can interact, bind and control the function of

biological receptors that helps to cure a disease. Receptors are proteins that interact with other

biological molecules to maintain various cellular functions in plants. Enzymes, hormone

receptors, cell signaling receptors, neurotransmitter receptors etc. are some important receptors

in plants.

http://www.bioinfo.se/kurser/swell/homology.html

265

Drug designing is a process of designing a drug molecule that can interact and bind to a target.

Receptors are molecules which can be seen on the surface of the cell which receives signals

and can be defined as a molecule which recognizes a small molecule, which on binding triggers

a cellular process. In an unbounded state receptor, functionalities of the receptor remain silent.

Hence this definition says that receptor binds specifically to a particular ligand or vice versa,

but in some cases high concentrations of ligands will binds to a multiple receptor sites.

Drug receptors usually remain without endogenous ligand. The receptors for these drugs

molecules can be an enzyme, an ion channels, proteins, nucleic acids etc. Hence the drug

molecule will go and cross link the DNA and stops DNA replication. Receptors for endogenous

regulatory ligands are hormones, growth factors etc. Hence the function of these receptors is

to sense the ligands and to initiate the response. For example, Aspirin is a small pain killer drug

molecule which contains nine carbon atoms, eight hydrogen atoms and four oxygen atoms.

Design of the molecules should be complementary in shape and charge to the target.

Molecular modeling includes computational techniques that are used to model a molecule.

Drug designing by using these modeling techniques is referred to as computer-aided drug

design. Computer based drug design is a fast, automatic, very low cost process. It can be done

either by Ligand based drug design or Structure based drug design. Ligand based drug design

purely based on the model which is going to bind to the target, defining of pharmacophoric

regions are necessary for the molecule in order to bind the target but Structure based drug

design is based on the 3 dimensional structure of the target. If any target is not available it can

be created by using homology modeling. Using the structure of the target predict the drug

molecules binding affinity to the target. Building a molecule using computer techniques is a

very important step in drug deigning. There are so many computational tools available for

building a molecule. After modeling a molecule, check where the ligand get docked onto the

receptor, and check whether the ligand fits for the target molecule and go for Docking studies.

Protein ligand interaction:

Proteins are the fundamental units of all living cells and play a vital role in various cellular

functions. Each protein has specific function in plants. The structure of the protein determines

its function. The binding of a protein with other molecules is very specific to carry out its

function properly. For this reason every protein has a particular structure. A molecule is a small

chemical element that is made up of two or more atoms held together by chemical bonds. A

drug is a small molecule that can interact, bind and control the function of biological receptors

that helps to cure a disease.

Protein–ligand interactions are essential for all processes happening in living organisms.

Ligand-mediated signal transmission through molecular complementary is essential to all life

processes; these chemical interactions comprises biological recognition at molecular level. The

evolution of the protein functions depends on the development of specific sites which are

designed to bind ligand molecules. Ligand binding capacity is important for the regulation of

biological functions. Protein-Ligand interactions occur through the molecular mechanics

involving the conformational changes among low affinity and high affinity states. Ligand

binding interactions changes the protein state and protein function.

266

Key concepts of protein ligand interaction:

1. Every biological reaction is initiated by protein-ligand interaction step. Such reactions

never involve in the binding of single ligand or single step.

2. Binding of two or more ligands to a same protein indicates mutual interaction.

3. Ligand binding plays an important role in regulation of biological function.

4. Ligand binding may leads to the conformational changes in proteins.

5. Ligand and macromolecule interaction provides the strength of the interaction.

 What is Docking?

Docking is a method which predicts the preferred orientation of one molecule to another

molecule when they are bound together to form a stable complex. Molecular docking can be

referred as “lock and key” model. Here the protein can be called as a lock and the ligand can

be called as key, which describes the best fit orientation of the ligand which it goes and binds

to a particular protein. To perform a docking, first one may require a protein molecule. The

protein structures and ligands are the inputs for the docking.

Figure1: Example of Docking

Docking can be based on two separate platforms.

1. Search algorithm

Search algorithm creates an optimum number of configurations that includes the binding

modes which are determined experimentally. Configurations are evaluated using scoring

functions to differentiate the binding modes from the other modes.

267

The common search algorithms are:

1. Monte Carlo methods

2. Genetic algorithms

3. Fragment-based methods

4. Point complimentary methods

5. Tabu searches

6. Systematic searches

7. Molecular dynamics.

2. Scoring function:

Scoring functions are developed to find the interactions between the protein- protein

interactions and protein-DNA interactions. Scoring methods are the mathematical methods

used to predict the strength of interaction between two molecules.

Steps for Docking:

1. Preparation of the Protein molecule :

Download the protein structure to the working directory. Remove the water molecules and add

hydrogens to the molecule to satisfy the valances of the molecule. X-ray crystallographic

structures cannot resolove the hydrogen, so in most of the PDB structures hydrogens are absent.

Remove the disulphide and trisulphide bonds of a protein using AutoDock. After the

preparation of the molecules, molecules has to be minimized.

2. Preparation of ligand molecules :

Prepare a ligand molecule which is going to bind to the target add hydrogen atoms to the

molecule and filter the unwanted molecules based on their properties like water and small ions.

If the stereoisomers are missing from the Molecule it requires adding stereo chemical

information. Optimize the geometry of the molecule. Take the molecule for docking studies.

3. Surface representation:

Take a receptor and ligand molecule for studies, receptor as a static and ligand molecule as

flexible. Find the Surface of the molecules by using geometric features of the molecules. Grid

points are used to find the surface area.

4. Feature calculation

Features are the methods which are used to find the potential docking sites that are derived

from surface representation.

5. Docking

It is important to find the cavities on the surface of the receptor in protein Ligand interaction.

6. Evaluation of Docking result:

Dock the each individual parts, docking of each segments gives the total score.

Types of Docking:

Rigid Docking: In a rigid molecular docking the molecules are referred as rigid objects they

cannot change their shape during the docking

268

Flexible Docking: In a flexible docking the molecules are referred as flexible objects that they

can change their shapes according to the ligand and the target during docking process.

 AutoDock:

AutoDock is a docking tool, which is designed to predict the behavior of the small molecules

and helps user to perform the docking of ligands to a set of grids which describes the target,

once docking completes result can visualize in 3D view. AutoDock 4 is freely available under

the GNU General Public License. AutoDock uses a Monte Carlo simulation with a rapid energy

evaluation using grid based molecular affinity potentials. It is given a volume around the

protein, the rotatable bonds for the substrate, and an arbitrary starting configuration, and the

procedure produces a relatively unbiased docking.

 Different applications of AutoDock:

1.Structure based drug design.

2.X-ray crystallography

3.Lead optimization

4.Combinatorial library design

5.Protein-Protein docking.

6.Chemical mechanism studies.

Home page of AutoDock:

Procedure

Here one can perform rigid docking where the protein and the ligand molecule are non flexible.

Here phosphatidyl-inositol-3-kinases (PDB ID -1E7U) is used as an example for receptor and

its ligand KWT. Autodock Tools can be used to prepare PDBQT molecules of the receptor and

ligand with PDBQT format, in which PDB format contains partial charges (“Q”) and atom

types (“T”).

1. Open the Autodock software by clicking on Autodock icon from your desktop. (Figure 1).

269

Figure 1: AutoDock GUI

2. Read the downloaded PDB molecule 1E7U in the work space panel by clicking on the tab

“File“ and then select “Read molecules” as shown in Figure 2.

Figure 2: To read a molecule

270

Figure 3: 1E7U

3. PDB files can have errors such as missing atoms, chain breaks, water molecules etc. which

is needed to be corrected. Select all water molecules which obstruct the accuracy of docking

procedure.

4. Click on the “Edit” tab and select “Delete Water” to delete the water molecules from the

receptor molecule as shown in Figure 4.

Figure 4: Deleting water molecule

5. For adding Hydrogens to satisfy valency, Click on the “Edit” tab and select “Hydrogen”

and then select “Add” option as shown in Figure 5.

271

Figure 5: Adding Hydrogen to the receptor

6. Now select “Polar Only” -> “noBondOrder”->”Yes” respectively and then click on the

“Ok” option as shown in Figure 6.

Figure 6: Adding Hydrogen

7. Click on the “Grid” option and select “Macromolecules” and select Choose option for

selecting the molecule as shown in Figure 7 and 8.

272

Figure 7 and 8: Selecting the receptor molecule for applying grid

8. By clicking on the respective molecule will display the details of non bonded atoms, non

polar hydrogen atoms and non integral charge on the molecule. After that save the molecule

in PDBQT format.(Figure 9)

273

9. To set grid parameters, go to “Grid” -> “Grid Box” as shown in Figure 10. A “Grid Option”

message appears which helps the user to change the grid point per map in all positions. It

sets the 3D space for better binding conformation as shown in the figure. The maximum

value that can be given by the Autogrid is 126.

Figure 10: Grid Option box

274

Figure 11: Assigning 3D space for better binding conformation

10. Next step is to prepare the ligand molecule for docking. Open the ligand miolecule by

clicking on the “Ligand” option and select “Input” and click on “Open”. Select the

downloaded molecule and open it in the work space panel as shown in Figure 12.

Figure 12: Reading ligand molecule

275

Figure 13: KWT opened in work space panel

11. The receptor molecule and ligand molecule can be viewed separately by clicking on

dashboard which is displayed on the left side of the work space panel. By selecting the

required molecule will display it in work space panel. The other options will enable us to

view in other formats too as shown in Figure 14.

Figure 14: Dashboard with other options

12. To choose Torsions, click on the “ligand “ -> “Torsion Tree” ->”Choose Torsions” which

will display the number of rotatable bonds. The rotatable bonds is displayed in green color,

276

non-rotatable bonds in magenta color and unrotatable bonds in red color. To make a non -

rotatable bond to rotatable, click on the bond itself as shown in Figure 15.

Figure 15: Selecting torsions to view rotatable bonds

13. The output can be saved inPDBQT format. For that click on the “Ligand” -> “Output” -

>”Save as PDBQT” , so that it can be saved along with the receptor molecule in the same folder

itself as shown in Figure 16.

Figure 16: Output saved as PDBQT format

14. For running the Vina program, command prompt is used, “vina help” prints the different

options necessary for running the program. It includes commands for receptor, ligand and so

on. The configuration file is wriiten in a text document with the following format as shown in

Figure 17.

277

Figure 17: Configuartion file saved as a text document

15. For running Autodock Vina, vina.exe --config conf.txt --log log.txt can be used as the

script as shown in figure 14, which will create an outout file of the ligand and a log file along

with other files. (Figure 18)

Figure 18: Output in Command prompt

Reference:

 This Experiment uses: Trott, O. and Olson, A. J. (2010), AutoDock Vina: Improving the

speed and accuracy of docking with a new scoring function, efficient optimization, and

multithreading. J. Comput. Chem., 31: 455–461. doi: 10.1002/jcc.21334,

onlinelibrary.wiley.com/doi/10.1002/jcc.21334/abstract

http://onlinelibrary.wiley.com/doi/10.1002/jcc.21334/abstract

278

Webliography:

1. Autodock Vina : vina.scripps.edu/

 2. Autodock Vina Download : mgltools.scripps.edu/

 3. metavo.metacentrum.cz/en/docs/aplikace/software/Autodock-vina.html

 4. Autodock Vina Manual: vina.scripps.edu/manual.html

Videos:

 1. Autodock Vina Tutorial: vina.scripps.edu/tutorial.html

http://vina.scripps.edu/
http://mgltools.scripps.edu/
http://metavo.metacentrum.cz/en/docs/aplikace/software/Autodock-vina.html
http://vina.scripps.edu/manual.html
http://vina.scripps.edu/tutorial.html

279

Molecular Dynamics and Simulation

Sneha Murmu, U B Angadi and Sudhir Srivastava

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Introduction

Molecular dynamics (MD) simulation is a computational technique used to study the behavior

of atoms and molecules over time. It is based on the laws of classical mechanics, which describe

how particles move and interact with each other under the influence of forces. In an MD

simulation, the positions, velocities, and accelerations of the atoms or molecules are calculated

at each time step, and the system is evolved forward in time.

The basic principle of MD simulation is based on the integration of Newton's second law of

motion, which states that the force acting on an object is proportional to its mass times its

acceleration. In MD, the forces acting on each atom or particle are calculated using a force

field, which describes the interactions between the atoms or particles in the system. The force

field is typically based on empirical or theoretical models, which consider the van der Waals

forces, electrostatic interactions, and bonded interactions such as covalent bonds, hydrogen

bonds, and torsional angles. The motion of the atoms or particles is then simulated using

numerical integration of Newton's equations of motion. This process involves calculating the

position and velocity of each atom or particle at each time step, based on the forces acting on

it, and then updating the forces based on the new positions and velocities.

MD simulations can provide detailed information on the structure, dynamics, and

thermodynamics of a system. They can be used to study the behavior of molecules, proteins,

and materials in different environments, such as solvents, membranes, or under mechanical

stress. MD simulations can also be used to predict the behavior of systems under different

conditions or to explore the effects of mutations or drug interactions on protein structures.

Force Fields

Force fields are critical components of molecular dynamics (MD) simulations. They provide a

mathematical description of the interatomic or intermolecular forces that govern the behavior

of the simulated system. Force fields specify the potential energy and its corresponding force

as a function of the coordinates of the atoms or molecules, which is used to calculate the motion

of the system over time. They are mathematical models that include parameters for the bond

stretching, bond bending, torsion, and non-bonded interactions between atoms (Figure 1). The

accuracy of the force field determines the accuracy of the MD simulations.

There are two primary types of force fields used in molecular dynamics simulations: classical

and quantum mechanical. Classical force fields are most commonly used in biomolecular

simulations and are based on a set of mathematical functions and empirical parameters to

describe the interactions between atoms. These force fields are computationally efficient and

can simulate systems up to millions of atoms. Quantum mechanical force fields, on the other

hand, consider the electronic structure of atoms and molecules and are computationally more

intensive but can provide higher accuracy in describing the system.

A functional form for a force field (also called Potential Energy Function) that can be used to

model single molecule or assemblies of atoms and / or molecules is as shown below:

280

𝜓(𝐫𝑁) = ∑
𝑘𝑖

2𝑏𝑜𝑛𝑑𝑠 (𝑙𝑖 − 𝑙𝑖,0)2 + ∑
𝑘𝑖

2𝑎𝑛𝑔𝑙𝑒𝑠 (𝜃𝑖 − 𝜃𝑖,0)2 + ∑
𝑉𝑛

2𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠 (1 + 𝑐𝑜𝑠(𝑛𝜔 − 𝛾)) +

∑ ∑ (4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

+
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
])𝑁

𝑗=𝑖+1
𝑁
𝑖=1 … Equation 1

𝜓(𝑟𝑁) denotes the potential energy, which is a function of the positions (r) of N particles

(usually atoms).

The first term in the Equation 1 models the interaction between pairs of bonded atoms, here

modelled by a harmonic potential that gives the increase in energy as the bond length li deviates

from the reference value li,0. The second component is a summation over all valence angles in

the molecule, modelled using a harmonic potential. A valence bond angle is the angle formed

between three atoms A-B-C in which A and C are both bonded to B. The third component is a

torsional potential that models how the energy changes as a bond rotates. The fourth component

is the non-bonded term. It is calculated between all pairs of atoms (i and j) that are in different

molecules or that are the same molecule but separated by at least three bonds (1, n relationship

where n ≥ 4). In a simple force field, the non-bonded term is modelled using a Coulomb

potential term for electrostatic interactions and a Lennard-Jones potential for van der Waals

interactions.

The first three are the components of covalent (or bonded) contribution and the last one is the

component of non-covalent (or non-bonded) contribution.

A simple form of the above equation:

A potential function or force field calculates the molecular system's potential energy (E) in a

given conformation as a sum of individual energy terms,

E = ECovalent + ENon-covalent …

Equation 2

where, ECovalent = Ebond + Eangle + Edihedral

ENon-covalent = Eelectrostatic + Evan der Waals

281

Figure 1: Schematic representation of bonded (upper row) and non-bonded (lower row)

components contributing to a molecular mechanics force field.

There are several different force fields that have been developed over the years, each with its

own strengths and limitations. Here are some examples:

CHARMM (Brooks et al., 2009): The Chemistry at Harvard Macromolecular Mechanics

(CHARMM) force field is widely used for biomolecular simulations. It includes parameters

for all of the major types of interactions, including covalent bonds, angles, dihedrals, van der

Waals forces, and electrostatics. It is known for its accuracy in reproducing protein structures

and dynamics.

AMBER (Case et al., 2010): The Assisted Model Building with Energy Refinement (AMBER)

force field is also widely used in biomolecular simulations. It includes parameters for bond

stretching, bond bending, torsion, and non-bonded interactions, and is known for its accuracy

in reproducing experimental structures and dynamics.

OPLS (Damm et al., 1997): The Optimized Potentials for Liquid Simulations (OPLS) force

field was originally developed for liquid simulations, but has also been used in biomolecular

simulations. It includes parameters for bond stretching, bond bending, torsion, and non-bonded

interactions, and is known for its accuracy in reproducing thermodynamic properties of liquids.

GROMOS (Scott et al., 1999): The Groningen Molecular Simulation (GROMOS) force field

is widely used in simulations of small molecules and peptides. It includes parameters for bond

stretching, bond bending, torsion, and non-bonded interactions, and is known for its accuracy

in reproducing thermodynamic properties of small molecules.

Conclusion

Bond stretching

Angle bending Bond rotation

(torsion)

Non-bonded interactions

(electrostatic)
Non-bonded interactions

(van der Waals)

δ+

δ+

δ-

282

In summary, the principle of molecular dynamics simulation is based on the integration of

classical mechanics, which involves calculating the positions, velocities, and forces of all atoms

or particles in a system as a function of time. MD simulations can provide detailed information

on the structure, dynamics, and thermodynamics of a system and can be used to study a wide

range of molecular and material systems.

**********************************Practical*********************************

The purpose of this hands-on is to provide an introduction to the fundamental commands

needed to set up, run, and analyze MD simulations using a suitable simulation tool. GROMACS

which is one of the most popular Molecular Dynamics (MD) simulation software, will be used

for the practical session. Before starting with the steps of typical MD simulation, let us have a

quick look on how to install GROMACS in linux (here, Ubuntu).

Installation

To install GROMACS, we need the following software installed on our system:

i. C & C++ Compiler which comes built-in with Ubuntu.

ii. CMake – A linux software to make binaries

iii. BuildEssential – It is a reference for all the packages needed to compile a package.

iv. FFTW Library: a library used by Gromacs to compute discrete Fourier transform

v. DeRegressionTest Package

Following are commands to install above mentioned pre-requisites:

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install cmake

sudo apt-get install build-essential

wget http://gerrit.gromacs.org/download/regressiontests-5.1.1.tar.gz

tar xvzf regressiontests-5.1.1.tar.gz

sudo apt-get install libfftw3-dev

wget ftp://ftp.gromacs.org/pub/gromacs/gromacs-5.1.1.tar.gz

tar xvzf gromacs-5.1.1.tar.gz

cd gromacs-5.1.1/

mkdir build

cd build

sudo cmake .. -DGMX_BUILD_OWN_FFTW=OFF -

DREGRESSIONTEST_DOWNLOAD=OFF -DCMAKE_C_COMPILER=gcc -

DREGRESSIONTEST_DOWNLOAD=ON

283

make

make check

sudo make install

source /usr/local/gromacs/bin/GMXRC

If the execution of above commands was successful, the installation is complete. You may

check the version of your Gromacs with a command to make sure the installation finished as

expected.

gmx pdb2gmx --versionource /usr/local/gromacs/bin/GMXRC

MD Simulation protocol

Following steps are involved in simulating a protein structure.

 Create initial state

i. Generate topology of protein

ii. Add box and solvation to the system

iii. Add ions to the solved system

 Introduction to the interaction potentials

iv. Energy minimization

 Predict how the particles move

v. Equilibration of system

vi. MD Production run

Now, we will see how to perform each step in more details. For the purpose of demonstrating

simulation of protein, a small protein structure of ubiquitin (PDB code 1UBQ) was downloaded

from RCSB PDB.

1. Generate topology

The obtained protein structure must be checked for the following things:

 Remove the water molecules if present

 Non-standard residues like heteroatoms must be removed

 Residues with missing atoms must be fixed beforehand

If water molecules are present, we can simply use the grep command to search for “HOH” in

the PDB file and then remove them. The following command can be used for removing water

molecules:

grep -v HOH 1UBQ.pdb > 1UBQ_clean.pdb

The next step is to use the pdb2gmx module of GROMACS. The pdb2gmx module generates

three files:

 The topology for the molecule.

 A position restraint file.

284

 A post-processed structure file.

The topology (topol.top by default) contains all the information necessary to define the

molecule within a simulation. This information includes nonbonded parameters as well as

bonded parameters. The following command was used to execute pdb2gmx:

gmx pdb2gmx -f 1UBQ_clean.pdb -o 1UBQ_processed.gro -water spce

The structure is processed by pdb2gmx, and we are prompted to choose a force field. We will

use the all-atom OPLS force field, so ‘15’ was typed at the command prompt

The force field will contain the information that will be written to the topology.

2. Solvation

To simulate proteins and other molecules we need to define the box dimensions around the

protein and fill in the box with solvent. The box was defined using the following command:

gmx editconf -f 1UBQ_processed.gro -o 1UBQ_newbox.gro -c -d 1.0 -bt cubic

-c : centers the protein in the box

-d 1.0 : places the protein at least 1.0 nm from the box edge

-bt cubic : The box type is defined as a cube

Specifying a solute-box distance of 1.0 nm will mean that there are at least 2.0 nm between any

two periodic images of a protein. This distance will be sufficient for just about any cut off

scheme commonly used in simulations.

The box is filled with solvent (water) by using the command below:

gmx solvate -cp 1UBQ_newbox.gro -cs spc216.gro -o 1UBQ_solv.gro -p topol.top

-cp : this parameter takes as input the configuration of the protein which is contained in the

output file obtained from the previous step

-cs : configuration of the solvent is part of the standard GROMACS installation. We are using

spc216.gro, which is a generic equilibrated 3-point solvent model.

3. Adding Ions

Neutralizing a system is a practice carried out for obtaining correct electrostatic values during

the simulation. This is done because under periodic boundary and using PME electrostatics -

the system has to be neutral. Therefore, we are adding ions to neutralization purpose only. The

tool for adding ions within GROMACS is called genion which reads through the topology and

replace water molecules with the ions that the user specifies. The input is called a run input

file, which has an extension of. tpr. The .tpr file contains all the parameters for all of the atoms

in the system.ed by the GROMACS grompp module (GROMACS pre-processor).

Assemble .tpr file with the following command:

gmx grompp -f ions.mdp -c 1UBQ_solv.gro -p topol.top -o ions.tpr

Now we have an atomic-level description of our system in the binary file ions.tpr. We will pass

this file to genion:

gmx genion -s ions.tpr -o 1UBQ_solv_ions.gro -p topol.top -pname NA -nname CL -neutral

-s : input file given as structure/state file (.tpr file)

-pname and -nname : define the positive and negative ion names

-neutral : add only the ions necessary to neutralize the net charge on the protein by adding the

correct number of negative ions (in this case will add 8 Cl- ions to offset the +8 charge on the

protein)

285

4. Energy minimization (EM)

EM is done to ensure there that the system has no steric clashes or inappropriate geometry.

First, we need to assemble structure, topology, and simulation parameters into a binary input

file (.tpr file):

gmx grompp -f minim.mdp -c 1UBQ_solv_ions.gro -p topol.top -o em.tpr

Here, minim.mdp is the file containing information regarding molecular dynamics parameter.

It is not inherently present in the GROMACS distribution; hence it needs to be created before

the execution of above command. An mdp file contain following parameters,

; minim.mdp - used as input into grompp to generate em.tpr

; Parameters describing what to do, when to stop and what to save

integrator = steep ; Algorithm (steep = steepest descent minimization)

emtol = 1000.0 ; Stop minimization when the maximum force < 1000.0 kJ/mol/nm

emstep = 0.01 ; Minimization step size

nsteps = 50000 ; Maximum number of (minimization) steps to perform

; Parameters describing how to find the neighbors of each atom and how to calculate

the interactions

nstlist = 1 ; Frequency to update the neighbor list and long range forces

cutoff-scheme = Verlet ; Buffered neighbor searching

ns_type = grid ; Method to determine neighbor list (simple, grid)

coulombtype = PME ; Treatment of long range electrostatic interactions

rcoulomb = 1.0 ; Short-range electrostatic cut-off

rvdw = 1.0 ; Short-range Van der Waals cut-off

pbc = xyz ; Periodic Boundary Conditions in all 3 dimensions

Next, we have to invoke mdrun to carry out the EM:

gmx mdrun -v -deffnm em

The output em.edr file contains all of the energy terms that GROMACS collects during EM.

We can analyze any .edr file using the GROMACS energy module:

gmx energy -f em.edr -o potential.xvg

At the prompt, type "10 0" to select Potential (10); zero (0) terminates input. The average of

Epot is shown, and a file called "potential.xvg" is written. To plot this data, we need the

Xmgrace plotting tool.

5. Equilibration

Since the objective of MD simulation is to study the dynamics of a particular system, we have

to suit the in-silico environment of our simulation system as close as possible to the real system

(e.g. experimental job in wet laboratory). Therefore, in equilibration step we optimize the

temperature to 300K since we assumed that we do the experimental job at room temperature,

and pressure value at 1 atm.

Equilibration will be carried out in two steps. First, an NVT (constant Number of atoms,

Volume, and Temperature) simulation will be performed in order to bring the system to the

target temperature. Second, an NPT (constant Number of atoms, Pressure, and Temperature)

simulation will be performed to allow the system to find the correct density.

286

5. a) Temperature Equilibration

We will call grompp and mdrun just as we did at the EM step and run the following two

commands:

gmx grompp -f nvt.mdp -c em.gro -r em.gro -p topol.top -o nvt.tpr

gmx mdrun -deffnm nvt

To analyze the temperature progression, using energy we use the command given below:

gmx energy -f nvt.edr -o temperature.xvg

Type "16 0" at the prompt to select the temperature of the system and exit and the

temperature.xvg can be plotted by Xmgrace tool.

5. b) Pressure Equilibration

We had included the -t flag to include the checkpoint file from the NVT equilibration. This file

contains all the necessary state variables to continue our simulation. To conserve the velocities

produced during NVT, we must include this file. The coordinate file (nvt.gro) is the final output

of the NVT simulation.

gmx grompp -f npt.mdp -c nvt.gro -r nvt.gro -t nvt.cpt -p topol.top -o npt.tpr

gmx mdrun -deffnm npt

To analyze the pressure progression, again by using energy:

gmx energy -f npt.edr -o pressure.xvg

Type "18 0" at the prompt to select the pressure of the system and exit. ‘pressure.xvg’ file will

be created which can be plotted through Xmgrace.

To take a look at density as well using energy, we need to enter "24 0" at the prompt while

running the following command:

gmx energy -f npt.edr -o density.xvg

6. Production MD

After running the two equilibration phases, the system is now well equilibrated at desired

temperature and pressure. To run the production MD, we will make use of the checkpoint file

to grompp and run a 1 ns MD simulation:

gmx grompp -f md.mdp -c npt.gro -t npt.cpt -p topol.top -o md_0_1.tpr

To execute mdrun:

gmx mdrun -deffnm md_0_1

Analysis

GROMACS comes equipped with many analysis tools, a complete list of which can be found

in the manual. Here you will be exposed to a few useful analysis tools: 'rms', 'rmsf', and 'gyrate.

But first, it is useful to learn how to process the trajectory file to only keep the components of

interest. Use trjconv, which is a post-processing tool to strip out coordinates, correct for

periodicity, or manually alter the trajectory (time units, frame frequency, etc). trjconv accounts

for any periodicity in the system.

gmx trjconv -s md_0_1.tpr -f md_0_1.xtc -o md_0_1_noPBC.xtc -pbc mol –center

Select 1 ("Protein") as the group to be centered and 0 ("System") for output. Downstream

analyses will be conducted on this "corrected" trajectory.

287

For checking the structural stability GROMACS has a built-in utility for RMSD calculations

called rms. Root mean square deviation (RMSD) is used for measuring the difference between

the backbones of a protein from its initial structural conformation to its final position. The

command to plot rmsd graph is as follows:

gmx rms -s md_0_1.tpr -f md_0_1_noPBC.xtc -o rmsd.xvg -tu ns

When prompted choose 4 ("Backbone") for both the least-squares fit and the group for RMSD

calculation.

The radius of gyration of a protein is a measure of its compactness. If a protein is stably folded,

it will likely maintain a relatively steady value of Rg. If a protein unfolds, its Rg will change

over time. The command to plot radius of gyration graph is as follows:

gmx gyrate -s md_0_1.tpr -f md_0_1_noPBC.xtc -o gyrate.xvg

When prompted choose group 1 (Protein) for analysis.

With this, we have now completed molecular dynamics simulation of a protein with

GROMACS, and analyzed some of the results.

References

 Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J.

(2005). GROMACS: fast, flexible, and free. Journal of computational chemistry, 26(16),

1701-1718.

 Case, D. A., Darden, T. A., Cheatham, T. E., Simmerling, C. L., Wang, J., Duke, R. E., ...

& Kollman, P. A. (2008). Amber 10 (No. BOOK). University of California.

 Brooks, B. R., Brooks III, C. L., Mackerell Jr, A. D., Nilsson, L., Petrella, R. J., Roux, B.,

... & Karplus, M. (2009). CHARMM: the biomolecular simulation program. Journal of

computational chemistry, 30(10), 1545-1614.

 Damm, W., Frontera, A., Tirado–Rives, J., & Jorgensen, W. L. (1997). OPLS all‐atom force

field for carbohydrates. Journal of computational chemistry, 18(16), 1955-1970.

 Scott, W. R., Hünenberger, P. H., Tironi, I. G., Mark, A. E., Billeter, S. R., Fennen, J., ... &

Van Gunsteren, W. F. (1999). The GROMOS biomolecular simulation program package.

The Journal of Physical Chemistry A, 103(19), 3596-3607.

288

An Introduction to Proteomics Data Analysis

Sudhir Srivastava, Sneha Murmu, Dwijesh Chandra Mishra, U. B. Angadi and K. K.

Chaturvedi

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Introduction

Proteins are important large biomolecules or macromolecules performing a wide variety of

functions. The word “proteome” is defined as the entire set of proteins translated and/ or

modified within a living organism. The word “proteome” was coined by Marc Wilkins in 1994

in a symposium on “2D Electrophoresis: from protein maps to genomes” held in Siena in Italy

while he was a Ph.D. student at Macquarie University. An organism’s genome is more or less

constant whereas proteome is not constant. Proteomes differs from cell to cell and from time

to time. That’s why proteomics is more complicated when compared to genomics.

 Proteomics more generally refers to large-scale liquid chromatography (LC) coupled

with mass spectrometry (MS) [LC-MS] based discovery studies designed to address both

quantitative and qualitative aspects of the proteome research (Figure 1).

Figure 1. Liquid chromatography coupled with mass spectrometry [LC-MS]

Source:

https://upload.wikimedia.org/wikipedia/en/f/f9/Liquid_chromatography_tandem_Mass_spect

rometry_diagram.png

 Now proteomics has emerged as a powerful tool across various fields such as

biomedicine mainly applied to diseases, agriculture, and animal sciences. It is important for

studying different aspects of plant functions such as identification of candidate proteins

involved in the defensive response of plants to biotic and abiotic stresses, effect of global

climate changes on crop production, etc. In animal sciences, proteomics studies play important

role in studying physiology, immunology, reproduction and lactational biology. The practical

application of proteomics includes expression proteomics, structural proteomics, biomarker

discovery, interaction proteomics, protein networks, etc.

https://en.wikipedia.org/wiki/Marc_Wilkins_(geneticist)
https://en.wikipedia.org/wiki/Macquarie_University
https://upload.wikimedia.org/wikipedia/en/f/f9/Liquid_chromatography_tandem_Mass_spectrometry_diagram.png
https://upload.wikimedia.org/wikipedia/en/f/f9/Liquid_chromatography_tandem_Mass_spectrometry_diagram.png

289

Basics Steps of Proteomics Data Analysis

The proteomic abundance (expression) data are usually generated using high throughput

technologies usually involving MS. LC-MS is used in proteomics as a method for identification

and quantification of peptides and proteins in complex mixtures. There are two basic

proteomics approaches, namely bottom-up and top-down. The most common proteomics

approach is the bottom-up in which proteins in a sample are enzymatically digested into

peptides and subjected to chromatographic separation, ionization and mass

analysis. Conversely, top-down proteomics addresses the study of intact proteins and

consequently is most often used to address purified or partially purified proteins. There are

various steps involved in quantitative proteomics data analysis, viz., peptide and protein

identification, protein abundance quantification, data cleaning, data normalization, handling of

missing values by using imputation techniques, data visualization and interpretation, statistical

analysis of proteomics data, etc.

Peptide and protein identification

There are two major approaches for determining the sequence of peptides.

(i) Searching against fragmentation spectra databases

(ii) de novo peptide sequencing

Some of the software/ tools for peptide and protein identification are listed below:

Category Name Description

Searching against

fragmentation spectra

databases

Andromeda (part of

Mascot)

A peptide search engine based on

probabilistic scoring

Mascot Probability-based database searching

algorithm

SEQUEST Identifies collections of tandem mass

spectra to peptide sequences that have

been generated from protein sequence

databases

X!Tandem/X!!Tandem Searches tandem mass spectra with

peptide sequences in database

de novo peptide

sequencing

PEAKS Performs de novo sequencing for each

peptide, confidence scores on individual

amino acid assignments with manually

assisted mode and automated de novo

sequencing on an entire LC run processed

data

SHERENGA Performs de novo peptide sequencing via

tandem mass spectrometry

290

PECAN Library free peptide detection for data-

independent acquisition of tandem mass

spectrometry data

Quantification of feature abundance

The quantification of features (peptides or proteins) may be either label-free or labelled

(metabolic, enzymatic, or chemical) to detect differences in feature abundances among

different conditions. In label-free quantification, MS ion intensity (peak area) and spectral

counting of features are the major approaches. In this article, we have considered MS ion

intensity data obtained from label-free bottom-up proteomics experiments.

Software/Tools for label-based quantitative proteomics:

 MaxQuant

 Proteome Discoverer (Thermo Scientific)

 XPRESS

Software/Tools for label-free quantitative proteomics:

 MaxLFQ - Label free quantification module available in MaxQuant

 emPAI - Exponentially modified protein abundance index

 Mascot Distiller (Matrix Science)

Problem of missing values and heterogeneity in proteomics data

Various approaches exist for proteomics data analysis in which the first step is to summarize

the intensities of all features using a quantitative summary followed by logarithmic

transformation to approximate it to normal distribution. In spite of availability of various

tools/methods, there are various challenges in analyzing proteomics data such as missing value

(MV) and data heterogeneity. There are various drawbacks of the methods which can be studied

by examining the statistical properties of these methods.

 The variations in the biological data or technical approaches to data collection lead to

heterogeneity for the samples under study. The data set usually consists of biological replicates

only or both biological and technical replicates. Biological variability arises from genetic and

environmental factors and it is intrinsic to all organisms. The technical approaches include

sample collection and storage, sample preparation, extraction, LC separation and MS detection.

 The data set is called balanced when it contains an equal number of subjects/ samples

in each group, and the features have no missing observations. However, this is not always the

condition. Sometimes the data can be unbalanced having unequal number of subjects, or

missing observations, or both. MVs in proteomics data can occur due to biological and/or

technical issues. These are of three types of MVs: (i) missing completely at random (MCAR)

in which MVs are independent of both unobserved and observed data; (ii) missing at random

(MAR) if conditional on the observed data, the MVs are independent of the missing

measurements; and (iii) missing not at random (MNAR) when data is neither MCAR nor MAR.

The data with missing observations can be analyzed either by excluding the features having

missing observations, by using statistical methods that can handle unbalanced data, or by using

291

imputation methods. If the features having missing observations are excluded, then there is loss

of information from the experiment. Therefore, the use of methods that can handle MVs, such

as imputation methods, are generally preferred. However, the use of imputation methods may

lead to wrong interpretation and these methods are questionable in statistical terms.

Statistical analysis of proteomics abundance data

Differential abundance analysis is carried out to detect significant features in two or more

conditions such as normal versus different disease conditions. However, data normalization is

necessary before performing further analysis. There are various transformation and/ or

normalization methods such as logarithmic transformation, quantile normalization, variance

stabilizing normalization, median scaling normalization, etc. In case of missing values, the user

has to impute the data using imputation techniques such as singular value decomposition, k-

nearest neighbor, maximum likelihood estimation, etc. The statistical approaches/ tests such as

t-test, moderated t-test, ANOVA, linear mixed model, etc. can be used for detecting significant

features. A general workflow of label-free quantitative proteomics data is given below:

Figure 2. A general workflow of label-free quantitative proteomics data

Various methods of normalizing proteomics expression data are given below:

 Variance stabilizing normalization (VSN)

 Quantile normalization (quantile)

 Median normalization (median)

 EigenMS normalization (EigenMS)

 Local regression normalization (LoessF, LoessCyc)

Various imputation methods can be categorized into the following:

(i) Imputation by a single value:

 Half of global minimum intensity among peptides - the minimal observed intensity

value among all peptides

 Half of minimal intensity of individual peptide

 Random tail imputation

(ii) Local-similarity-based imputation methods:

292

 K-nearest neighbors (KNN)

 Local least-squares (LLS) imputation

 Regularized expectation maximization (REM) algorithm

(iii) Global-structure-based imputation methods

 Probabilistic principal component analysis (PPCA)

 Bayesian principal component analysis (BPCA) algorithm

There are various tools and packages available for proteomics abundance data analysis such as

DanteR, MSstats, RepExplore, PANDA-view, MSqRob, PANDA, DAPAR, ProStaR etc.

Some of the important tools are discussed below:

(i) DanteR: Taverner et al. (2012) developed DanteR, a graphical R package that features

extensive statistical and diagnostic functions for quantitative proteomics data analysis,

including normalization, imputation, hypothesis testing, interactive visualization and peptide-

to-protein rollup.

(ii) MSstats: Choi et al. (2014) developed an R package “MSstats” for statistical relative

quantification of proteins and peptides in MS based proteomics. It (version 2.0) supports label-

free and label-based experimental workflows and data-dependent, targeted and data-

independent spectral acquisition. It performs differentially abundance/ expression analysis of

features (peptides or proteins) based on linear mixed models.

(iii) RepExplore: Glaab and Schneider (2015) developed a web server “RepExplore” to analyse

the proteomics and metabolomics data with technical and biological replicates. The analysis is

based on previously published statistical methods, which have been applied successfully to

biomedical omics.

(iv) PANDA-view: Chang et al. (2018) developed an easy-to-use tool “PANDA-view” for both

statistical analysis and visualization of quantitative proteomics data and other -omics data.

There are various kinds of analysis methods such as normalization, MV imputation, statistical

tests, clustering and principal component analysis, an interactive volcano plot.

(v) MSqRob: Goeminne et al. (2018) provided a tutorial on analysis of quantitative proteomics

data. The tutorial discussed the key statistical concepts to design proteomics experiments and

analyse label-free MS based quantitative proteomics data using their free and open-source R

package MSqRob.

(vi) PANDA: Chang et al. (2019) developed a comprehensive and flexible tool named PANDA

for proteomics data quantification. The tool supports both label-free and labeled quantifications

and it is compatible with existing peptide identification tools and pipelines with considerable

flexibility.

(vii) DAPAR & ProStaR: Wieczorek et al. (2017) developed software tools, DAPAR and

ProStaR that can perform the statistical analysis of label-free XIC-based quantitative discovery

proteomics experiments. DAPAR is an R package that contains various functions such as

filtering, normalization, imputation of missing values, aggregation of peptide intensities,

differential abundance analysis of proteins, etc. ProStaR is a user-friendly graphical interface

that allows access to the DAPAR functionalities through a web browser.

293

Conclusion

In this article, we have given the basic introduction of proteomics, various steps of proteomics

data analysis, problem of MVs and heterogeneity in proteomics data and different methods for

analysis of proteomics data. This article will be useful for the researchers working in the field

of proteomics and bioinformatics. Furthermore, the methods for proteomics data analysis can

further be used for analyzing the expression data obtained from similar experiments (e.g.,

microarray and metabolomics data).

References

 Anderson NL, Anderson NG (1998). Proteome and proteomics: new technologies, new

concepts, and new words. Electrophoresis, 19(11), 1853-61.

 Ceciliani F, Eckersall D, Burchmore R, Lecchi C. (2014). Proteomics in veterinary

medicine: applications and trends in disease pathogenesis and diagnostics. Vet Pathol.,

51(2):351-62. doi: 10.1177/0300985813502819.

 Chang C, et al. (2018). PANDA-view: An easy-to-use tool for statistical analysis and

visualization of quantitative proteomics data. Bioinformatics.

 Choi M, et al. (2014). MSstats: an R package for statistical analysis of quantitative mass

spectrometry-based proteomic experiments. Bioinformatics, 30(17). 2524-6.

 Glaab E, Schneider R (2015). RepExplore: addressing technical replicate variance in

proteomics and metabolomics data analysis. Bioinformatics, 31(13), 2235-7.

 Goeminne LJE, Gevaert K, and Clement L (2018). Experimental design and data-analysis

in label-free quantitative LC/MS proteomics: A tutorial with MSqRob. J Proteomics, 171,

23-36.

 Karpievitch YV, Dabney AR, and Smith RD (2012). Normalization and missing value

imputation for label-free LC-MS analysis. BMC Bioinformatics, 13 Suppl 16, S5.

 Rubin DB (1976). Inference and missing data. Biometrika, 63(3), 581–92.

 Taverner T., et al. (2012). DanteR: an extensible R-based tool for quantitative analysis of -

omics data. Bioinformatics, 28(18), 2404–2406. doi:10.1093/bioinformatics/bts449.

 Wasinger, VC, Cordwell, SJ, Cerpa-Poljak, A, Yan, JX, Gooley, AA, Wilkins, MR,

Duncan, MW, Harris, R, Williams, KL, Humphery-Smith, I (1995). Progress with gene-

product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 16 (1),

1090-1094. doi:10.1002/elps.11501601185

 Wieczorek, S., Combes, F., Lazar, C., Giai Gianetto, Q., Gatto, L., Dorffer, A., Hesse, A.-

M., Couté, Y., Ferro, M., Bruley, C., & Burger, T. (2017). DAPAR & ProStaR: software

to perform statistical analyses in quantitative discovery proteomics. Bioinformatics

(Oxford, England), 33(1), 135-136. https://doi.org/10.1093/bioinformatics/btw580

 https://en.wikipedia.org/wiki/Proteomics

 https://en.wikipedia.org/wiki/List_of_mass_spectrometry_software

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1002%2Felps.11501601185
https://doi.org/10.1093/bioinformatics/btw580
https://en.wikipedia.org/wiki/Proteomics
https://en.wikipedia.org/wiki/List_of_mass_spectrometry_software

294

Over-view of Post-Translational Modifications

Monendra Grover

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Posttranslational modifications (PTMs) of proteins greatly expand proteome diversity, increase

functionality, and allow for rapid responses, all at relatively low costs for the cell. PTMs play

key roles in plants through their impact on signaling, gene expression, protein stability and

interactions, and enzyme kinetics. Following a brief discussion of the experimental and

bioinformatics challenges of PTM identification, localization, and quantification (occupancy),

a concise overview is provided of the major PTMs and their (potential) functional

consequences in plants, with emphasis on plant metabolism. Classic examples that illustrate

the regulation of plant metabolic enzymes and pathways by PTMs and their cross talk are

summarized. Recent large-scale proteomics studies mapped many PTMs to a wide range of

metabolic functions. Unraveling of the PTM code, i.e. a predictive understanding of the

(combinatorial) consequences of PTMs, is needed to convert this growing wealth of data into

an understanding of plant metabolic regulation.

The primary amino acid sequence of proteins is defined by the translated mRNA, often

followed by N- or C-terminal cleavages for preprocessing, maturation, and/or activation.

Proteins can undergo further reversible or irreversible posttranslational modifications (PTMs)

of specific amino acid residues. Proteins are directly responsible for the production of plant

metabolites because they act as enzymes or as regulators of enzymes. Ultimately, most proteins

in a plant cell can affect plant metabolism (e.g. through effects on plant gene expression, cell

fate and development, structural support, transport, etc.). Many metabolic enzymes and their

regulators undergo a variety of PTMs, possibly resulting in changes in oligomeric state,

stabilization/degradation, and (de)activation (Huber and Hardin, 2004), and PTMs can

facilitate the optimization of metabolic flux. However, the direct in vivo consequence of

a PTM on a metabolic enzyme or pathway is frequently not very clear, in part because it

requires measurements of input and output of the reactions, including flux through the enzyme

or pathway.

PTMs can occur spontaneously (nonenzymatically) due to the physical-chemical properties of

reactive amino acids and the cellular environment (e.g. pH, oxygen, reactive oxygen species

[ROS], and metabolites) or through the action of specific modifying enzymes PTMs are also

determined by neighboring residues and their exposure to the surface. The 20 amino acids differ

strongly in their general chemical reactivity and their observed PTMs . In particular, Cys and

Lys can each carry many types of PTMs, whereas the N-terminal residue of proteins is also

prone to multiple PTMs, ranging from N-terminal cleavage to N-terminal lipid modifications

(acylation), acetylation, and ubiquitination . In addition to these PTMs that occur in vivo and

presumably have physiological significance, several PTMs are often generated during sample

preparation due to exposure to organic solvents (e.g. formic acid leading to the formylation of

Ser, Thr, and N termini), (thio) urea (N-terminal or Lys carbamylation), reducing agents and

oxygen, unpolymerized acrylamide (Cys propionamide), and low or high pH (cyclization of N-

terminal Gln or Glu into pyro-Glu;). A large-scale proteomics study of Arabidopsis

(Arabidopsis thaliana) leaf extracts did address the frequency of PTMs that do not require

specific affinity enrichment based on a data set of 1.5 million tandem mass spectrometry

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#bib73
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1

295

(MS/MS) spectra acquired at 100,000 resolution on an LTQ-Orbitrap instrument followed by

error-tolerant searches and systematic validation by liquid chromatography retention time .

This revealed, for example, that modification of Met and N-terminal Gln into oxidized Met and

pyro-Glu, respectively, showed by far the highest modification frequencies, followed by N-

terminal formylation, most likely induced during sample analysis, as well as deamidation of

Asn/Gln (approximately 1.2% of all observed Asn/Gln). Several of these nonenzymatic PTMs

(in particular deamidation, oxidation, and formylation) can also occur in vivo and, therefore,

cannot be simply dismissed as artifacts but need to be considered as potential regulators.

Since many PTMs are reversible, specific residues can also alternate between PTMs (e.g.

dependent on cellular conditions, protein configuration [folding], or protein-protein

interactions), and one PTM can influence the generation of other PTMs. This can result in an

explosion of possible proteoforms and in cross talk between PTMs occurring on the same

protein. Cross talk between PTMs on the same protein can coordinately determine the activity,

function, and/or interactions of a protein. Finally, cross talk also exists between PTMs located

on interacting proteins. Time-resolved and quantitative determination of combinatorial PTMs

is challenging, and understanding of the biological outcomes is only in its infancy. Prominent

examples of PTM cross talk are Lys ubiquitination and acetylation or Lys ubiquitination and

phosphorylation . Phosphorylation can also directly promote substrate proteolysis by caspase

(peptidase) during apoptosis. Recent biochemical and proteomics studies suggested that most

if not all enzymes of the Calvin-Benson cycle undergo redox regulation through selective redox

PTMs, including reversible disulfide bond formation, glutathionylation, and nitrosylation, with

an interplay between these PTMs dependent on (sub)cellular conditions . Moreover, the

regulators carrying out these PTMs (e.g. thioredoxins, glutaredoxins, etc.) themselves can also

undergo some of these PTMs, making for a complex network of PTMs

The identification, localization, and quantification of different combinations of PTMs on the

same protein can sometimes be better solved by so-called top-down or middle-down

proteomics, as opposed to the more common bottom-up proteomics (. or chemical cleavage)

prior to MS analysis. In contrast, in top-down proteomics, proteins are not digested into smaller

fragments but rather injected and analyzed by a specialized mass spectrometer in its entirety.

In middle-down proteomics, the intact proteins are cleaved into just a few fragments by limited

proteolysis prior to injection into the mass spectrometer. Top-down and middle-down

proteomics are not high throughput and are best carried out on either purified proteins or protein

mixtures of low complexity. Classic examples of studies using top-down, middle-down, but

also bottom-up proteomics on proteins with different PTMs involve histones) and the p53

tumor suppression protein.

References

 Agetsuma M, Furumoto T, Yanagisawa S, Izui K (2005) The ubiquitin-proteasome pathway

is involved in rapid degradation of phosphoenolpyruvate carboxylase kinase for C4

photosynthesis. Plant Cell Physiol 46: 389–398.

 Akter S, Huang J, Waszczak C, Jacques S, Gevaert K, Van Breusegem F, Messens J

(2015) Cysteines under ROS attack in plants: a proteomics view. J Exp Bot 66: 2935–2944.

 Alban C, Tardif M, Mininno M, Brugière S, Gilgen A, Ma S, Mazzoleni M, Gigarel O,

Martin-Laffon J, Ferro M, et al. (2014) Uncovering the protein lysine and arginine

methylation network in Arabidopsis chloroplasts. PLoS One 9: e95512.

296

 Altelaar AF, Munoz J, Heck AJ (2013) Next-generation proteomics: towards an integrative

view of proteome dynamics. Nat Rev Genet 14: 35–48.

 Bailey KJ, Gray JE, Walker RP, Leegood RC (2007) Coordinate regulation of

phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase by light and

CO2 during C4 photosynthesis. Plant Physiol 144: 479–486.

 Balmer Y, Vensel WH, Tanaka CK, Hurkman WJ, Gelhaye E, Rouhier N, Jacquot JP,

Manieri W, Schürmann P, Droux M, et al. (2004) Thioredoxin links redox to the regulation

of fundamental processes of plant mitochondria. Proc Natl Acad Sci USA 101: 2642–2647.

 Balsera M, Uberegui E, Schürmann P, Buchanan BB (2014) Evolutionary development of

redox regulation in chloroplasts. Antioxid Redox Signal 21: 1327–1355.

 Banerjee A, Sharkey TD (2014) Methylerythritol 4-phosphate (MEP) pathway metabolic

regulation. Nat Prod Rep 31: 1043–1055.

 Barberon M, Zelazny E, Robert S, Conéjéro G, Curie C, Friml J, Vert G

(2011) Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1)

transporter controls iron uptake in plants. Proc Natl Acad Sci USA 108: E450–E458.

 Bartel B, Citovsky V (2012) Focus on ubiquitin in plant biology. Plant Physiol 160: 1.

 Bartsch O, Mikkat S, Hagemann M, Bauwe H (2010) An autoinhibitory domain confers

redox regulation to maize glycerate kinase. Plant Physiol 153: 832–840.

 Berr A, Shafiq S, Shen WH (2011) Histone modifications in transcriptional activation during

plant development. Biochim Biophys Acta 1809: 567–576.

 Bigeard J, Rayapuram N, Pflieger D, Hirt H (2014) Phosphorylation-dependent regulation of

plant chromatin and chromatin-associated proteins. Proteomics 14: 2127–2140.

 Biggar KK, Li SS (2015) Non-histone protein methylation as a regulator of cellular signalling

and function. Nat Rev Mol Cell Biol 16: 5–17.

 Bonissone S, Gupta N, Romine M, Bradshaw RA, Pevzner PA (2013) N-terminal protein

processing: a comparative proteogenomic analysis. Mol Cell Proteomics 12: 14–28.

 Borner GH, Lilley KS, Stevens TJ, Dupree P (2003) Identification of

glycosylphosphatidylinositol-anchored proteins in Arabidopsis: a proteomic and genomic

analysis. Plant Physiol 132: 568–577.

 Boyle PC, Martin GB (2015) Greasy tactics in the plant-pathogen molecular arms race. J Exp

Bot 66: 1607–1616.

 Bracha-Drori K, Shichrur K, Lubetzky TC, Yalovsky S (2008) Functional analysis of

Arabidopsis postprenylation CaaX processing enzymes and their function in subcellular

protein targeting. Plant Physiol 148: 119–131.

 Brzezowski P, Richter AS, Grimm B (2015) Regulation and function of tetrapyrrole

biosynthesis in plants and algae. Biochim Biophys Acta 1847: 968–985.

 Carlson SM, Gozani O (2014) Emerging technologies to map the protein methylome. J Mol

Biol 426: 3350–3362.

 Catherman AD, Skinner OS, Kelleher NL (2014) Top down proteomics: facts and

perspectives. Biochem Biophys Res Commun 445: 683–693.

 Cavazzini D, Meschi F, Corsini R, Bolchi A, Rossi GL, Einsle O, Ottonello S

(2013) Autoproteolytic activation of a symbiosis-regulated truffle phospholipase A2. J Biol

Chem 288: 1533–1547.

297

 Černý M, Skalák J, Cerna H, Brzobohatý B (2013) Advances in purification and separation

of posttranslationally modified proteins. J Proteomics 92: 2–27.

 Chalkley RJ, Bandeira N, Chambers MC, Clauser KR, Cottrell JS, Deutsch EW, Kapp EA,

Lam HH, McDonald WH, Neubert TA, et al. (2014) Proteome informatics research group

(iPRG)_2012: a study on detecting modified peptides in a complex mixture. Mol Cell

Proteomics 13: 360–371.

 Chalkley RJ, Clauser KR (2012) Modification site localization scoring: strategies and

performance. Mol Cell Proteomics 11: 3–14.

 Champion A, Kreis M, Mockaitis K, Picaud A, Henry Y (2004) Arabidopsis kinome: after

the casting. Funct Integr Genomics 4: 163–187.

 Chastain CJ, Failing CJ, Manandhar L, Zimmerman MA, Lakner MM, Nguyen TH

(2011) Functional evolution of C(4) pyruvate, orthophosphate dikinase. J Exp Bot 62: 3083–

3091.

 Chen YB, Lu TC, Wang HX, Shen J, Bu TT, Chao Q, Gao ZF, Zhu XG, Wang YF, Wang

BC (2014) Posttranslational modification of maize chloroplast pyruvate orthophosphate

dikinase reveals the precise regulatory mechanism of its enzymatic activity. Plant

Physiol 165: 534–549.

 Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M (2014) The growing landscape of

lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15: 536–550.

 Christian JO, Braginets R, Schulze WX, Walther D (2012) Characterization and prediction

of protein phosphorylation hotspots in Arabidopsis thaliana. Front Plant Sci 3: 207.

 Cieśla J, Frączyk T, Rode W (2011) Phosphorylation of basic amino acid residues in proteins:

important but easily missed. Acta Biochim Pol 58: 137–148.

 Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems

biology. Annu Rev Biochem 80: 273–299.

 Czyzewicz N, Yue K, Beeckman T, De Smet I (2013) Message in a bottle: small signalling

peptide outputs during growth and development. J Exp Bot 64: 5281–5296.

 Daloso DM, Müller K, Obata T, Florian A, Tohge T, Bottcher A, Riondet C, Bariat L, Carrari

F, Nunes-Nesi A, et al. (2015) Thioredoxin, a master regulator of the tricarboxylic acid cycle

in plant mitochondria. Proc Natl Acad Sci USA 112: E1392–E1400.

 de Boer AH, van Kleeff PJ, Gao J (2013) Plant 14-3-3 proteins as spiders in a web of

phosphorylation. Protoplasma 250: 425–440.

 DeHart CJ, Chahal JS, Flint SJ, Perlman DH (2014) Extensive post-translational

modification of active and inactivated forms of endogenous p53. Mol Cell Proteomics 13: 1–

17.

 Denison FC, Paul AL, Zupanska AK, Ferl RJ (2011) 14-3-3 proteins in plant

physiology. Semin Cell Dev Biol 22: 720–727.

 Dietz KJ, Hell R (2015) Thiol switches in redox regulation of chloroplasts: balancing redox

state, metabolism and oxidative stress. Biol Chem 396: 483–494.

 Dinh TV, Bienvenut WV, Linster E, Feldman-Salit A, Jung VA, Meinnel T, Hell R, Giglione

C, Wirtz M (2015) Molecular identification and functional characterization of the first Nα-

acetyltransferase in plastids by global acetylome profiling. Proteomics 15: 2426–2435.

298

 di Pietro M, Vialaret J, Li GW, Hem S, Prado K, Rossignol M, Maurel C, Santoni V

(2013) Coordinated post-translational responses of aquaporins to abiotic and nutritional

stimuli in Arabidopsis roots. Mol Cell Proteomics 12: 3886–3897.

 Dix MM, Simon GM, Wang C, Okerberg E, Patricelli MP, Cravatt BF (2012) Functional

interplay between caspase cleavage and phosphorylation sculpts the apoptotic

proteome. Cell 150: 426–440.

 Dong L, Ermolova NV, Chollet R (2001) Partial purification and biochemical

characterization of a heteromeric protein phosphatase 2A holoenzyme from maize (Zea mays

L.) leaves that dephosphorylates C4 phosophoenolpyruvate carboxylase. Planta 213: 379–

389.

 Duncan KA, Huber SC (2007) Sucrose synthase oligomerization and F-actin association are

regulated by sucrose concentration and phosphorylation. Plant Cell Physiol 48: 1612–1623.

 Elortza F, Mohammed S, Bunkenborg J, Foster LJ, Nühse TS, Brodbeck U, Peck SC, Jensen

ON (2006) Modification-specific proteomics of plasma membrane proteins: identification

and characterization of glycosylphosphatidylinositol-anchored proteins released upon

phospholipase D treatment. J Proteome Res 5: 935–943.

 Elrouby N, Coupland G (2010) Proteome-wide screens for small ubiquitin-like modifier

(SUMO) substrates identify Arabidopsis proteins implicated in diverse biological

processes. Proc Natl Acad Sci USA 107: 17415–17420.

 Engineer CB, Ghassemian M, Anderson JC, Peck SC, Hu H, Schroeder JI (2014) Carbonic

anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal

development. Nature 513: 246–250.

 Fedorova M, Bollineni RC, Hoffmann R (2014) Protein carbonylation as a major hallmark

of oxidative damage: update of analytical strategies. Mass Spectrom Rev 33: 79–97.

 Fedosejevs ET, Ying S, Park J, Anderson EM, Mullen RT, She YM, Plaxton WC

(2014) Biochemical and molecular characterization of RcSUS1, a cytosolic sucrose synthase

phosphorylated in vivo at serine 11 in developing castor oil seeds. J Biol Chem 289: 33412–

33424.

 Ferrández-Ayela A, Micol-Ponce R, Sánchez-García AB, Alonso-Peral MM, Micol JL,

Ponce MR (2013) Mutation of an Arabidopsis NatB N-alpha-terminal acetylation complex

component causes pleiotropic developmental defects. PLoS One 8: e80697.

 Finkemeier I, Laxa M, Miguet L, Howden AJ, Sweetlove LJ (2011) Proteins of diverse

function and subcellular location are lysine acetylated in Arabidopsis. Plant Physiol 155:

1779–1790.

 Gao ZP, Chen GX, Yang ZN (2012) Regulatory role of Arabidopsis pTAC14 in chloroplast

development and plastid gene expression. Plant Signal Behav 7: 1354–1356.

 Geigenberger P. (2011) Regulation of starch biosynthesis in response to a fluctuating

environment. Plant Physiol 155: 1566–1577.

 Geigenberger P, Kolbe A, Tiessen A (2005) Redox regulation of carbon storage and

partitioning in response to light and sugars. J Exp Bot 56: 1469–1479.

 Giglione C, Fieulaine S, Meinnel T (2015) N-terminal protein modifications: bringing back

into play the ribosome. Biochimie 114: 134–146.

 Graciet E, Lebreton S, Gontero B (2004) Emergence of new regulatory mechanisms in the

Benson-Calvin pathway via protein-protein interactions: a glyceraldehyde-3-phosphate

dehydrogenase/CP12/phosphoribulokinase complex. J Exp Bot 55: 1245–1254.

299

 Grimaud F, Rogniaux H, James MG, Myers AM, Planchot V (2008) Proteome and

phosphoproteome analysis of starch granule-associated proteins from normal maize and

mutants affected in starch biosynthesis. J Exp Bot 59: 3395–3406.

 Guerra DD, Callis J (2012) Ubiquitin on the move: the ubiquitin modification system plays

diverse roles in the regulation of endoplasmic reticulum- and plasma membrane-localized

proteins. Plant Physiol 160: 56–64.

 Haag F, Buck F (2015) Identification and analysis of ADP-ribosylated proteins. Curr Top

Microbiol Immunol 384: 33–50.

 Hang R, Liu C, Ahmad A, Zhang Y, Lu F, Cao X (2014) Arabidopsis protein arginine

methyltransferase 3 is required for ribosome biogenesis by affecting precursor ribosomal

RNA processing. Proc Natl Acad Sci USA 111: 16190–16195.

 Havelund JF, Thelen JJ, Møller IM (2013) Biochemistry, proteomics, and

phosphoproteomics of plant mitochondria from non-photosynthetic cells. Front Plant Sci 4:

51.

 Hemsley PA. (2014) Progress in understanding the mechanisms and functional importance

of protein-membrane interactions in plants. New Phytol 204: 741–743.

 Hemsley PA. (2015) The importance of lipid modified proteins in plants. New Phytol 205:

476–489.

 Hemsley PA, Weimar T, Lilley K, Dupree P, Grierson C (2013a) Palmitoylation in plants:

new insights through proteomics. Plant Signal Behav 8: 8.

 Hemsley PA, Weimar T, Lilley KS, Dupree P, Grierson CS (2013b) A proteomic approach

identifies many novel palmitoylated proteins in Arabidopsis. New Phytol 197: 805–814.

 Heyl A, Brault M, Frugier F, Kuderova A, Lindner AC, Motyka V, Rashotte AM,

Schwartzenberg KV, Vankova R, Schaller GE (2013) Nomenclature for members of the two-

component signaling pathway of plants. Plant Physiol 161: 1063–1065.

 Hodges M, Jossier M, Boex-Fontvieille E, Tcherkez G (2013) Protein phosphorylation and

photorespiration. Plant Biol (Stuttg) 15: 694–706.

@ Disclaimer

The information contained in this reference manual has been taken from various web
resources. The information is provided by “ICAR-IASRI” and whilst we endeavor to keep the
information up-to-date and correct, we make no representations or warranties of any kind,
express or implied, about the completeness, accuracy, reliability, suitability or availability with
respect to the website or the information, products, services, or related graphics contained
in the reference manual for any purpose. Any reliance you place on such information is
therefore strictly at your own risk.

In no event will we be liable for any loss or damage including without limitation, indirect or
consequential loss or damage, or any loss or damage whatsoever arising from loss of data or
profits arise out of or in connection with the use of this manual. We have no control over the
nature, content and availability of those sites. The inclusion of any links does not necessarily
imply a recommendation or endorse the views expressed within them.

@ Citation

Srivastava Sudhir, Murmu Sneha and Sharma Soumya (2023). Computational Biology and its

Applications in Agriculture, Centre of Advanced Faculty Training, Reference Manual, ICAR-

Indian Agricultural Statistics Research Institute, New Delhi.

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

