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Preface 

The era of the innovative world is coming up with the advent of new technologies in the field 

of agriculture and enhancing the goal of sustainable development worldwide. The most 

popular and accepted theory of life’s origins reveals that the first biocatalysts were made of 

RNA or a very similar polymer instead of protein. Experiments are beginning to confirm that 

the catalytic abilities of RNA are compatible with this ‘RNA world’ hypothesis. An RNA 

molecule that does not translate into a protein is known as a non-coding RNA (ncRNA). 

These ncRNAs have been revolutionizing the RNA world in various aspect of life. Recently, 

several different systematic screens have identified a surprisingly large number of new 

ncRNA genes. The training program on “RNA world: A special feature to identification and 

characterization of non-coding RNAs” aimed to provide an insight into basic concepts of 

various theoretical and practical aspects of transcriptomics. This manual will help the 

research scholars to learn and explore the application of computational tool/techniques in 

their research work. The practical-oriented approach would be a big help for the new budding 

technologist for insight mechanisms of multicellular processes. The module contains each 

and every section of the program covered in the training program like ‘Transcriptome Data 

pre-processing and Assembly’, ‘Differential gene expression analysis’, ‘Transcriptome data 

annotation’, ‘Prediction and characterization of miRNA’ ‘Overview of lncRNA and circular 

RNA’, and ‘Regulatory network analysis of lncRNA’. 

The first talk on “whole transcriptome sequencing by next-generation sequencing (NGS) 

technologies or RNA-Seq” explained the complex landscape and dynamics of the 

transcriptome. The sequence reads obtained from the common NGS platforms, including 

Illumina, SOLiD, and 454, are often very short, ranging from 35bp to 500bp. As a result, it is 

necessary to reconstruct the full-length transcripts by transcriptome assembly. The theory and 

hand-on-session on ‘Transcriptome Data pre-processing and assembly’ provide the 

comprehensive knowledge of reconstructing entire transcriptome from raw NGS read 

including detailed understanding of all informatics challenges. It was followed by lectures on 

Differential gene expression (DGE) analysis. Differential gene expression (DGE) analysis is 

one of the most common applications of RNA-sequencing (RNA-seq) data. This process 

allows for the elucidation of differentially expressed genes across two or more conditions and 

is widely used in many applications of RNA-seq data analysis. Transcriptome annotation 

provides insight into the function and biological process of transcripts and the proteins they 



encode. The lectures on Transcriptome annotation explained various tools and techniques for 

transcriptome annotation. 

Micro RNAs (miRNAs) are single stranded, small and non-coding endogenous RNA 

molecules, which control the gene expression at the post-transcriptional level by either 

suppression or degradation. Because of its highly conserved nature, in silico methods can be 

employed to predict novel miRNAs in plant species. The lecture on ‘Prediction and 

characterization of miRNA’ covered bioinformatics tools and techniques for miRNA 

prediction and functional analysis by identifying genes targeted by the miRNA.  

                                 lncRNAs are widely defined as a large and heterogeneous class of 

regulatory transcripts that are at least 200 nt long. circRNAs are also a subtype of endogenous 

ncRNAs with tissue- and cell-specific expression patterns, whose biogenesis is regulated by a 

particular form of alternative splicing, termed backsplicing. With the development of high-

throughput technologies and extensive research reports, lncRNAs and circRNAs have gained 

wide attention for their roles in biological processes. The lectures on ‘Overview of lncRNA 

and circular RNA’ and ‘Regulatory network analysis of lncRNA’ provided detailed 

understanding of their roles and bioinformatics tools and techniques for analysis. 

Although the manual is mainly focuses on hand-on-session but attempt taken to explain 

theory of each session. The details of computational tools, commands and analysis pipeline 

via flow chart are mentioned for each module separately that will be helpful for the naïve 

bioinformatician.     

Sarika Sahu 
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Introduction:  

This online training “RNA world: Advance Bioinformatics for deciphering regulatory 

molecules” organized under the aegis of CRP-Genomics project, aims to provide a 

comprehensive view of the main facets involved in theoretical and practical aspects of this 

very rapidly growing field of non-coding RNAs. An RNA molecule that does not translate 

into a protein is known as a non-coding RNA (ncRNA). These ncRNAs have been 

revolutionizing the RNA world in various aspect of life. Recently, several different 

systematic screens have identified a surprisingly large number of new ncRNA genes.    

 RNA biology is the combination of all RNAs whether coding or noncoding. The discovery 

of non-coding RNAs led to the revolution in RNA world (Derks et al. 2015). Noncoding 

RNAs (ncRNAs) play an important role in various biological processes and gene-disease 

association (Nallar and Kalvakolanu, 2013). Among the ncRNAs, the most studied ncRNAs 

are microRNA, which play a major role in gene expression (Hermeking, 2012). However, it 

has been revealed that long ncRNAs (lncRNAs) also play a very important role in various 

biological pathways within the cell (Huarte et al., 2010). Researchers reported that several 

lncRNAs are expressed during stress conditions and are involved in stress-responsive 

regulation (Zheng et al. 2014, Heo et al. 2011, Liu et al. 2012). lncRNAs are non-coding 

RNAs whose length is more than 200 base pairs and biochemically resemble mRNAs but 

they do not translate into proteins. Despite noncoding RNAs, lncRNAs function as RNA 

genes as well as regulate distant genes. Ponting et al. (2009) classified lncRNAs into sense, 

anti-sense, bidirectional, intronic and intergenic on the basis of their chromosomal 

localization. In addition, the lncRNAs are normally expressed at low levels and lack sequence 

similarities among the plant species (Marques and Ponting, 2014). Plethora of literature is 

available for the identification of lncRNAs in animals while very few are reported on the 



presence of lncRNAs in plants (Liu et al.,2017). The analysis of lncRNA became very easy 

with the advent of state-of-art technologies like next-generation sequencing. lncRNAs were 

identified in model plant organisms like Arabidopsis thaliana (Wang et al. 2014, Lu et al. 

2017, Sun et al. 2020)  Two lncRNAs namely: COOLAIR (cool-assisted intronic non-coding 

RNA) and COLDAIR (cold-assisted intronic non-coding RNA) regulates the flowering time 

epigenetic repression of FLC (Flowering Locus C) in Arabidopsis (Heo and Sung, 2011). 

Another important lncRNA: LDMAR (long-day-specific male-fertility-associated RNA) is 

involved in the regulation of photoperiod male sterility in rice (Ding et al. 2012) and 

participated in ripening of tomato (Zhu et al. 2015). These are few examples to be mentioned 

and suggest the importance of ncRNAs in the plant and crop systems. 

Objectives of this training were  

 Profiling of RNAs by bioinformatics tools. 

 Role of RNAs and non-coding RNA in gene regulatory network. 

 Development of analytical skills through lectures and hands-on session. 

 

Different modules covered under this training program were as following 

 Differential gene expression. 

      Sequencing platform and Quality Check  

      Assembly: de novo and reference based and annotation  

 Profiling of RNA regulatory molecule and their role in the regulation of biological 

processes 

 Prediction and characterization of miRNAs 

 Prediction and characterization of lncRNAs 

 Prediction and characterization of circRNAs 

 Regulatory network analysis of RNAs.  

 Different theoretical and Practical Sessions were taken during this training program. In this 

manual, different session taken during training are described in detail. Chapter 2 focuses over 

RNA-sequencing analysis. Chapter 3 mentions detailed practical procedure taught in the 

training for Transcriptome Data Pre-processing and Assembly while Chapter 4 given an 



overview of genome annotation with special focus over gene prediction. Chapter 5 gives 

detail about Differential Gene Expression Analysis. Chapter 6 provide detail about different 

tools and execution carried out for Transcriptome data annotation. Chapter 7 provides 

glimpse about world of miRNA. In chapter 8, hands on session over prediction and 

Characterization of miRNA is covered. Chapter 9 focuses over Circular RNA and about its 

basic concept and their role in various processes and also covers details of Hands-on-session 

for circRNA prediction. In chapter 10, aspects of RNAome in biofortification of plant and 

animal traits is covered.   
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Introduction 

The advent of Next-Generation Sequencing (NGS) technology has transformed genomic 

studies. One important application of NGS technology is the study of the transcriptome, 

which is defined as the complete collection of all the RNA molecules in a cell. Various types 

of RNA that have been classified so 

far are shown in Fig. 1. All of 

these molecules are called 

transcripts since they are produced 

by process of transcription.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Different types of RNA 

(Image source: http://scienceblogs.com/digitalbio/2011/01/08/next-gene-sequencing) 

 

Understanding the transcriptome is essential for interpreting the functional elements of the 

genome and revealing the molecular constituents of cells and tissues, and also for 

understanding development and disease [1]. The main purpose of transcriptomics are: to 



catalogue all species of transcript, including mRNAs, non-coding RNAs and small RNAs; to 

determine the transcriptional structure of genes, in terms of their start sites, 5′ and 3′ ends, 

splicing patterns and other post-transcriptional modifications; and to quantify the changing 

expression levels of each transcript during development and under different conditions. 

The study of transcriptome is carried out through sequencing of RNAs. RNA sequencing 

(RNA-Seq) is a powerful method for discovering, profiling, and quantifying RNA transcripts 

[2]. RNA-Seq uses NGS datasets to obtain sequence reads from millions of individual RNAs. 

The RNA-Seq analysis is performed in several steps: First, all genes are extracted from the 

reference genome (using annotations of type gene). Other annotations on the gene sequences 

are preserved (e.g. CDS information about coding sequences etc). Next, all annotated 

transcripts (using annotations of type mRNA) are extracted [3]. If there are several annotated 

splice variants, they are all extracted. An example is shown in below Fig. 2(a). 

 

 

Fig. 2(a): A simple gene with three exons and two splice variants. 

The given example is a simple gene with three exons and two splice variants. The transcripts 

are extracted as shown in Fig. 2(b). 

 

Fig. 2(b): All the exon-exon junctions are joined in the extracted transcript. 

Next, the reads are mapped against all the transcripts plus the entire gene [see Fig. 2(c)]. 

 

Fig. 2(c): The reference for mapping: all the exon-exon junctions and the gene. 

(Image source: CLC Genomic workbench tutorials) 

From this mapping, the reads are categorized and assigned to the genes and expression values 

for each gene and each transcript are calculated and putative exons are then identified. 

 



RNA Sequencing Experiment 

In a standard RNA-seq experiment, a sample of RNA is converted to a library of 

complementary DNA fragments and then sequenced on a high-throughput sequencing 

platform, such as Illumina's Genome Analyzer, SOLiDor Roche 454 [4]. Millions of short 

sequences, or reads, are obtained from this sequencing and then mapped to a reference 

genome (Fig. 3). The count of reads mapped to a given gene measures the expression level of 

this gene. The unmapped reads are usually discarded and mapped reads for each sample are 

assembled into gene-level, exon-level or transcript-level expression summaries, depending on 

the objectives of the experiment. The count of reads mapped to a given gene/exon/transcript 

measures the expression level for this region of the genome or transcriptome.  

One of the primary goals for most RNA-seq experiments is to compare the gene expression 

levels across various treatments. A simple and common RNA-seq study involves two 

treatments in a randomized complete design, for example, treated versus untreated cells, two 

different tissues from an organism, plants, etc. In most of the studies, researchers are 

particularly interested in detecting gene with differential expressions (DE). A gene is 

declared differentially expressed if an observed difference or change in read counts between 

two experimental conditions is statistically significant, i.e. if the difference is greater than 

what would be expected just due to random variation [5]. Detecting DE genes can also be an 

important pre-step for subsequent studies, such as clustering gene expression profiles or 

testing gene set enrichments. 



 

Fig. 3: General RNA-seq experiment. mRNA is converted to cDNA, and fragments from that library are 

used to generate short sequence reads. Those reads are assembled into contigs which may be mapped to 

reference sequences (Wang et al., 2009). 

 

Analysing RNA-Seq data 

RNA-seq experiments must be analyzed with robust, efficient and statistically correct 

algorithms. Fortunately, the bioinformatics community has been striving hard at work for 

incorporating mathematics, statistics and computer science for RNA-seq and building these 

ideas into software tools. RNA-seq analysis tools generally fall into three categories: (i) those 

for read alignment; (ii) those for transcript assembly or genome annotation; and (iii) those for 

transcript and gene quantification. Some of the open source software available for RNA-seq 

analysis are as follows: 

• Data preprocessing 

• Fastx toolkit 

• Samtools 

• Short reads aligners 

• Bowtie, TOPHAT, Stampy, BWA, Novoalign, etc  



• Expression studies 

• Cufflinks package 

• R packages (DESeq, edgeR, more…) 

• Visualisation 

• CummeRbund, IGV, Bedtools, UCSC Genome Browser, etc. 

 

Besides there are commercially data analysis pipelines like GenomeQuest, CLCBio etc 

available for researchers to use. The most commonly used pipeline is to identify protein 

coding genes by aligning RNA-Seq data to annotate data from sources like RefSeq.  After 

generating the alignments, the number of aligning sequences is counted for each position.  

Since each alignment represents a transcript, the alignments allow to count the number 

of RNA molecules produced from every gene. 

Using NGS technology, RNA-Seq enables to count the number of reads that align to one of 

thousands of different cDNAs, producing results similar to those of gene expression 

microarrays [6]. Sequences generated from an RNA-Seq experiment are usually mapped to 

libraries of known exons in known transcripts. RNA-Seq can be used for discovery 

applications such as identifying alternative splicing events, allele-specific expression, and 

rare and novel transcripts [7]. The sequencing output files (compressed FASTQ files) are the 

input for secondary analysis. Reads are aligned to an annotated reference genome, and those 

aligning to exons, genes and splice junctions are counted. The final steps are data 

visualisation and interpretation, consisting of calculating gene- and transcript-expression and 

reporting differential expression. A general Bioinformatics workflow to map transcripts from 

RNA-seq data is shown in Fig. 4.  



 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: RNA-seq 

workflow 

(Adapted 

fromAdvancing RNA-Seq analysis Brian J. Haas and Michael C. Zody Nature Biotechnology 28, 421-423 

(2010) 

RPKM (Reads per KB per million reads) 

RNA-Seq provides quantitative approximations of the abundance of target transcripts in the 

form of counts. However, these counts must be normalized to remove technical biases 

inherent in the preparation steps for RNA-Seq, in particular the length of the RNA species 

and the sequencing depth of a sample. The most commonly used is RPKM (Reads Per 

Kilobase of exon model per Million mapped reads). The RPKM measure of read density 

reflects the molar concentration of a transcript in the starting sample by normalizing for RNA 

length and for the total read number in the measurement [8]. RPKM is mathematically 

represented as: 

RPKM=  

Total exon reads 



This is the number of reads that have been mapped to a region in which an exon is annotated 

for the gene or across the boundaries of two exons or an intron and an exon for an annotated 

transcript of the gene. For eukaryotes, exons and their internal relationships are defined by 

annotations of type mRNA. 

Exon length 

This is calculated as the sum of the lengths of all exons annotated for the gene. Each exon is 

included only once in this sum, even if it is present in more annotated transcripts for the gene. 

Partly overlapping exons will count with their full length, even though they share the same 

region. 

Mapped reads 

The total gene reads for a gene is the total number of reads that after mapping have been 

mapped to the region of the gene. A gene's region is that comprised of the flanking regions, 

the exons, the introns and across exon-exon boundaries of all transcripts annotated for the 

gene. Thus, the sum of the total gene reads numbers is the number of mapped reads for the 

sample.  

Applications of RNA-seq 

This technique can be used to: 

 Measure gene expression 

 Transcriptome assembly, gene discovery and annotation 

 Detect differential transcript abundances between tissues, developmental stages, 

genetic backgrounds, and environmental conditions 

 Characterize alternative splicing, alternative polyadenylation, and alternative 

transcription. 

Future Directions 

Although RNA-Seq is still in the infancy stages of use, it has clear advantages over 

previously developed transcriptomic methods. Compared with microarray, which has been 

the dominant approach of studying gene expression in the last two decades, RNA-seq 

technology has a wider measurable range of expression levels, less noise, higher throughput, 

and more information to detect allele-specific expression, novel promoters, and isoforms [9]. 

For these reasons, RNA-seq is gradually replacing the array-based approach as the major 



platform in gene expression studies. The next big challenge for RNA-Seq is to target more 

complex transcriptomes to identify and track the expression changes of rare RNA isoforms 

from all genes. Technologies that will advance achievement of this goal are pair-end 

sequencing, strand-specific sequencing and the use of longer reads to increase coverage and 

depth. As the cost of sequencing continues to fall, RNA-Seq is expected to replace 

microarrays for many applications that involve determining the structure and dynamics of the 

transcriptome. 
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Chapter 3 

Transcriptome Data Pre-processing and Assembly  

Soumya Sharma, Ratna Prabha 

ICAR-Indian Agricultural Statistics Research Institute 

Transcript profiling ("Transcriptomics") is a widely used technique that obtains information 

on the abundance of multiple mRNA transcripts within a biological sample simultaneously. 

Therefore, when a number of such samples are analysed, as in a scientific experiment, large 

and complex data sets are gene-rated. RNA-Seq technology utilizing NGS sequencing has 

emerged as an attractive alternative to traditional microarray platforms for conducting 

transcriptional profiling. Next generation sequencing (NGS) experiments generate a 

tremendous amount of data which can't be directly analyzed in any meaningful way.  

Selecting the right analytical approach along with an appropriate set of bioinformatics tools is 

key to extract useful information from RNA-Seq data while avoiding misinterpretation or 

bias. In the present section we will discuss about the assembly of short-read Illumina 

sequencing data, which is commonly used for RNA-Seq experiments. 

Requirements for RNA-Seq Data Assembly 

Hardware 

 Linux environment or server 

 Accessed via shell terminals, such as PuTTY or MobaXterm 

 Can use a virtual machine on Windows 

 32GB RAM recommended if working with larger genomes 

 1TB storage or higher recommended for smaller projects 

Software 

 FastQC 

https://www.bioinformatics.babraham.ac.uk/projects/download.html  

 

 Trimmomatic 

http://www.usadellab.org/cms/?page=trimmomatic  

 

https://www.bioinformatics.babraham.ac.uk/projects/download.html
http://www.usadellab.org/cms/?page=trimmomatic


 Bowtie2 

https://sourceforge.net/projects/bowtie-bio/files/bowtie2/  

 

 Tophat 

https://ccb.jhu.edu/software/tophat/index.shtml  

 

 Cufflinks 

http://cole-trapnell-lab.github.io/cufflinks/getting_started/  

 

 Trinity 

https://github.com/trinityrnaseq/trinityrnaseq/wiki/Installing-Trinity  

Pre-processing of RNA-Seq Data 

First, switch to the where the FASTQ files are stored directory. Use the cd command (i.e., 

change directory) followed by the path of the directory. 

>> cd /path/to/folder_name/ 

Next, you can check the FASTQ files by using the ls command (i.e., listing), which shows the 

contents of the current working directory. 

Data files from sequencing providers are typically compressed and have the extension 

“.fastq.gz”. These files contain structured information about individual NGS reads—a unique 

identifier, the called bases, and the associated quality scores.  

Lastly, you can make an output directory using the mkdir command (i.e., make directory). 

Output files can be stored here. 

>> mkdir /path/to/output_folder/ 

1. Check quality with FastQC 

Run FastQC to check the raw data quality. 

>> fastqc sample_01.fastq.gz --extract -o /path/to/output_folder 

The output contains graphs and statistics about the raw quality, including quality scores, GC 

content, adapter percentage, and more. Below is an examples of the output file “Per base 

Sequence quality”. 

https://sourceforge.net/projects/bowtie-bio/files/bowtie2/
https://ccb.jhu.edu/software/tophat/index.shtml
http://cole-trapnell-lab.github.io/cufflinks/getting_started/
https://github.com/trinityrnaseq/trinityrnaseq/wiki/Installing-Trinity


 

Per base sequence quality. Quality scores for each base position in the read are represented as 

box plots. The blue line represents the average quality score. High-quality data will typically 

have over 80% of bases with a quality score of 30 or higher (i.e., Q30 > 80%). Q30 

represents 99.9% accuracy in the base call, or an error rate of 1 in 1000. A dip in quality is 

expected towards the end of the read. 

2. Trim reads with Trimmomatic 

Poor-quality regions and adapter sequences should be trimmed from the reads before further 

analysis. Trimmomatic can be used for trimming the low quality reads and adapter sequences. 

>> trimmomatic  PE input_forward.fastq.gz  input_reverse.fastq.gz 

output_forward_paired.fastq.gz  output_forward_unpaired.fastq.gz 

output_reverse_paired.fastq.gz  output_reverse_unpaired.fastq.gz  

ILLUMINACLIP:TruSeq3-PE.fa:2:30:10:2:keepBothReads LEADING:3 TRAILING:3 

MINLEN:36 

Run FastQC again on the trimmed treads to confirm that the new quality is acceptable. 



 

Transcriptome Assembly 

Refrence based Assembly 

1. Indexing the reference genome 

First, index the reference genome using Bowtie2 to prepare it for alignment. Adding gene 

annotation information to the reference genome will facilitate alignment of RNA-Seq reads 

across exon-intron boundaries. This indexing step is only required once; you can then use the 

indexed genome repeatedly in future analysis. 

>> bowtie-build [options]* <input referencegenome fasta file> < basename of the index files 

>  

It results in 6 files with extention .bt2 

2. Map/Align the reads to reference Genome 

Then, align the reads using Tophat. 

>> tophat [options]* <genome_index_base> PE_reads_1.fq.gz,SE_reads.fa PE_reads_2.fq.gz 

‐ or ‐ 



>> tophat [options]* <genome_index_base> PE_reads_1.fq.gz PE_reads_2.fq.gz,SE_reads.fa  

Check the mapping statistics in the [sample_name]Log.final.out file to ensure the BAM file 

was generated properly and the reads align to the genome correctly. Uniquely mapped reads 

are the most useful for expression analysis, as there is high confidence in which loci they 

represent. In general, >60-70% for the “uniquely mapped reads %” metric is considered 

good; a significantly lower value warrants further investigation. 

3. Assemble the mapped reads 

 

Use Cufflinks program to assemble aligned RNA-Seq reads into transcripts, estimate their 

abundances, test for differential expression and regulation, and provide transcript 

quantification. Some of the tools part of Cufflinks can be run individually, while others are 

part of a larger workflow. 

 

>> cufflinks [options] input_alignments.[sam|bam] 

 

The program cufflinks produces number of files in its predefined output directory. Some of 

the generated files are: 

 

transcripts.gtf: The GTF file contains Cufflinks’ assembled isoforms where there is one GTF 

record per row, and each record represents either a transcript or an exon within a transcript 

isoforms.fpkm_tracking: This file contains the estimated isoform-level expression values in 

the generic FPKM Tracking Format 

genes.fpkm_tracking: This file contains the estimated gene-level expression values in the 

generic FPKM Tracking Format 

De novo Assembly 

De novo transcriptome assembly is often the preferred method to studying non-model 

organisms, since reference-based methods are not possible without an existing genome. De 

novo assembly can be performed using Trinity assembler. 

A typical Trinity command for assembling non-strand-specific RNA-seq data would be like 

so, running the entire process on a single high-memory server (aim for ~1G RAM per ~1M 

~76 base Illumina paired reads, but often much less memory is required): 

Trinity --seqType fq --max_memory 50G  --left reads_1.fq.gz  --right reads_2.fq.gz --CPU 6 



If multiple sets of fastq files are available, such as corresponding to multiple tissue types or 

conditions, etc., indicate them to Trinity like following: 

 Trinity --seqType fq --max_memory 50G --left condA_1.fq.gz,condB_1.fq.gz,condC_1.fq.gz 

–right condA_2.fq.gz,condB_2.fq.gz,condC_2.fq.gz  --CPU 6   

When Trinity completes, it will create a 'Trinity.fasta' output file in the 'trinity_out_dir/' 

output directory (or output directory specified). 

Trinity groups transcripts into clusters based on shared sequence content. Such a transcript 

cluster is very loosely referred to as a 'gene'. This information is encoded in the Trinity fasta 

accession. 

 



 

Chapter 4 

GENOME ANNOTATION: GENE PREDICTION 

Sanjeev Kumar, D.C. Mishra and Jyotika Bhati 

 

Introduction 

Until the genome revolution, genes were identified by researchers with specific interests in a 

particular protein or cellular process. Once identified, these genes were isolated, typically by 

cloning and sequencing cDNAs, usually followed by targeted sequencing of the longer 

genomics segments that code for the cDNAs. Once an organism’s entire genome sequence 

becomes available, there is strong motivation for finding all the genes encoded by a genome 

at once rather than in a piecemeal approach. Such catalogue is immensely valuable to 

researchers, as they can learn much more from the whole picture than from a much more 

limited set of genes. For example, genes of similar sequence can be identified, evolutionary 

and functional relationships can be elucidated, and a global picture of how many and what 

types of genes are present in a genome can be seen. A significant portion of the effort in 

genome sequencing is devoted to the process of annotation, in which genes, regulatory 

elements, and other features of the sequence are identifies as thoroughly as possible and 

catalogued in a standard format in public databases so that researchers can easily use the 

information. Functional genomics research has expanded enormously in the last decade and 

particularly the plant biology research community. Functional annotation of novel DNA 

sequences is probably one of the top requirements in functional genomics as this holds, to a 

great extent, the key to the biological interpretation of experimental results.  

Computational Gene Prediction 

Computational gene prediction is becoming more and more essential for the automatic 

analysis and annotation of large uncharacterized genomic sequences. In the past two decades, 

many algorithms have been evolved to predict protein coding regions of the DNA sequences. 

They all have in common, to varying degree, the ability to differentiate between gene features 

like Exons, Introns, Splicing sites, Regulatory sites etc. Gene prediction methods predicts 

coding region in the query sequences and then annotates the sequences databases. 

Gene Structure and Expression 



The gene structure and the gene expression mechanism in eukaryotes are far more 

complicated than in prokaryotes. In typical eukaryotes, the region of the DNA coding for a 

protein is usually not continuous. This region is composed of alternating stretches of exons 

and introns. During transcription, both exons and introns are transcribed onto the RNA, in 

their linear order. Thereafter, a process called splicing takes place, in which, the intron 

sequences are excised and discarded from the RNA sequence. The remaining RNA segments, 

the ones corresponding to the exons are ligated to form the mature RNA strand. A typical 

multi-exon gene has the following structure (as illustrated in Fig. 1). 

 

Fig. 1: Representative Diagram of Protein Coding Eukaryotic Gene 

It starts with the promoter region, which is followed by a transcribed but non-coding region 

called 5' untranslated region (5' UTR). Then follows the initial exon which contains the start 

codon. Following the initial exon, there is an alternating series of introns and internal exons, 

followed by the terminating exon, which contains the stop codon. It is followed by another 

non-coding region called the 3' UTR. Ending the eukaryotic gene, there is a polyadenylation 

(polyA) signal: the nucleotide Adenine repeating several times. The exon-intron boundaries 

(i.e., the splice sites) are signalled by specific short (2bp long) sequences. The 5'(3') end of an 

intron (exon) is called the donor site, and the 3'(5') end of an intron (exon) is called the 

acceptor site. The problem of gene identification is complicated in the case of eukaryotes by 

the vast variation that is found in gene structure.  

Gene Prediction Methods 



There are mainly two classes of methods for computational gene prediction (Fig. 2). One is 

based on sequence similarity searches, while the other is gene structure and signal-based 

searches, which is also referred to as Ab initio gene finding. 

Sequence Similarity Searches 

Sequence similarity search is a conceptually simple approach that is based on finding 

similarity in gene sequences between ESTs (expressed sequence tags), proteins, or other 

genomes to the input genome. This approach is based on the assumption that functional 

regions (exons) are more conserved evolutionarily than non-functional regions (intergenic or 

intronic regions). Once there is similarity between a certain genomic region and an EST, 

DNA, or protein, the similarity information can be used to infer gene structure or function of 

that region. EST-based sequence similarity usually has drawbacks in that ESTs only 

correspond to small portions of the gene sequence, which means that it is often difficult to 

predict the complete gene structure of a given region. Local alignment and global alignment 

are two methods based on similarity searches. The most common local alignment tool is the 

BLAST family of programs, which detects sequence similarity to known genes, proteins, or 

ESTs. The biggest limitation to this type of approaches is that only about half of the genes 

being discovered have significant homology to genes in the databases. 

 

Ab initio Gene Prediction Methods 

The second class of methods for the computational identification of genes is to use gene 

structure as a template to detect genes, which is also called ab initio prediction. Ab initio gene 

predictions rely on two types of sequence information: signal sensors and content sensors. 

Signal sensors refer to short sequence motifs, such as splice sites, branch points, poly 

pyrimidine tracts, start codons and stop codons. Exon detection must rely on the content 

sensors, which refer to the patterns of codon usage that are unique to a species, and allow 

coding sequences to be distinguished from the surrounding non-coding sequences by 

statistical detection algorithms. 



Many algorithms are applied for modelling gene structure, such as Dynamic Programming, 

linear discriminant analysis, Linguist methods, Hidden Markov Model and Neural Network. 

Based on these models, a great number of ab initio gene prediction programs have been 

developed. 

Fig. 2: Diagrammatic Representation of Gene Prediction and Annotation 

 

 

 

 

Gene Discovery in Prokaryotic Genomes 



Discovery of genes in Prokaryote is relatively easy, due to the higher gene density typical of 

prokaryotes and the absence of introns in their protein coding regions. DNA sequences that 

encode proteins are transcribed into mRNA, and the mRNA is usually translated into proteins 

without significant modification. The longest ORFs (open reading frames) running from the 

first available start codon on the mRNA to the next stop codon in the same reading frame 

generally provide a good, but not assured prediction of the protein coding regions. Several 

methods have been devised that use different types of Markov models in order to capture the 

compositional differences among coding regions, “shadow" coding regions (coding on the 

opposite DNA strand), and noncoding DNA. Such methods, including ECOPARSE, the 

widely used GENMARK, and Glimmer program, appear to be able to identify most protein 

coding genes with good performance (Fig. 3). 

 

         Fig. 3: Flow Diagram of Prokaryotic Gene Discovery 

 

Gene Discovery in Eukaryotic Genome 

It is a quite different problem from that encountered in prokaryotes. Transcription of protein 

coding regions initiated at specific promoter sequences is followed by removal of noncoding 

sequences (introns) from pre-mRNA by a splicing mechanism, leaving the protein encoding 
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exons. Once the introns have been removed and certain other modifications to the mature 

RNA have been made, the resulting mature mRNA can be translated in the 5` to 3` direction, 

usually from the first start codon to the first stop codon. As a result of the presence of intron 

sequences in the genomic DNA sequences of eukaryotes, the ORF corresponding to an 

encoded gene will be interrupted by the presence of introns that usually generate stop codons 

(Fig.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Flow Diagram of Eukaryotic Gene Discovery 

Gene Prediction Program 

There are two basic problems in gene prediction: prediction of protein coding regions and 

prediction of the functional sites of genes. Gene prediction program can be classified into 

four generations. The first generation of programs was designed to identify approximate 

locations of coding regions in genomic DNA. The most widely known programs were 

probably TestCode and GRAIL. But they could not accurately predict precise exon locations. 



The second generation, such as SORFIND and Xpound, combined splice signal and coding 

region identification to predict potential exons, but did not attempt to assemble predicted 

exons into complete genes. The next generation of programs attempted the more difficult task 

of predicting complete gene structures. A variety of programs have been developed, including 

GeneID, GeneParser, GenLang, and FGENEH. However, the performance of those programs 

remained rather poor. Moreover, those programs were all based on the assumption that the 

input sequence contains exactly one complete gene, which is not often the case. To solve this 

problem and improve accuracy and applicability further, GENSCAN and AUGUSTUS were 

developed, which could be classified into the fourth generation.  

 

GeneMark 

GeneMark uses a Markov Chain model to represent the statistics of the coding and noncoding 

frames. The method uses the dicodon statistics to identify coding regions. Consider the 

analysis of a sequence x whose base at the ith position is called xi. The Markov chains used 

are fifth order, and consist of a terms such as P(a/x1x2x3x4x5), which represent the probability 

of the sixth base of the sequence x being given a given that the previous five bases in the 

sequence x where x1x2x3x4x5, resulting in the first dicodon of the sequence being x1x2x3x4x5a. 

These terms must be defined for all possible pentamers with the general sequence b1b2b3b4b5. 

The values of these terms can be obtained of analysis of data, consisting of nucleotide 

sequence in which the coding regions have been actually identified. When there are sufficient 

data, they are given by 

 

where, is the number of times the sequence b1b2b3b4b5a occurs in the training 

data. This is the maximum likelihood estimators of the probability from the training data. 

Glimmer 

The core of Glimmer is Interpolated Markov Model (IMM), which can be described as a 

generalized Markov chain with variable order. After GeneMark introduces the fixed-order 

Markov chains, Glimmer attempts to find a better approach for modeling the genome content. 

The motivational fact is that the bigger the order of the Markov chain, the more non-

randomness can be described. However, as we move to higher order models, the number of 

probabilities that we must estimate from the data increases exponentially. The major 



limitation of the fixed-order Markov chain is that models from higher order require 

exponentially more training data, which are limited and usually not available for new 

sequences. However, there are some oligomers from higher order that occur often enough to 

be extremely useful predictors. For the purpose of using these higher-order statistics, 

whenever sufficient data is available, Glimmer IMMs.  

Glimmer calculates the probabilities for all Markov chains from 0th order to 8th. If there are 

longer sequences (e.g. 8-mers) occurring frequently, IMM makes use of them even when 

there is insufficient data to train an 8-th order model. Similarly, when the statistics from the 

8-th order model do not provide significant information, Glimmer refers to the lower-order 

models to predict genes.  

Opposed to the supervised GeneMark, Glimmer uses the input sequence for training. The 

ORFs longer than a certain threshold are detected and used for training, because there is high 

probability that they are genes in prokaryotes. Another training option is to use the sequences 

with homology to known genes from other organisms, available in public databases. 

Moreover, the user can decide whether to use long ORFs for training purposes or choose any 

set of genes to train and build the IMM. 

GeneMark.hmm 

GeneMark.hmm is designed to improve GeneMark in finding exact gene starts. Therefore, 

the properties of GeneMark.hmm are complementary to GeneMark. GeneMark.hmm uses 

GeneMark models of coding and non-coding regions and incorporates them into hidden 

Markov model framework. In short terms, Hidden Markov Models (HMM) are used to 

describe the transitions from non-coding to coding regions and vice versa. GeneMark.hmm 

predicts the most likely structure of the genome using the Viterbi algorithm, a dynamic 

programming algorithm for finding the most likely sequence of hidden states. To further 

improve the prediction of translation start position, GeneMark.hmm derives a model of the 

ribosome binding site (6-7 nucleotides preceding the start codon, which are bound by the 

ribosome when initiating protein translation). This model is used for refinement of the results.  

Both GeneMark and GeneMark.hmm detect prokaryotic genes in terms of identifying open 

reading frames that contain real genes. Moreover, they both use pre-computed species-

specific gene models as training data, in order to determine the parameters of the protein-

coding and non-coding regions. 

Orpheus 



The ORPHEUS program uses homology, codon statistics and ribosome binding sites to 

improve the methods presented so far by using information that those programs ignored. One 

of the key differences is that it uses database searches to help determine putative genes, and is 

thus an extrinsic method. This initial set of genes is used to define the coding statistics for the 

organism, in this case working at the level of codon, not dicodons. These statistics are then 

used to define a larger set of candidate ORFs. From this set, those ORFs with an 

unambiguous start codon end are used to define a scoring matrix for the ribosome-binding 

site, which is then used to determine the 5` end of those ORFs where alternative start are 

present.    

EcoParse  

EcoParse is one of the first HMM model based gene finder, was developed for gene finding 

in E.coli. It focuses on the uses the codon structure of genes. With EcoParse a flora of HMM 

based gene finder, usuing dynamic programming and the viterbi algorithm to parse a 

sequence, emerged.     

Evaluation of Gene Prediction Programs 

In the field of gene prediction accuracy can be measured at three levels 

a. Coding nucleotides (base level) 

b. Exon structure (exon level) 

c. Protein product (protein level) 

At base level gene predictions can be evaluated in terms of true positives (TP) (predicted 

features that are real), true negatives (TN) (non-predicted features that are not real), false 

positives (FP) (predicted features that are not real), and false negatives (FN) (real features 

that were not predicted) Fig. 5. Usually the base assignment is to be in a coding or non coding 

segment, but this analysis can be extended to include non coding parts of genes, or any 

functional parts of the sequences. 
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Fig. 5: Four Possible Comparisons of Real and Predicted Genes 

 

 

Sensitivity (Sn): The fraction of bases in real genes that are correctly predicted to be in genes 

is the sensitivity and interpreted as the probability of correctly predicting a nucleotide to be in 

a given gene that it actually is. 

 

  

Specificity (Sp): The fraction of those bases which are predicted to be in genes that actually 

are is called the specificity and interpreted as the probability of a nucleotide actually being in 

a gene given that it has been predicted to be. 

 

Care has to be taken in using these two values to assess a gene prediction program because, 

as with the normal definition of specificity, extreme results can make them misleading.  

Approximate correlation coefficient (AC) has been proposed as a single measure to 

circumvent these difficulties. This defined as AC=2(ACP-0.5), where  

 

 

At the exon level, determination of prediction accuracy depends on the exact prediction of 

exon start and end points. There are two measures of sensitivity and specificity used in the 

field, each of which measures a different but useful property.  

The sensitivity measures used are 

Sn1 = CE/AE and Sn2 = ME/AE 

The specificity measures used are 

Sp1=CE/PE and Sp2=WE/PE  

Where,  

AE = No of actual exons in the data   

PE = No of predicted exons in the data 

CE = No of correct predicted exons 

ME = No of missing exons (rarely occurs) 

WE = No of wrongly predicted exons (Figure-5) 
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Fig. 6: Real and Predicted Exons 

Gene Ontology 

The gene ontology (GO, http:www.geneontology.org)  is probably the most extensive scheme 

today for the description of gene product functions but other systems such as enzyme codes, 

KEGG pathways, FunCat, or COG are also widely used. Here, we describe the Blast2GO 

(B2G, www.blast2go.org) application for the functional annotation, management, and data 

mining of novel sequence data through the use of common controlled vocabulary schemas. 

The main application domain of the tool is the functional genomics of non-model organisms 

and it is primarily intended to support research in experimental labs. Blast2GO strives to be 

the application of choice for the annotation of novel sequences in functional genomics 

projects where thousands of fragments need to be characterized. Functional annotation in 

Blast2GO is based on homology transfer. Within this framework, the actual annotation 

procedure is configurable and permits the design of different annotation strategies. Blast2GO 

annotation parameters include the choice of search database, the strength and number of blast 

results, the extension of the query-hit match, the quality of the transferred annotations, and 

the inclusion of motif annotation. Vocabularies supported by B2G are gene ontology terms, 

enzyme codes (EC), InterPro IDs, and KEGG pathways. 

Fig.7 shows the basic components of the Blast2GO suite. Functional assignments proceed 

through an elaborate annotation procedure that comprises a central strategy plus refinement 

functions. Next, visualization and data mining engines permit exploiting the annotation 

results to gain functional knowledge. GO annotations are generated through a 3-step process: 

blast, mapping, annotation. InterPro terms are obtained from InterProScan at EBI, converted 

and merged to GOs. GO annotation can be modulated from Annex, GOSlim web services and 

manual editing. EC and KEGG annotations are generated from GO. Visual tools include 

sequence color code, KEGG pathways, and GO graphs with node highlighting and filtering 

options. Additional annotation data-mining tools include statistical charts and gene set 

enrichment analysis functions. 



 

Fig. 7: Schematic Representation of Blast2GO Application. 

The Blast2GO annotation procedure consists of three main steps: blast to find homologous 

sequences, mapping to collect GO terms associated to blast hits, and annotation to assign 

trustworthy information to query sequences.  

 

Blast Step 

The first step in B2G is to find sequences similar to a query set by blast. B2G accepts 

nucleotide and protein sequences in FASTA format and supports the four basic blast 

programs (blastx, blastp, blastn, and tblastx). Homology searches can be launched against 

public databases such as (the) NCBI nr using a query-friendly version of blast (QBlast). This 

is the default option and in this case, no additional installations are needed. Alternatively, 

blast can be run locally against a proprietary FASTA-formatted database, which requires a 

working www-blast installation. The Make Filtered Blast-GO-BD function in the Tools menu 

allows the creation of customized databases containing only GO annotated entries, which can 

be used in combination with the local blast option. Other configurable parameters at the blast 

step are the expectation value (e-value) threshold, the number of retrieved hits, and the 

minimal alignment length (hsp length) which permits the exclusion of hits with short, low e-

value matches from the sources of functional terms. Annotation, however, will ultimately be 

based on sequence similarity levels as similarity percentages are independent of database size 

and more intuitive than e-values. Blast2GO parses blast results and presents the information 



for each sequence in table format. Query sequence descriptions are obtained by applying a 

language processing algorithm to hit descriptions, which extracts informative names and 

avoids low content terms such as “hypothetical protein” or “expressed protein”. 

Mapping Step 

Mapping is the process of retrieving GO terms associated to the hits obtained after a blast 

search. B2G performs three different mappings as follows.  

a. Blast result accessions are used to retrieve gene names (symbols) making use of two 

mapping files provided by NCBI (geneinfo, gene2accession). Identified gene names are 

searched in the species-specific entries of the gene product table of the GO database.  

b. Blast result GI identifiers are used to retrieve UniProt IDs making use of a mapping file 

from PIR (Non-redundant Reference Protein database) including PSD, UniProt, Swiss-

Prot, TrEMBL, RefSeq, GenPept, and PDB.  

c. Blast result accessions are searched directly in the DBXRef Table of the GO database. 

Annotation Step 

This is the process of assigning functional terms to query sequences from the pool of GO 

terms gathered in the mapping step. Function assignment is based on the gene ontology 

vocabulary. Mapping from GO terms to enzyme codes permits the subsequent recovery of 

enzyme codes and KEGG pathway annotations. The B2G annotation algorithm takes into 

consideration the similarity between query and hit sequences, the quality of the source of GO 

assignments, and the structure of the GO DAG. For each query sequence and each candidate 

GO term, an annotation score (AS) is computed (see Figure 8). The AS is composed of two 

terms. The first, direct term (DT), represents the highest similarity value among the hit 

sequences bearing this GO term, weighted by a factor corresponding to its evidence code 

(EC). A GO term EC is present for every annotation in the GO database to indicate the 

procedure of functional assignment. 

 
 

 

 

Fig. 8: Blast2GO Annotation Rule 

ECs vary from experimental evidence, such as inferred by direct assay (IDA) to unsupervised 

assignments such as inferred by electronic annotation (IEA). The second term (AT) of the 



annotation rule introduces the possibility of abstraction into the annotation algorithm. 

Abstraction is defined as the annotation to a parent node when several child nodes are present 

in the GO candidate pool. This term multiplies the number of total GOs unified at the node by 

a user defined factor or GO weight (GOw) that controls the possibility and strength of 

abstraction. When all ECw’s are set to 1 (no EC control) and the GOw is set to 0 (no 

abstraction is possible), the annotation score of a given GO term equals the highest similarity 

value among the blast hits annotated with that term. If the ECw is smaller than one, the DT 

decreases and higher query-hit similarities are required to surpass the annotation threshold. If 

the GOw is not equal to zero, the AT becomes contributing and the annotation of a parent 

node is possible if multiple child nodes coexist that do not reach the annotation cutoff. 

Default values of B2G annotation parameters were chosen to optimize the ratio between 

annotation coverage and annotation accuracy. Finally, the AR selects the lowest terms per 

branch that exceed a user-defined threshold. 

Blast2GO includes different functionalities to complete and modify the annotations obtained 

through the above-defined procedure. Enzyme codes and KEGG pathway annotations are 

generated from the direct mapping of GO terms to their enzyme code equivalents. 

Additionally, Blast2GO offers InterPro searches directly from the B2G interface. B2G 

launches sequence queries in batch, and recovers, parses, and uploads InterPro results. 

Furthermore, InterPro IDs can be mapped to GO terms and merged with blast-derived GO 

annotations to provide one integrated annotation result. In this process, B2G ensures that only 

the lowest term per branch remains in the final annotation set, removing possible parent-child 

relationships originating from the merging action. 
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Introduction

DNA

• double stranded, helical structure

• sequences of nucleotides (A, T, G & C)

• base pairs (A with T and G with C)



Introduction…

Central Dogma of Molecular Biology

The Central Dogma. This states that once ‘information’ has passed into

protein it cannot get out again. In more detail, the transfer of information from

nucleic acid to nucleic acid, or from nucleic acid to protein may be possible,

but transfer from protein to protein, or from protein to nucleic acid is

impossible. Information means here the precise determination of sequence,

either of bases in the nucleic acid or of amino acid residues in the protein.

[Francis Crick,1958]

The central dogma of molecular biology deals with the detailed residue-by-

residue transfer of sequential information. It states that such information

cannot be transferred back from protein to either protein or nucleic acid.

[Francis Crick, re-stated in a Nature paper, 1970]



Introduction…

Central Dogma of Molecular Biology



Introduction…

Central Dogma of Molecular Biology



 The advent of Next-Generation Sequencing (NGS) technology has

transformed genomic studies.

 One important application of NGS technology is the study of the

transcriptome.

 Transcriptome is defined as the complete collection of all the RNA

molecules in a cell.

Introduction…



Introduction…

Different types of RNA

 All of these molecules are called transcripts since they are produced by

process of transcription.

 ~ 2% mRNA



 RNA-Sequencing uses NGS technology to reveal the presence and

quantity of RNA in a biological sample at a given moment.

 It allows transcript quantification and differential gene expression

analysis.

 Several machines/ protocols are available for generating RNA-Seq

data:

• Illumina (MiSeq, NextSeq, HiSeq, NovaSeq)

• Ion Torrent (Proton, Personal Genome Machine)

• SOLiD

• Roche 454

Introduction…



 Important steps of RNA-Seq experiments:

• Data generation (experimental design, sample collection, sequencing

design, quality control)

• Quantification of reads to estimate the expression values

• Normalization

• Differential expression analysis

Introduction…



 Applications of RNA-Seq experiments

• Quantification of transcriptome/RNA-Seq expression levels to study

gene expression in complex experiments

• Novel gene discovery

• Gene annotation

• Detection of differentially expressed features (genes/ transcripts/

exons) between different conditions

• Detection of splicing events

• Identification of introns and exon boundaries

Introduction…



Bioinformatics Tools for NGS data preprocessing

Tools for quality check/ filtering/ trimming

 FASTQC - A quality control tool for high throughput sequence data

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

 NGS QC - Quality Control

 FastqCleaner – A shiny app for Quality Control, Filtering and

Trimming of FASTQ Files

 Trimmomatic – Trimming of FASTQ files



Bioinformatics Tools for NGS data preprocessing…

 FASTX toolkit – A collection of command line tools for Short-Reads

FASTA/FASTQ files preprocessing

(http://hannonlab.cshl.edu/fastx_toolkit/)

 ShortRead – R package for filtering and trimming reads, and for

generating a quality assessment report



Bioinformatics Tools for NGS data preprocessing…

Samtools: A suite of programs for interacting with high-throughput

sequencing data (http://www.htslib.org/)

Three separate repositories:

• Samtools - Reading/writing/editing/indexing/viewing SAM/BAM

format

• BCFtools - Reading/writing BCF2/VCF/gVCF files and

calling/filtering/summarising SNP and short indel sequence variants

• HTSlib - A C library for reading/writing high-throughput sequencing

data



Bioinformatics Tools for NGS data preprocessing…

Short read aligners

 Bowtie

 TOPHAT

 BWA

 Novoalign

 STAR



Bioinformatics Tools for NGS data preprocessing…

de novo assemblers

 SOAPdenovo-Trans

 Trans-AbySS

 Trinity

 SPAdes

Tools for Visualization

 CummeRbund

 IGV

 Bedtools

 UCSC Genome Browser



Experimental design and heterogeneity issues

 The purpose of experimental design is to plan experiment in an effective
way so that it can answer the biological question under consideration.

(i) Biological aspects:
• Any biological experimental plan starts with a biological question or

hypothesis.
• The experimenter might have some prior knowledge of the question

under study before conducting the experiments, e.g., expression
levels of some known genes, proteins, etc.

(ii) Technical aspects:
• These include the choice of platform and avoiding systematic errors.
• If the experiment has systematics errors, then the result obtained for

comparative analysis will be biased, irrespective of the precision of
measurement and the number of experimental units.

(iii) Economic aspects:
• Cost of experiment and its analysis
• Budget available
• Time required to complete the experiment and its analysis
• Whether pilot study is required or not, etc.



Other points to be considered:

• Availability of enough samples for experiment;

• Availability of enough RNA, DNA or proteins from samples;

• Biopsies collected from same part of tissue or other tissues;

• Number of replicates required;

• Effect size, etc.

Heterogeneity

 A heterogeneous sample or population means that every observed data
has different value for the corresponding characteristic of interest.

 There may be various factors responsible for influencing expression in
any feature.

 The major sources of variations are due to technical, genetic,
demographic and environmental factors.

Experimental design and heterogeneity issues…



 There are two important points to be considered while designing RNA-
Seq experiments which are namely, the sequencing depth and the
number of replicates (biological and technical) required to observe
significant changes in expression.

 The cost can be reduced by optimizing the designing process of these
experiments.

 Tools and software for sample size estimation and power analysis:

• RNASeqPowerCalculator

• RNASeqPower

• Scotty

• PROPER

Experimental design and heterogeneity issues…



 The basic steps for summarizing a typical RNA-Seq experiment:

• Purified RNA is converted to cDNA, fractionated, ligated with

technology specific adapters and sequencing is done.

• Millions of short read sequences are generated from one end (single-

end) or both ends (paired-end) of the cDNA fragments.

• These sequences are aligned to a reference genome.

• The number of reads mapped to known features are recorded and

summarized in a table.

 The features can be either genes, transcripts (alternative transcripts) or

exon level expression.

RNA-Seq Experiments



Example of a biological experiment with 𝐼 conditions/groups denoted by
𝐺𝑖 𝑖 = 1, 2, … , 𝐼 having 𝑁𝑖 individuals/samples denoted by 𝑆𝑖,𝑗 ሺ𝑗 =

𝑮𝟏 ... 𝑮𝒊 ... 𝑮𝑰

𝑺𝟏,𝟏 … 𝑺𝟏,𝒋 … 𝑺𝟏,𝑵𝟏
𝑺𝒊,𝟏 … 𝑺𝒊,𝒋 … 𝑺𝒊,𝑵𝒊

𝑺𝑰,𝟏 … 𝑺𝑰,𝒋 … 𝑺𝑰,𝑵𝑰

𝑭𝟏 𝑦1,1,1 … 𝑦1,𝑗,1 … 𝑦1,𝑁1,1 𝑦𝑖,1,1 … 𝑦𝑖,𝑗,1 … 𝑦𝑖,𝑁𝑖,1 𝑦𝐼,1,1 … 𝑦𝐼,𝑗,1 … 𝑦𝐼,𝑁𝐼 ,1

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

𝑭𝒌 𝑦1,1,𝑘 … 𝑦1,𝑗,𝑘 … 𝑦1,𝑁1,𝑘 𝑦𝑖,1,𝑘 … 𝒚𝒊,𝒋,𝒌 … 𝑦𝑖,𝑁𝑖,𝑘 𝑦𝐼,1,𝑘 … 𝑦𝐼,𝑗,𝑘 … 𝑦𝐼,𝑁𝐼 ,𝑘

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

𝑭𝑲 𝑦1,1,𝐾 … 𝑦1,𝑗,𝐾 … 𝑦1,𝑁1,𝐾 𝑦𝑖,1,𝐾 … 𝑦𝑖,𝑗,𝐾 … 𝑦𝑖,𝑁𝑖,𝐾 𝑦𝐼,1,𝐾 … 𝑦𝐼,𝑗,𝐾 … 𝑦𝐼,𝑁𝐼 ,𝐾

RNA-Seq Experiments…



RNA-Seq Experiments…

A table of read counts for a hypothetical case-control study



Transcript quantification

 The most common application of RNA-seq is to estimate gene and

transcript expression.

 This application is primarily based on the number of reads that map to

each transcript sequence.

 The simplest approach to quantification is to aggregate raw counts of

mapped reads using programs such as HTSeq-count or featureCounts.

 Metrics to normalize data considering the gene length and sequencing

depth

• RPKM (reads aligned per kilobase of exon per million reads mapped)

• FPKM (fragments per kilobase of exon per million fragments mapped)

• TPM (transcripts per kilobase million)

 Normalization is required before performing the differential expression

analysis.



 htseq-count

 featureCounts

 Cufflinks

 Stringtie

 RSEM

 Sailfish

Transcript quantification…



 One of the primary goals for RNA-seq experiments is to compare the

gene expression levels across various experimental conditions,

treatments, tissues, or time points.

 The researchers are particularly interested in detecting gene with

differential expressions.

 The study of determining which genes have changed significantly in

terms of their expression across two or more conditions is referred to

as differential expression analysis.

 Identification of differentially expressed genes helps researchers to

understand the functions of genes in response to a given condition.

Differential Expression Analysis 



 A large number of statistical models and tools have been developed to

perform differential expression analysis for RNA-Seq data.

 Differential expression analysis methods for RNA-Seq can be grouped

into two broad categories:

 Parametric method

• It captures all information about the data within the parameters.

• Each expression value for a given gene is mapped into a particular

distribution, such as Poisson or negative binomial.

 Non-parametric method

• A non-parametric model uses a flexible number of parameters.

• The number of parameters often grows as it learns from more data.

• A non-parametric model is computationally slower, but makes fewer

assumptions about the data.

Differential Expression Analysis… 



RNA-Seq Experiments…

Estimation of parameters based on NB distribution

 The estimation of parameters is an essential step for design, sample size

calculation and differential expression analysis.

 The parameter estimation can be done by using various methods such as

method of moments estimation (MME), maximum likelihood estimation

(MLE), maximum quasi-likelihood estimation (MQLE).

 Besides these methods, there are various methods/models for estimation

of parameters such as pseudo-likelihood, quasi-likelihood, conditional

maximum likelihood (CML), conditional inference, quantile-adjusted CML,

conditional weighted likelihood.



RNA-Seq Experiments…

Estimation of parameters based on NB distribution without scaling factor

 Let 𝑌𝑖𝑗 be a NB random variable with mean 𝜇𝑖 and dispersion parameter
𝜙𝑖, i.e., 𝑌𝑖𝑗~𝑁𝐵 𝜇𝑖 , 𝜙𝑖 , then its probability mass function is given by

𝑝 𝑌𝑖𝑗 = 𝑦𝑖𝑗 =
𝛤 𝑦𝑖𝑗 +

1
𝜙𝑖

𝛤
1
𝜙𝑖

𝛤 𝑦𝑖𝑗 + 1

𝜇𝑖𝜙𝑖
𝑦𝑖𝑗

1 + 𝜇𝑖𝜙𝑖
𝑦𝑖𝑗+

1
𝜙𝑖

; 𝑦 = 0, 1, 2, …

 The likelihood function is given by

𝐿 𝜇𝑖 , 𝜙𝑖 𝑦𝑖𝑗; 𝑗 = 1, 2, … , 𝑁𝑖) =ෑ

𝑗=1

𝑁𝑖 𝛤 𝑦𝑖𝑗 +
1
𝜙𝑖

𝛤
1
𝜙𝑖

𝛤 𝑦𝑖𝑗 + 1

𝜇𝑖𝜙𝑖
𝑦𝑖𝑗

1 + 𝜇𝑖𝜙𝑖
𝑦𝑖𝑗+

1
𝜙𝑖

 The log-likelihood function is given by
𝑙 𝜇𝑖 , 𝜙𝑖 𝑦𝑖𝑗; 𝑗 = 1, 2, … , 𝑁𝑖)

=

𝑗=1

𝑁𝑖

ln 𝛤 𝑦𝑖𝑗 +
1

𝜙𝑖
−

𝑗=1

𝑁𝑖

𝛤
1

𝜙𝑖
−

𝑗=1

𝑁𝑖

ln 𝛤 𝑦𝑖𝑗 + 1

+

𝑗=1

𝑁𝑖

𝑦𝑖𝑗 ln 𝜇𝑖𝜙𝑖 −

𝑗=1

𝑁𝑖

𝑦𝑖𝑗 +
1

𝜙𝑖
ln 1 + 𝜇𝑖𝜙𝑖



Differential Expression Analysis… 

Method Read count distribution 

assumption/model

Normalization Differential analysis test

edgeR Negative binomial distribution TMM/ Upper quartile / RLE / 

None (all scaling factors are set 

to be one)

Exact test analogous to 

Fisher’s exact test or 

likelihood ratio test

DESeq Negative binomial distribution DESeq size factors Exact test analogous to 

Fisher’s exact test

DESeq2 Negative binomial distribution DESeq size factors Wald test

baySeq Negative binomial distribution Scaling factors (quantile/ TMM/ 

total)

Posterior probability 

through Bayesian approach

EBSeq Negative binomial-beta empirical 

Bayes model

DESeq median normalization

SAMseq Non-parametric method Based on the read count mean 

over the null features of data set.

Wilcoxon rank statistics 

based permutation test

NOIseq Non-parametric method RPKM / TMM / Upper quartile Corresponding logarithm of 

fold change and absolute 

expression differences have 

a high probability than 

noise values

limma+voom Similar to t-distribution with 

empirical Bayes approach

TMM Moderated t-test



Tools for Differential Expression Analysis

 Cufflinks package

 R packages: DESeq, DESeq2, edgeR

Differential Expression Analysis… 



edgeR for RNA-Seq Data Analysis

1. Download and Install R

https://cran.r-project.org/bin/windows/base/

2. Download and Install RStudio

https://www.rstudio.com/products/rstudio/download/#download

3. Open RStudio

4. Install the required R packages: Here, we will install edgeR.

if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install("edgeR")

https://cran.r-project.org/bin/windows/base/
https://www.rstudio.com/products/rstudio/download/#download


edgeR for RNA-Seq Data Analysis…

https://bioconductor.org/packages/release/bioc/html/edgeR.html

Example: A paired design RNA-seq experiment of oral squamous cell

carcinomas and matched normal tissue from three patients

 The aim of the analysis is to detect genes differentially expressed between

tumor and normal tissue, adjusting for any differences between the patients.

 RNA was sequenced on an Applied Biosystems SOLiD System 3.0 and reads

mapped to the UCSC hg18 reference genome.

 Read counts, summarised at the level of refSeq transcripts are available in

Table S1 of Tuch et al.

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824832/).

https://bioconductor.org/packages/release/bioc/html/edgeR.html


Online Tool for RNA-Seq Data Analysis

http://bioinformatics.sdstate.edu/idep/

https://kcvi.shinyapps.io/START/

http://bioinformatics.sdstate.edu/idep/
https://kcvi.shinyapps.io/START/
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Chapter 6  

Transcriptome Data Annotation 

Sneha Murmu 

Division of Agricultural Bioinformatics,  

ICAR-Indian Agricultural Statistics Research Institute 

The current ecosystems of RNA-seq tools provide a varied ways analyzing RNA-seq data. 

Depending on the experiment goal one could align the reads to reference genome or 

pseduoalign to transcriptome and perform quantification and differential expression of genes 

or if you want to annotate your reference, assemble RNA-seq reads using a de novo 

transcriptome assembler. In this lecture, we focus on workflows that align reads to reference 

genomes using updated Tuxedo protocol (HISAT, StringTie, Ballgown) by Pertea et al. This 

updated Tuxedo protocol not only scales but is more accurate in detecting differentially 

expressed genes (DEGs). Lastly, we used Blast2GO for annotating the identified DEGs. 

In this example, we have used the example data which is mentioned in the paper. Before 

starting with the actual workflow, we have briefly mentioned the steps required to set up the 

system. 

1) Setting up the system for differential expression analysis of transcriptome data 

#for windows system, install linux via wsl. 

#install anaconda in linux (Ubuntu) 

#open ubuntu terminal 

$ wget https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh 

$ bash Anaconda3-2022.10-Linux-x86_64.sh 

#set up the conda environment 

$ conda env create -f environment_1.yaml 

$ conda activate rnaseq_py3 

# Set up complete! 

1. Protocol: 

###Align the data to the reference genome using HISAT2 

##build index 

(rnaseq_py3) root@DESKTOP-

BJ5B6HR:/mnt/e/iasri/dabin_training/Nov2022/practical/example# mkdir index 



 
 

(rnaseq_py3) root@DESKTOP-

BJ5B6HR:/mnt/e/iasri/dabin_training/Nov2022/practical/example# extract_splice_sites.py 

resources/chrX.gtf > index/chrX.ss 

(rnaseq_py3) root@DESKTOP-

BJ5B6HR:/mnt/e/iasri/dabin_training/Nov2022/practical/example# extract_exons.py 

resources/chrX.gtf > index/chrX.exon 

(rnaseq_py3) root@DESKTOP-

BJ5B6HR:/mnt/e/iasri/dabin_training/Nov2022/practical/example# cd index 

(rnaseq_py3) root@DESKTOP-

BJ5B6HR:/mnt/e/iasri/dabin_training/Nov2022/practical/example/index# hisat2-build -p 8 --

ss chrX.ss --exon chrX.exon ../resources/chrX.fa chrX_tran 

(rnaseq_py3) root@DESKTOP-

BJ5B6HR:/mnt/e/iasri/dabin_training/Nov2022/practical/example/index# cd .. 

 

##1. mapping   

$ fastqdir=resources/samples 

mapdir=mapped 

mkdir $mapdir 

hisat2 -p 8 --dta -x index/chrX_tran -1 $fastqdir/ERR188044_chrX_1.fastq.gz -2 

$fastqdir/ERR188044_chrX_2.fastq.gz -S $mapdir/ERR188044.sam 

##2. sort mapped files 

$ mapdir=mapped 

samtools sort -@ 8 -o $mapdir/ERR188044.bam $mapdir/ERR188044.sam 

##3. assembly 

gtf=resources/chrX.gtf 

assembly=assembly 

mapdir=mapped 

mkdir $assembly 

stringtie $mapdir/ERR188044.bam -l ERR188044 -p 8 -G $gtf -o $assembly/ERR188044.gtf 

 



 
 

##obtain list of each sample .gtf file in a single file (mergelist.txt) 

$ ls assembly/*.gtf > mergelist.txt 

##merge .gtf file of each sample 

$ stringtie --merge -p 8 -G resources/chrX.gtf -o stringtie_merged.gtf mergelist.txt 

##obtain sequences of transcripts 

$ gffread -w transcripts.fa -g resources/chrX.fa stringtie_merged.gtf 

##compare merged.gtf file with reference .gtf file 

$ gffcompare -r resources/chrX.gtf -G -o merged stringtie_merged.gtf 

##4. abundance estimation 

$ abundancedir=abundance 

mapdir=mapped 

stringtie -e -B -p 8 -G stringtie_merged.gtf -o 

$abundancedir/ERR188044/ERR188044_chrX.gtf $mapdir/ERR188044.bam 

2. Differential expression analysis 

Open R console. 

#Differential expression 

#load the libraries 

library(ggplot2) 

library(ballgown) 

library(genefilter) 

library(RSkittleBrewer) 

library(devtools) 

library(dplyr) 

library(ggrepel) 

library(pheatmap) 

library(gplots) 

library(GenomicRanges) 



 
 

library(viridis) 

#lets load the sample information 

pheno_data <- read.csv("resources/geuvadis_phenodata.csv") 

#let's show information for first 6 samples 

head(pheno_data) 

#Load the expression data using ballgown 

bg_chrX <- ballgown(dataDir="abundance",samplePattern="ERR",pData=pheno_data) 

#Lets filter out transcripts with low variance 

#This is done to remove some genes that have few counts. Filtering improves the statistical 

power of differential expression analysis.  

#We use variance filter to remove transcripts with low variance( 1 or less) 

bg_chrX_filt<- subset(bg_chrX,"rowVars(texpr(bg_chrX))>1",genomesubset=TRUE) 

#Let's test on transcripts 

de_transcripts <- 

stattest(bg_chrX_filt,feature="transcript",covariate="conditions",getFC=TRUE,meas="FPK

M") 

# the results_transcripts does not contain identifiers. We will therefore add this information 

#add identifiers 

de_transcripts = data.frame(geneNames=ballgown::geneNames(bg_chrX_filt), 

geneIDs=ballgown::geneIDs(bg_chrX_filt), de_transcripts) 

# Let's test on genes 

de_genes <- stattest(bg_chrX_filt,feature="gene",covariate="conditions",getFC=TRUE, 

meas="FPKM") 

#lets get the gene names 

bg_filt_table=texpr(bg_chrX_filt,'all') 

gene_names=unique(bg_filt_table[,9:10]) 

features=de_genes$id 

mapped_gene_names=vector() 

for (i in features)  



 
 

{  query=gene_names%>%filter(gene_id==i & gene_name != '.') ; n_hit=dim(query)[1]; if 

(n_hit==1) {mapped_gene_names=append(mapped_gene_names,query$gene_name[[1]]) } 

else 

{mapped_gene_names=append(mapped_gene_names,'.') }     

} 

#add the mapped gene names to the de genes table 

de_genes$gene_name <- mapped_gene_names 

de_genes <- de_genes[, c('feature','gene_name','id','fc','pval','qval')] 

de_genes[,"log2fc"] <- log2(de_genes[,"fc"]) 

de_transcripts[,"log2fc"] <- log2(de_transcripts[,"fc"]) 

#Let's arrange the results from the smallest P value to the largest 

de_transcripts = arrange(de_transcripts,pval) 

de_genes = arrange(de_genes,pval) 

#save result in .csv 

write.csv(de_genes, "de_transcripts.csv", row.names=FALSE) 

write.csv(de_genes, "de_genes.csv", row.names=FALSE) 

#Let's subset transcripts that are detected as differentially expressed at qval <0.05 

subset_transcripts <- subset(de_transcripts,de_transcripts$qval<0.05) 

#do same for the genes 

subset_genes <- subset(de_genes,de_genes$qval<0.05) 

#create plots 

dir.create('plots') 

print('generating plots') 

#volcano plot 

#https://biocorecrg.github.io/CRG_RIntroduction/volcano-plots.html 

de_genes$diffexpressed <- "NO" 

de_genes$diffexpressed[de_genes$log2fc > 1 & de_genes$pval < 0.05] <- "UP" 

de_genes$diffexpressed[de_genes$log2fc < -1 & de_genes$pval < 0.05] <- "DOWN" 



 
 

de_genes$delabel <- NA 

de_genes$delabel[de_genes$diffexpressed != "NO"] <- de_genes$id[de_genes$diffexpressed 

!= "NO"] 

options(ggrepel.max.overlaps = Inf) 

png('plots/volcano.png',width = 1800, height = 1000) #,width = 1800, height = 1000 

volcano=ggplot(data=de_genes, aes(x=log2fc, y=-log10(pval), col=diffexpressed, 

label=delabel)) + 

  geom_point() +  

  theme_minimal() + 

  geom_text_repel() + 

  scale_color_manual(values=c("blue", "black", "red")) + 

  geom_vline(xintercept=c(-0.8, 0.8), col="red") + 

  theme(text=element_text(size=20)) 

   

  #geom_hline(yintercept=-log10(0.05), col="red") 

print(volcano) 

dev.off() 

#DONE 

#MAPLOT 

#https://davetang.org/muse/2017/10/25/getting-started-hisat-stringtie-ballgown/ 

png('plots/maplot.png',width = 1800, height = 1000) 

de_transcripts$mean <- rowMeans(texpr(bg_chrX_filt)) 

maplot=ggplot(de_transcripts, aes(log2(mean), log2(fc), colour = qval<0.05)) + 

  scale_color_manual(values=c("#999999", "#FF0000")) + 

  geom_point() + 

  theme(legend.text=element_text(size=20),legend.title=element_text(size=20)) + 

  theme(axis.text=element_text(size=20),axis.title=element_text(size=20)) + 

  geom_hline(yintercept=0) 



 
 

print(maplot) 

dev.off() 

#DONE   

Exit R. 

##extract DE transcript sequence by ID 

gffread -w transcripts.fa -g chrX.fa stringtie_merged.gtf 

#create index of transc.fa 

cdbfasta transcripts.fa 

cat up17_id_list.txt |cdbyank transcripts.fa.cidx > up17.fasta 

3. Annotation 

Functional annotation is defined as the process of collecting information about and describing 

a gene's biological identity—its various aliases, molecular function, biological role(s), 

subcellular location, and its expression domains within the plant. Blast2GO is a 

bioinformatics platform for high-quality functional annotation and analysis of genomic 

datasets. The following section mentions the four major modules involved in Blast2GO 

annotation. 

A) Basic Local Alignment Search Tool: to search for similar (or homologous) sequences 

as shown in Fig 1. 

 

 

Figure 1: BLAST 



 
 

B) InterProScan: for classification of protein families as shown in Fig 2. 

 
Fig 2: InterProScan 

 

C) Blast2GO Mapping: to retrieve Gene Ontology (GO) terms as shown in Fig 3. 

 
Fig 3: Mapping 

 

D) Blast2GO Annotation: to select reliable functions as shown in Fig 4. 



 
 

 
Fig 4: Annotation 

 

Result of Blast2GO: 

The result can be visualized in the following forms: 

a) Gene Ontology graphs (as shown in Fig 5) 

b) Pathway analysis (as shown in Fig 6) 

 
Fig 5. Gene Ontology graphs 

 



 
 

 
Fig 6: Pathway Analysis 

 

References: 

Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., & Salzberg, S. L. (2016). Transcript-

level expression analysis of RNA-seq experiments with HISAT, StringTie and 

Ballgown. Nature protocols, 11(9), 1650-1667. 
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MicroRNAs (miRNAs) are 20- to 24-nucleotide small RNAs that regulate gene expression of 

mRNA targets post transcriptionally. They were discovered as elements controlling gene 

regulation in nematodes (Lee et al., 1993; Wightman et al., 1993).  Subsequently, their 

widespread occurrence among eukaryotes (Lagos-Quintana et al., 2001; Reinhart et al., 2002) 

indicated their influence on many biological processes. Micro RNAs are derived from single-

stranded mRNA precursors (pre-miRNAs) that adopt a characteristic hairpin structure. The 

biological relevance of a miRNA is defined by the functional role of its mRNA target. Plant 

miRNAs tend to have high sequence complementarity with targets and act by inducing 

transcript cleavage, resulting in mRNA decay. This differs from animal miRNAs, which tend 

to share a smaller ‘seed’ region of complementarity with targets and act through translational 

inhibition. The abundance of miRNA in a cell is regulated under multiple levels of control 

including transcription, processing, RNA modification, RNA-induced silencing complex 

(RISC) assembly, miRNA-target interaction, and turnover. 

 MicroRNA mediated gene regulation results from a cascade of regulatory effects involving 

the regulation of miRNA transcription, pre-miRNA processing and the regulation of the 

RNA-induced silencing complex (Figure 1). Micro RNAs are classified as either “intergenic” 

or “intronic.” Intergenic miRNAs are located between two protein-coding genes and are 

transcribed as independent units by DNA-dependent RNA Polymerase II (Pol II), while 

intronic miRNAs are processed from introns of their host transcripts (Millar and Waterhouse, 

2005; Budak and Akpinar, 2015). Since they are Pol II products, the primary transcripts of 

miRNAs (termed pri-miRNAs) are 5’ capped, 3’polyadenylated, and/or spliced (Xie et al., 

2005; Rogers and Chen, 2013). Pri-miRNAs are folded into hairpin-like structures consisting 

of a terminal loop, an upper stem, the miRNA/miRNA_region, a lower stem, and two arms, 

which can be recognized and processed by Dicer-like RNase III endonucleases (DCLs). The 

number of DCL proteins differs across species. The DCL proteins catalyse the production of 

mailto:ambika.gaikwad@icar.gov.in


 
 

miRNA with the assistance of the assistance of accessory   proteins. The nascent 

miRNA/miRNA* duplexes are then methylated for the assembly of RISC (ribosome induced 

silencing complex.  In addition, there are a large number of factors contributing to miRNA 

stability such as 3’ end modification, AGO association and miRNA-target RNA interaction. 

Ever since first reported in the model organism Caenorhabditis elegans, miRNAs are known 

to represent a novel epigenetic mechanism that regulates gene expression in many 

homoeostatic processes and pathological conditions within the cells. In humans, the 

dysfunction of miRNAs has been associated with a large number of diseases such as diabetes 

mellitus, obesity, arthritic diseases, kidney disease, cardiovascular diseases and cancer, where 

they can act as either tumor suppressors or inducers.  In plants, their key role in development 

pathways and environment response has led to their use in manipulating key pathways for 

agronomic use. Significant progress has been made in delineating the influence of these small 

untranslated RNAs on many biological processes and in devising technologies for 

manipulating gene expression. 
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microRNAs (miRNAs) have been shown to play pivotal roles in growth and development in 

animals and plants. Canonical miRNAs are endogenous ~ 21 nt small RNAs that regulate key 

developmental processes or the response to environmental stresses at the post-transcriptional 

level by mediating the cleavage of the target messenger RNAs (mRNAs) and/or by inhibiting 

their translation. So far, about 300 miRNAs have been annotated in the model plant 

Arabidopsis thaliana. 

High-throughput sequencing of cDNA-libraries derived from endogenous small RNAs 

(sRNA-seq), is a widely used and powerful method for the discovery and annotation of 

miRNA-producing genes. Although many computational tools dealing with sRNA-seq data in 

animals are available, the number of tools calibrated for plants is relatively limited. 

Moreover, none of these tools is available as a web-server or offer a GUI. miRkwood is web-

server specifically designed for plant miRNAs (Guigon et al., 2019). It is able to face the 

diversity of plant pre-miRNAs (producing canonical and miRNAs). 

Table 1. Computational tools for miRNA characterization 

miRPlant 

http://www.australianprostatecentre.org/research/software/mir

plant 

miRkwood http://bioinfo.cristal.univ-lille.fr/mirkwood 

miRDetect https://github.com/Garima268/miRDetect 

C-mii http://www.biotec.or.th/isl/c-mii 

QuickMIRSeq http://QuickMIRSeq.sourceforge.net 

IsomiRage https://cru.genomics.iit.it/Isomirage/ 

sRNAbench https://arn.ugr.es/srnatoolbox/ 

isomiRex http://bioinfo1.uni-plovdiv.bg/isomiRex/. 

miRNAFold https://evryrna.ibisc.univ-evry.fr/miRNAFold 

PlantMiRNAPred http://nclab.hit.edu.cn/PlantMiRNAPred/ 

plantMirP https://github.com/yygen89/plantMirP. 

HuntMi http://lemur.amu.edu.pl/share/HuntMi/. 

SplamiR http://www.uni-jena.de/SplamiR.html. 



 
 

MiRPara http://www.whiov.ac.cn/bioinformatics/mirpara 

miRduplexSVM http://139.91.162.64/duplexsvm/ 

MaturePred http://nclab.hit.edu.cn/maturepred/. 

miRLocator https://github.com/cma2015/miRLocator 

 

 

Workflow overview of miRkwood 

I. Pre-processing of reads and miRNA predictions 

Adaptors are removed from the sequencing reads using Cutadapt (version 1.8.3) and reads are 

cleaned using Prinseq (version 0.20.4) with specified parameters: -min_len 18 -max length 30 

-min_qual_mean 30. Quality of the cleaned Illumina reads is checked using FastQC (version 

0.11.4). 

 

II. Alignment and filtering 

The quality checked small RNA sequencing reads are mapped on the reference genome to 

produce an alignment file. This can be done by any standard short read mapper, such as 

Bowtie2 or BWA.  

 

III. Identification of known miRNAs 

With available, genome coordinates of miRNA precursor sequences such as provided in 

miRBase are used to detect known miRNAs that are expressed in the sequencing data. 

 

IV. Thermodynamic stability of the hairpin precursor 

 

i. Criterion 1: stability of the hairpin precursor:  This criterion is met when the 

MFEI of the structure is smaller than -0.8. 

ii. Criterion 2: number of reads 

This criterion is met when the locus has either at least 10 reads mapping to each arm, 

or at least 100 reads mapping in total.  

iii. Criterion 3: existence of the miRNA 

The most common read is selected as the guide miRNA sequence if its frequency is at 

least 33%. When the miRNA is properly defined, three following properties are 

considered:  

Criterion 4: precision of the precursor processing 

At least 75% of reads start in a window [− 3,+ 3] centered around the start position of the 

miRNA, or [− 5,+ 5] around the pairing position on the opposite arm of the stem-loop.  



 
 

 

 

Criterion 5: presence of the miRNA:miRNA* duplex 

There is at least one read in the window [-5,+ 5] around the pairing position on the strand of 

the passenger miRNA. 

 

Criterion 6: stability of the duplex 

With this score system, hairpin precursors with no clear miRNA locus have a score of at most 

2. Hairpin precursors with a guide miRNA and no passenger miRNA have a score of at most 

5. Reaching a score of 6 means that the locus shows the expression of both the guide miRNA 

and the passenger miRNA, and that its secondary structure (hairpin and duplex) is consistent 

with this expression. 

 

Availability and requirements 

Project name: miRkwood 

Project home page: http://bioinfo.cristal.univ-lille.fr/mirkwood, 

https://github.com/miRkwood-RNA/miRkwood 

Operating system(s): Unix or web server 

Programming languages: Perl, C and C++ 

Other requirements for the Unix version: bedtools (v2.14.2 or higher), Vienna package 

(v2.1.6-1), Blast+ (2.2.25+ or higher), miRdup (1.2 or higher), VARNA (v3-91 or higher, 

optional). 

 

http://bioinfo.cristal.univ-lille.fr/mirkwood
https://github.com/miRkwood-RNA/miRkwood


 
 

 

 

Search page of the miRkwood 

 

 

 

 

Search page of the miRBase 

 



 
 

 

                      Result of miRBase search by sequence 

 

 

 

Procedure of novel potential miRNA prediction by identifying homologs of previously 

known miRNAs in plants (Zakeel et al., 2019) 

 

MiRNA identification using comparative genomics approach 

 

Identification of potential miRNAs 

All previously known miRNA precursor sequences are downloaded from the miRBase 

database (Release 22.1; http://www.mirbase.org/ (2022). These precursor miRNAs are used 



 
 

as query sequences for BLASTN searches against the reference transcriptomes 

of species using default parameters and an E-value cut-off of 10. Only the best hit for each 

query sequence are retained and after elimination of redundant hits, these candidate primary 

miRNA sequences are  scanned for hairpin-like secondary structures using the miRNA 

identification pipeline of the C-mii software. MirEval 

(http://mimirna.centenary.org.au/mireval/) was used to predict miRNA precursor sequences.  

RNA sequences are considered as miRNA candidates only when they fulfilled the following 

criteria: (1) at least 18 nt length was assumed between the predicted and mature miRNAs and 

(2) 0–3 nt mismatches were allowed in sequence with all previously known plant mature 

miRNAs. A set of miRNA candidates were screened from ESTs that closely matched with 

the mature miRNAs which had hitherto been identified in plants. These miRNA candidates 

were then used for further screening to identify miRNA precursors by evaluating the miRNA 

precursor prediction properties using mirEval software. These precursor sequences are 

subjected to BLASTx analysis with protein database and the non-protein-coding sequences 

were retained for RNA secondary structure prediction. 

 

Prediction of secondary structure and new miRNA 

After the removal of protein coding sequences from the candidate miRNAs, the remaining 

precursor sequences of potential miRNA homologs are assessed for secondary structures 

using the Zuker folding algorithm by MFOLD software (Zuker, 2003). The following criteria 

are used in defining the RNA sequences as miRNA homologs: (1) The length of predicted 

mature miRNAs should be in the range of 19–25 nucleotides; (2) A maximum of two 

mismatches compared with known rice mature miRNAs should be allowed; (3) The mature 

miRNA should be localized in only one arm within the predicted stem–loop structure; (4) No 

more than five mismatches should be allowed between miRNA sequence and guide miRNA 

sequence in the stem–loop structure; (5) miRNAs should have high A + U content (30–70%); 

and (6) the predicted secondary structure should have higher minimal folding free energy 

index (MFEI) and negative minimal folding free energy (MFE) (Wang et al., 2011). The 

MFEI was calculated using the following equation:  

MFEI = [(MFE/length of the RNA sequence) × 100]/(G + C)  

%MFE denotes the negative folding free energy (ΔG) 

The resulted precursor sequences are subjected to BLASTn with mRNA database to obtain 

new miRNA sequences. These novel miRNAs are named according to the miRNA 



 
 

nomenclature criteria (Griffiths-Jones et al., 2006). Novel mature miRNA sequences are 

highlighted in the secondary structure by small RNA workbench software. 

 

Identification of miRNAs Targets  

As previous studies have suggested that most miRNAs can bind to protein coding regions of 

the target mRNAs at a perfect or near-perfect complementation and interfere or degrade 

mRNA (Bartel, 2004; Chen, 2004), a simple homology search against EST and nucleotide 

databases of query species is performed with the following criteria to predict targets of the 

potential cla-miRNAs: (1) the maximum number of mismatched nucleotides between the 

mature miRNA and its potential target genes was four; (2) the maximum number of 

mismatched nucleotides at positions 1–9 was one; (3) no mismatches were allowed at 

positions 10–11; (4) no more than two continuous mismatches at any position were allowed 

(Xie et al., 2010). 

 

 

 

 

Search page of miRNA target 

 

 



 
 

 

 

Result of the psRNATarget 

 

 

 

 

 

 

 



 
 

 

 

Figure: Search page of miRNA target 
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Introduction 

In the eukaryotic organisms mainly two kinds of RNAs are occurred: coding, messenger 

RNA (mRNA), and non-coding RNA (ncRNA). With the advent of high throughput 

sequencing several RNAs have been discovered and are found in cells, such as microRNAs 

(miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), SnoRNA 

(small nucleolar), transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small interfering 

RNAs (siRNAs), small nuclear RNAs (snRNAs), piwi-interacting RNAs (Piwi-RNAs). 

ncRNA has little or no protein-coding potential but plays a vital role in various biological 

processes like gene regulation, chromosomal structure, genome defence, translation, splicing, 

DNA replication, healthy growth and development and stress responses.  One of the 

important ncRNAs is circRNA, discovered over two decades ago as a special group of RNA 

transcripts featuring circular structures. The first identified circRNA was the potato spindle 

tuber viroid in 1976.  Since, last four decades, circRNAs were often considered as by-

products of splicing or aberrantly spliced products. Recent advancements in high-throughput 

sequencing technologies ease the unbiased deep profiling of circRNA landscape in a genome-

wide manner. Subsequently, thousands of circRNAs have been reported in eukaryotes and 

archaea.  

 

2. Biogenesis of circRNA 

CircRNA is an endogenous single-stranded RNA molecule that is generated by the head-to-

tail joining of pre-mRNA (back-splicing). There are three proposed models of circRNA 

biogenesis: (i) direct back-splicing, (ii) RNA-binding protein-mediated circularization, and 

(iii) lariat-driven circularization [Fig 1]. CircRNAs are generated when the pre-mRNA 



 
 

splicing machinery back splices to join a down-stream splice donor to an upstream splice 

acceptor. The 3′ and 5′ ends usually present in a linear mRNA molecule have been joined 

together covalently forming a characteristic back-splice junction (BSJ) in circRNA. Further, 

the U2-dependent spliceosome is account for the splicing of the vast majority of introns in 

both plants and animals, with GT and AG terminal dinucleotides at their 5′ and 3′ termini, 

respectively. However, in plants, both monocot and dicot species have different mechanism 

of the splice signals for circRNAs. Further, only a small portion (7.3%) of circRNAs possess 

canonical GT/AG (CT/AC) splicing signals, and a large number of circRNAs share diverse 

non-GT/AG splicing signals, such as GC/GG, CA/GC, GG/AG, GC/CG, and CT/CC was 

reported in plants. CircRNAs have multiple origin sites; they can originate from multi-exonic 

transcripts, single exonic transcripts, uncharacterized transcripts and even fusion genes. In 

addition, Alternative RNA processing events have been observed in circRNAs, including 

exon skipping, intron retention and alternative splicing. Although most circular RNAs are 

lowly expressed, some of them are able to accumulate to high levels and even exceed their 

cognate mRNAs due to their longer half-lives. The majority of circRNAs are ecircRNAs, 

which are predominantly located in the cytoplasm. However, EIcircRNAs and ciRNAs are 

usually located in the nucleus. Once produced in the nucleus, the majority of circular RNAs 

are exported to the cytoplasm for their proper functions or degradation.  

 

Fig1: biogenesis of different types of circRNA 

3. Types of circular RNA 

According to their genomic location, circRNAs are classified into exon, intron, intergenic, 

and exon-intron molecules. Intron circRNA mostly regulates its parental gene than exon 



 
 

circRNA. On the basis of origin of circRNA on the genome, circRNAs were classified into 

ten types (Fig. 2), at which the two back-splicing sites of a certain circRNA are located.  

 
Fig2: Types of circRNAs on the basis of their generation from the parent gene. The black, 

grey and blank bars represent exons, introns and UTRs, respectively. The green lines 

represent intergenic region of the genomes 

 

no. on 

fig2 

Type of 

circRNA 

Type of Origin 

1 e-circRNA two back-splicing sites of a circRNA are both at exons 

2 ei-circRNA one back-splicing site of a circRNA is at exon while the other is at 

intron 

3 i-circRNA two back-splicing sites of a circRNA are both at a single intron 

4 ie-circRNA two back-splicing sites of a circRNA are at two different introns across 

one or several exons 

5 u-circRNA two back-splicing sites of a circRNA are both at UTRs 

6 ue-circRNA one back-splicing site of a circRNA is at UTR while the other is at 

exon 

7 ui-circRNA one back-splicing site of a circRNA is at UTR while the other is at 

intron 

8 ig-circRNA two back-splicing sites of a circRNA are both at a single intergenic 

region 

9 igg-

circRNA 

one back-splicing site of a circRNA is at intergenic region while the 

other is at genic region 

10 ag-circRNA  two back-splicing sites of a circRNA are at two different genes 

 



 
 

4. Characteristics of Plant circular RNAs  

The nucleotide length of circRNAs are vary and ranges from <100 nt to >4 kb. They are 

conserved and have various isoforms that are generated by alternative circularization in 

plants. However, some circRNAs are only observed in certain plant species. The majority of 

plant exonic circRNAs contain 1-4 exons and large parental genes with multiple shorter 

exons are preferentially circularised. They are less likely to be generated from exon(s) 

flanked by introns containing repetitive and/or reverse complementary sequences. In 

Arabidopsis, out of the 13 validated plant circRNAs, only two (~15%) contain >15-bp 

reverse complementary sequences in their flanking introns. Similarly, in cotton (Gossypium 

sp.), despite circRNAs seem to have more repeat sequences in their flanking introns than 

linear genes, only ~10% of exonic circRNAs are associated with reverse complementary 

intronic sequences. A recent study in maize (Zea mays) found that LLERCPs (reverse 

complementary pairs of LINE1-like elements) are significantly enriched in the 35-kb, 

particularly in the 5-kb, flanking regions of circRNAs 20. The study also found that 

circRNAs with LLERCPs have an expression level significantly higher than those without 

LLERCPs nearby, indicating LLERCPs could reinforce the expression of circRNAs, although 

the numbers of LLERCPs seem not to be related to the expression level of circRNAs 20. 

Because LLERCPs were found in a relatively large flanking region of circRNAs, it is of 

interest to know how they are related to circRNA biogenesis. It is also of interest to know 

whether repeat sequences located at the flanking introns of circRNAs are associated with 

genome complexity so that large and polyploid genomes tend to have more repeat sequences 

in their flanking introns of circRNAs. In addition, multiple circRNAs can be generated from a 

single parental gene through alternative back splicing and circularization. Parental genes of 

over 700 exonic circRNAs (~15% of Arabidopsis circRNAs) are orthologs between rice and 

Arabidopsis. Approximately 34% and 55% of circRNA-producing soybean genes are 

conserved orthologs in Arabidopsis and rice, respectively. In the context of expression, they 

are not highly expressed while few are highly accumulated and exceed their cognate mRNAs 

due to their longer half-lives. Once produced in the nucleus, the majority of circular RNAs 

are exported to the cytoplasm for their proper functions or degradation. 

5. Functional role of circRNA in plant 

(i) Acting as miRNA sponges 

The most extensively studied function of circRNAs is microRNA (miRNA) sponging. 

miRNAs are small noncoding RNAs that bind to target mRNAs and typically induce mRNA 

degradation or translational repression. Further, circRNAs have been found to bind miRNAs, 



 
 

decreasing their availability and thereby upregulating the expression of their target mRNAs. 

The first cases of miRNA sponging were discovered for CDR1as, with over 70 conserved 

target sites for miR-7, and circSry, with 16 binding sites for miR-138. circRNAs functioning 

as a miRNA sponge continue to be frequently documented and reported. However, studies 

that analysed thousands of circRNAs found that most contain a smaller number of miRNA 

binding sites and do not have other properties of effective miRNA sponges. These findings 

suggest that the majority of circRNAs do not act as miRNA sponges, and many studies have 

revealed other functions 

(ii) Regulating transcription and translation 

Further studies found that circRNAs perform many other regulatory functions, including 

exerting transcriptional and translational control, sequestering and translocating proteins, 

facilitating interactions between proteins, and translating to proteins. It was also observed that 

some engineered circRNAs having an internal ribosome entry site (IRES) could be translated 

and form small peptides in vivo. 

(iii) circRNA as biomarkers 

circRNAs could also be used as potential biomarkers in plants due to their unique 

characteristics, including resistance to degradation, long halflives, and ease the specificity of 

detection. Same study was reported in Arabidopsis, circRNAs used as bona fide biomarkers 

of functional exon-skipped AS variants, including in the homeotic MADS-box transcription 

factor family. 

 



 
 

Fig3: functional role of parental gene of circRNA 

(iv) Potential role of circRNAs in stress responses 

circRNAs usually exhibit specific cell-type, tissue, and developmental stage expression 

patterns, and furthermore, the expression of circRNAs and circRNA isoforms is often 

induced under diverse environmental stresses, such as low- and high-light stresses, Pi-

starvation conditions, low temperature stress, dehydration stress, and chewing injury stress by 

insects, which suggests that circRNAs might play important roles in plant development or in 

the response to biotic and abiotic stresses.  Zhao et al discovered total 293 EIcircRNAs, 

including 183 and 175 in resistant and susceptible samples, under defoliation damage stress 

by cotton bollworm feeding in soybean, which indicated that EIcircRNAs might participate in 

the response to chewing injury resistance processes in plants. In addition, circRNAs of barley 

that are highly expressed in the mitochondria might be participated in micronutrient 

homeostasis. 

(v) Role of circRNA in plant development 

The overexpression of PSY1-circ1, a circRNA derived from Phytoene Synthase 1 (PSY1) in 

tomato, resulted in a significant decrease in lycopene and β-carotene accumulation in 

transgenic tomato fruits, which suggests the involvement of circRNAs in plant development. 



 
 

Table 1: List of tool for the prediction of circRNA 

Tool Version Mapping 

tool 

Address References  

circRNA 

finder 

N/A STAR https://github.com/orzechoj/circRNA_finder Westholm et al., 

2014 

CIRCexplorer 1.1.10 Bowtie1 and 

2 

https://github.com/YangLab/CIRCexplorer Zhang et al., 2014 

CIRI 1.2 Bwa https://sourceforge.net/projects/ciri/files/ Gao et al., 2015 

find circ v2 Bowtie2 https://github.com/marvin-jens/find_circ Memczak et al., 

2013 

Mapsplice 2.2.1 Bowtie1 http://www.netlab.uky.edu/p/bioinfo/MapSplice2 Wang et al., 2010 

circseq-cup 1.0 STAR http://ibi.zju.edu.cn/bioinplant/tools/circseq-

cup.htm 

Ye et al., 2017 

KNIFE 1.4 Bowtie1, 

Bowtie2 

https://github.com/lindaszabo/KNIFE Szabo et al., 2015 

Segemehl 0.2.0 Segemehl http://www.bioinf.uni-

leipzig.de/Software/segemehl/ 

Hoffmann et al., 

2014 

UROBORUS 0.0.2 Bowtie 

Bowtie2 

tophat2 

http://uroborus.openbioinformatics.org/en/latest/ Song et al., 2016 

  

Table 2: List of plant database of circRNA 

Database Organisms URL 



 
 

PlantcircBase Oryza sativa, Arabidopsis thaliana, Zea mays, Solanum lycopersicum, Triticum 

aestivum, Glycine max, Gossypium hirsutum, Hordeum vulgare, Solanum 

tuberosum, Poncirus trifoliate, Gossypium arboretum Gossypium raimondii, 

Camellia sinensis, Pyrus betulifolia, Oryza sativa ssp. Indica, Nicotiana 

benthamiana,Brassica rapa, Cucumis sativus, Echinochloa crus-galli, Populus 

trichocarpa 

http://ibi.zju.ed

u.cn/plantcircb

ase/index.php 

AtCircDB Arabidopsis thaliana http://www.deep

biology.cn/circRN

A/ 

GreenCircRN

A 

Ananas comosus, Amaranthus hypochondriacus, Arabidopsis lyrata, Asparagus 

officinalis, Arabidopsis thaliana, Botryococcus braunii, Brachypodium 

distachyon, Brachypodium hybridum, Brassica oleracea capitate, Brassica rapa 

FPsc, Brachypodium stacei, Brachypodium sylvaticum, Cicer arietinum, Citrus 

clementina, Capsella grandiflora, Carica papaya, Chenopodium quinoa, 

Chlamydomonas reinhardtii, Capsella rubella, Cucumis sativus, Citrus sinensis, 

Chromochloris zofingiensis, Daucus carota, Dunaliella salina, Eucalyptus 

grandis, Eutrema salsugineum, Fragaria vesca, Gossypium hirsutum, Glycine 

max, Gossypium raimondii, Helianthus annuus, Hordeum vulgare, Kalanchoe 

fedtschenkoi, Lactuca sativa, Linum usitatissimum, Musa acuminate, Malus 

domestica, Manihot esculenta, Mimulus guttatus, Marchantia polymorpha, 

Micromonas pusilla CCMP1545, Micromonas sp.RCC299, Medicago truncatula, 

Olea europaea, Oryza sativa, Oryza sativa Kitaake, Populus deltoides WV94, 

Panicum hallii, Physcomitrella patens, Prunus persica, Populus trichocarpa, 

Porphyra umbilicalis, Panicum virgatum, Phaseolus vulgaris, Ricinus communis, 

Sorghum bicolor, Setaria italic, Solanum lycopersicum, Spirodela polyrhiza, Salix 

purpurea, Solanum tuberosum, Setaria viridis, Triticum aestivum, Theobroma 

cacao, Trifolium pratense, Vigna unguiculata, Vitis vinifera, Zostera marina, Zea 

mays 

http://greencirc

.cn 
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Hands-on-session for circRNA prediction 

 Kindly see the manual of bwa link is given below: 

 (https://bio-bwa.sourceforge.net/bwa.shtml) 

 Kindly download CIRI2 from the link given below: 

 https://sourceforge.net/projects/ciri/files/CIRI2/ 

 Step1: bwa index reference_file.fa  

 Step2: bwa mem index_file fastq_file  >  input.sam (single end data) 

 bwa mem index_file read1.fq read2.fq > input.sam (Paired-end data) 

 Step3: perl  CIRI2.pl --help 

 perl CIRI2.pl -I input.sam -O  circRNA –F reference_file.fa -T 10 

https://bio-bwa.sourceforge.net/bwa.shtml
https://sourceforge.net/projects/ciri/files/CIRI2/
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 RNA world - a hypothetical stage in the evolutionary history of life on Earth -

self-replicating RNA molecules proliferated before the evolution

of DNA and proteins

 Alexander (1962) - concept of the RNA world

 Walter (1986) - coined the term RNA World

 Cech (2012) - If the RNA world existed, it was probably followed by an age

characterized by the evolution of ribonucleoproteins

 Patel et al. (2015) - Alternative chemical paths to life have been proposed,

and RNA-based life may not have been the first life to exist

 RNA world can serve as a model system for studying the origin of life

RNA World
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RNAome
Abbr. Name

ncRNA non coding RNA

nmRNA non messenger RNA

sRNA small RNA

smnRNA
small non 
messenger RNA

tRNA transfer RNA

sRNA soluble RNA

mRNA messenger RNA

pcRNA protein coding RNA

rRNA ribosomal RNA

5S rRNA 5S ribosomal RNA

5.8S rRNA 5.8S ribosomal RNA

SSU rRNA
small subunit 
ribosomal RNA

LSU rRNA
large subunit 
ribosomal RNA

Abbr. Name

NoRC RNA
nucleolar remodeling 
complex associated RNA

pRNA promoter RNA

6S RNA or
SsrS RNA

6S RNA

aRNA antisense RNA

asRNA antisense RNA

asmiRNA antisense micro RNA

cis-NAT
cis-natural antisense 
transcript

crRNA CRISPR RNA

tracrRNA trans-activating crRNA

CRISPR RNA CRISPR-Cas RNA

DD RNA
DNA damage response 
RNA

diRNA DSB-induced small RNAs

dsRNA double stranded RNA

endo-siRNA
endogenous small 
interfering RNA

Abbr. Name

exRNA extracellular RNA

gRNA guide RNA

hc-siRNA
heterochromatic small 
interfering RNA

hcsiRNA
heterochromatic small 
interfering RNA

hnRNA
heterogeneous nuclear 
RNA

RNAi RNA interference

lincRNA
long intergenic non-
coding RNA

lncRNA long non coding RNA

miRNA micro RNA

mrpRNA
mitochondrial RNA 
processing ribonuclease

nat-siRNA
natural antisense short 
interfering RNA

natsiRNA
natural antisense short 
interfering RNA

OxyS RNA
oxidative stress response 
RNA

piRNA piwi-interacting RNA

https://en.wikipedia.org/wiki/Non-coding_RNA
https://en.wikipedia.org/wiki/Transfer_RNA
https://en.wikipedia.org/wiki/Messenger_RNA
https://en.wikipedia.org/wiki/Ribosomal_RNA
https://en.wikipedia.org/wiki/5S_ribosomal_RNA
https://en.wikipedia.org/wiki/5.8S_ribosomal_RNA
https://en.wikipedia.org/wiki/Ribosomal_RNA
https://en.wikipedia.org/wiki/Ribosomal_RNA
https://en.wikipedia.org/wiki/NoRC_associated_RNA
https://en.wikipedia.org/wiki/6S_/_SsrS_RNA
https://en.wikipedia.org/wiki/6S_/_SsrS_RNA
https://en.wikipedia.org/wiki/Antisense_RNA
https://en.wikipedia.org/wiki/Trans-activating_crRNA
https://en.wikipedia.org/wiki/CRISPR
https://en.wikipedia.org/wiki/Extracellular_RNA
https://en.wikipedia.org/wiki/Guide_RNA
https://en.wikipedia.org/wiki/RNA_interference
https://en.wikipedia.org/wiki/Long_non-coding_RNA
https://en.wikipedia.org/wiki/Long_non-coding_RNA
https://en.wikipedia.org/wiki/MicroRNA
https://en.wikipedia.org/wiki/Natural_antisense_short_interfering_RNA
https://en.wikipedia.org/wiki/OxyS_RNA
https://en.wikipedia.org/wiki/Piwi-interacting_RNA
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 Abbr. Name

qiRNA
QDE-2 interfering 
RNA

rasiRNA
Repeat associated 
siRNA

RNase MRP
mitochondrial RNA 
processing 
ribonuclease

RNase P ribonuclease P

scaRNA
small Cajal body-
specific RNA

scnRNA small-scan RNA

scRNA
small cytoplasmic 
RNA

scRNA
small conditional 
RNA

SgrS RNA
sugar transport-
related sRNA

shRNA short hairpin RNA

Abbr. Name

siRNA small interfering RNA

SL RNA spliced leader RNA

SmY RNA mRNA trans-splicing

snoRNA small nucleolar RNA

snRNA small nuclear RNA

snRNP
small nuclear 
ribonucleic proteins

SPA lncRNA

5' small nucleolar RNA 
capped and 3' 
polyadenylated long 
noncoding RNA

SRP RNA
signal recognition 
particle RNA

vRNA vault RNA

vtRNA vault RNA

Abbr. Name

ssRNA single stranded RNA

stRNA small temporal RNA

tasiRNA trans-acting siRNA

tmRNA
transfer-messenger 
RNA

uRNA U spliceosomal RNA

Xist RNA
X-inactive specific 
transcript

Y RNA Y RNA

NATs
natural antisense 
transcripts

pre-mRNA
precursor messenger 
RNA

circRNA circular RNA

msRNA
multicopy, single-
stranded RNA

cfRNA cell-free RNA

RNAome

https://en.wikipedia.org/wiki/RasiRNA
https://en.wikipedia.org/wiki/RNase_MRP
https://en.wikipedia.org/wiki/Ribonuclease_P
https://en.wikipedia.org/wiki/ScaRNAs
https://en.wikipedia.org/wiki/Small_conditional_RNA
https://en.wikipedia.org/wiki/SgrS_RNA
https://en.wikipedia.org/wiki/Short_hairpin_RNA
https://en.wikipedia.org/wiki/Small_interfering_RNA
https://en.wikipedia.org/wiki/SmY_RNA
https://en.wikipedia.org/wiki/Small_nucleolar_RNA
https://en.wikipedia.org/wiki/Small_nuclear_RNA
https://en.wikipedia.org/wiki/SnRNP
https://en.wikipedia.org/wiki/Signal_recognition_particle_RNA
https://en.wikipedia.org/wiki/Vault_RNA
https://en.wikipedia.org/wiki/Small_temporal_RNA
https://en.wikipedia.org/wiki/Trans-acting_siRNA
https://en.wikipedia.org/wiki/Transfer-messenger_RNA
https://en.wikipedia.org/wiki/XIST
https://en.wikipedia.org/wiki/Y_RNA
https://en.wikipedia.org/wiki/Precursor_mRNA
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RNA distribution by mass and number (Pallazo, 2015)
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RNA classification

Ban et al. (2020), The complete

atomic structure of the large

ribosomal subunit. Science.

The cloverleaf structure of 

Yeast tRNA
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RNAs by role
• RNAs involved in protein synthesis

– mRNA, rRNA, tRNA

• RNAs involved in post-transcriptional
modification or DNA replication

– snRNA, snoRNA, RNase P

• Regulatory RNAs

– miRNA, lncRNA, circRNA, siRNA, shRNA, piRNA

• Parasitic RNAs

– Viroid, Satellite RNARetrotransposon

• Other RNAs

– Vault RNA (expulsion of xenobiotics)
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Type, Length and Function of Non-coding RNAs
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Biofortification

• Fortification – Nutrient 
addition at the time of 
food processing

• Biofortification - making 

plant / animal foods 

more nutritious as the 

plants / animals are 
growing

The golden color of

the grains - increased

amounts of beta-

carotene

Biofortification – through conventional selective

breeding or Genetic Engineering
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Source: IFPRI, 2016

• Global community committed a set of objectives in 2015
• 17 goals anchor the global development agenda till 2030. 
• Core is to eliminate extreme poverty, hunger, and malnutrition.
• 12 of the 17 goal-indicators related to nutrition 

Sustainable Development Goals (SDGs)
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Hidden Hunger

• Hidden hunger is a global health crisis, driven in large part by
poverty.

• Can’t afford a diet of nourishing, diverse foods that provide
enough essential vitamins and minerals (micronutrients).

Source: https://www.harvestplus.org/home/biofortification-why-and-how/#familiar

https://www.harvestplus.org/home/biofortification-why-and-how/#familiar
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Malnutrition refers to deficiencies, excesses, or

imbalances in a person’s intake of energy and/or nutrients.

 Undernutrition

• wasting (low weight-for-height)

• stunting (low height-for-age)

• underweight (low weight-for-age);

 Micronutrient-related malnutrition

• micronutrient deficiencies (a lack of important

vitamins and minerals) or micronutrient excess

 Overweight, obesity and diet-related noncommunicable

diseases (such as heart disease, stroke, diabetes and

some cancers).
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Loss in GDP due to malnutrition

Bangladesh

US$ 700m

DR Congo

US$ 100 m
India

US$ 12b

Nigeria

US$ 1.5b

Pakistan

US$ 3b

Rwanda

US$ 50m
Uganda

US$ 145m

Zambia

US$ 

186m

Source: www.harvestplus.org

Estimated Loss

$16

$1

$1 invested in proven nutrition programme offers 
benefits worth $16 (IFPRI 2016)

(Cost)

(Benefit)

http://www.harvestplus.org/
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1. Biofortification: Sustainable way to eliminate malnutrition

2. Nutri-cereals and potential crops : The naturally

biofortified crops

3. Antinutritional factors [Erucic acid, glucosinolates, kunitz

tripsin inhibitor (KTI), Lipoxygenase] free varieties

_______________________________________________

• 87 biofortified cultivars in 16 crops developed by ICAR

• Higher levels of Fe, Zn, protein, pro-vitamin A etc. in the edible parts besides

reduced level of anti-nutritional factors.

• A total of 11282 quintals of breeder seed of 53 such varieties have been produced

during 2016-17 to 2021-22 against indents by different agencies.

Biofortification of plant and animal traits
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Yadav, et al. (2022). Biofortified varieties: Sustainable way to alleviate

malnutrition. ICAR publication.

https://icar.org.in/file/15017/download?token=MinbP1kM#:~:text=ICAR%20has%2

0developed%2087%20biofortified,combined%20in%20a%20single%20genotype. 

https://icar.org.in/file/15017/download?token=MinbP1kM#:~:text=ICAR%20has%20developed%2087%20biofortified,combined%20in%20a%20single%20genotype
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Nutraceuticals properties of horticultural crops

Beta-carotene and
LycopeneAntioxidant

Indoles, 
isothiocyanates

Protect against cancer, heart 
disease and stroke

Flavonoids (saponins)

Protect against cancer, 
lower cholesterol

allyl sulfides

Protect against cancers and 
heart disease, boost the 
immune system

Lycopene 

Protect against cancer

Momordicin and Charantin

Diabetes, blood purifier, 
Hypertension, Dysentery, 
AnathematicIsothiocyanates

Jaundice, Liver infection, Piles

Capsaicin

Jaundice, Liver infection, 
Piles

Lycopene, Vit C, 
Flavonoids

Protect against 
cancer, fight 
infection
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Zinc
Iron

Protein

Lysine

Trypto-

phan

Pro

vitamin-A
Antho-

cyanin

Gluco-

sinolate

Erucic

acid

Kunitz

inhibitor

Vitamin-C

Nutritional 

Security

Wheat            : 28
Rice                 : 08
Maize : 14
Pearl Millet    : 09
Finger millet   : 03
Little millet     : 01
Lentil                : 02
Mustard          : 06
Soybean          : 05
Linseed            : 01
Potato              : 02
Cauliflower     : 01
Sweet Potato  : 02
Greater Yam    : 02
Pomegranate  : 01
Groundnut       : 02

Biofortified varieties released: 87
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Rice:        DRR Dhan 49 

Zinc
25.2 ppm 

• Adaptation: Gujarat,
Maharashtra and Kerala

• Developed by ICAR-
Indian Institute of Rice
Research, Hyderabad

Rice: CR Dhan-311 (Mukul)

• Contains high protein

(10.1%) and moderate

level of Zn (20ppm)

Normal rice: 6-7% protein

Low Glycaemic index rice varieties: 

Samba Mashuri, Sampada, Madhuraj 55, 

Promotion of brown rice, par boiled rice 
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Wheat: Pusa Tejas (HI 8759) durum

Protein
12.0 %

Iron
41.1 ppm

Zinc
42.8 ppm

 Adaptation: Madhya Pradesh, Chhattisgarh, Gujarat, Kota and Udaipur
Division) and Uttar Pradesh (Jhansi Division) Pradesh

 Developed by ICAR-Indian Agricultural Research Institute, Regional Station,
Indore

WB2

• High Zn (42 ppm) and Fe (40 ppm) with

12.4% protein.

• Average seed yield: 51.6 q/ha

• Recommended for irrigated timely sown

conditions of North Western Plains Zone

Wheat: WB2
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First high vitamin-A maize hybrid
Pusa VQ9 improved: QPM + ProA

Characters P-VQ9-I

Provitamin-A (ppm) 8.15

% tryptophan in protein 0.74

% lysine in protein 2.67

Avg. grain yield-NHZ 

(kg/ha)

5588

Potential yield-NHZ 

(kg/ha)

7968

Avg. grain yield-PZ 

(kg/ha)

5916

Potential yield-PZ (kg/ha) 9368

Duration: Early

• Northern Hill Zone (NHZ): J&K, HP, Uttarakhand (Hills) & NEH states

• Peninsular Zone (PZ): Maharashtra, Karnataka, AP, Telengana &TN

Normal maize: 0-2 ppm provitamin-A

Lysine: 2%, Tryptophan: 0.4%
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 Pusa Ageti Masoor

Biofortified Lentil Varieties

• Rich in iron (65.0 ppm) in
comparison to 45.0-50.0 ppm in
popular varieties

• Grain yield: 13.0 q/ha

• Maturity: 100 days

• Suitable for rainfed condition

• Adaptation: Utter Pradesh, Madhya
Pradesh, Chhattisgarh

• Developed by ICAR-Indian
Agricultural Research Institute, New
Delhi

IPL 220
• Rich in iron (73.0 ppm) and zinc

(51.0 ppm) in comparison to 45.0-
50.0 ppm iron and 35.0-40.0 ppm zinc
in popular varieties

• Grain yield: 13.8 q/ha

• Maturity: 121 days

• Suitable for rainfed condition

• Adaptation: Eastern Uttar Pradesh,
Bihar, Assam andWest Bengal

• Developed by ICAR-Indian Institute of
Pulses Research, Kanpur
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Pusa KesariVitA-1: First ever bio-fortified 

beta carotene rich cauliflower variety  

• It contains 8-10 ppm beta

carotene, orange, coloured,

compact and very attractive

curd.

• It is suitable for September –

January growing period.

• Average marketable curd

weight is about 1.250 kg with an

approximate marketable yield

of 42.0 – 46.0 t/ha.

• Important attempt to tackle

beta carotene deficiency related

malnutrition problem in India.
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Biofortified Pomegranate

Solapur Lal (NRCP H-6):

 Fe content 5.6 mg/100 g fresh arils,

which is double of Bhagwa

 Zn content 0.67 mg/100 fresh arils

against 0.50mg/100 g fresh arils of

Bhagwa.

 Vitamin C content is 19.5 mg/100

which is higher than Bhagwa (14.2-

14.6 mg/100g)

 Average fruit yield of this variety is

23-27 t/ha in comparison to 16-20

t/ha of Bhagwa.

 Semi-arid regions of India.
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Great millet / 
sorghum

(Sorghum bicolor)

Pearl millet
(Pennisetum
americanum)

Finger millet
(Eleusine
coracana)

Foxtail millet
(Setaria
italica)

Little millet
(Panicum

sumatrense)

Kodo millet
(Paspalum

scrobiculatum)

Proso millet
(Panicum

miliaceum)

Barnyard millet
(Echinochloa 

frumentacea)

Major millets

Small  

millets

4. Nutri-cereals and potential crops: 
Naturally biofortified crops for POSHAN Abhiyan
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High Fe pearl millet hybrids
Dhanshakti

Shakti 1201

Varieties Nutritive 

value

Adaptation zone/ state Season of 

cultivation

Grain 

yield

Dhanshakti/ 

ICTP 8203Fe

Fe: 71 ppm, 

Zn: 40 ppm

Maharashtra, Karnataka, Telangana, Uttar 

Pradesh, Haryana and Rajasthan.

Kharif 2.21 t/ha

Shakti-1201/

ICMH 1201

Fe: 75 ppm, 

Zn: 40 ppm

Maharashtra and Rajasthan. Kharif 3.60 t/ha

HHB-299 Fe: 73 ppm, 

Zn: 41 ppm

Haryana, Rajasthan, Gujarat, Punjab, Delhi, 

Maharashtra, TN

Kharif 3.27 t/ha 

AHB 1200 Fe: 73 ppm, Haryana, Rajasthan, Gujarat, Punjab, Delhi, 

Maharashtra, TN

Kharif 3.00 t/ha 

Normal pearl millet: 45.0-50.0 ppm iron and 30.0-35.0 ppm zinc in popular varieties 
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High Fe small millets

Finger millet Foxtail millet Little millet

GPU-28 Suryanadi (SiA 3088) JK-8

Crop Fe

Finger millet GPU-28:  69.9 ppm

High > 90 ppm: KMR-216, BR-36 & PR-10-21

Foxtail millet SiA 3088:  129 ppm

High > 140 ppm: SiA 3142 & TNAU-186 

Little millet 
OLM-203: 51 ppm

High > 250 ppm: BL-4, RLM-186, TNAU-63 & JK-8    
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Millets are Nutricereals-Their composition across 
individual millets vis-a-vis rice and wheat
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• Average seed yield 23.8 q/ha

• Oil content 40.56%

• Erucic acid (<2.0%)

• Glucosinolates (<30.0 ppm)

• First Canola type Indian mustard variety in India

Pusa Double Zero Mustard-31

5. Antinutritional factors free varieties 
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Impact: Effects on chicken

Diet 3 week 6 week 9 week

BWG FCR BWG FCR BWG FCR

Diet 1 Yellow Maize 205.3 2.023 529.7 2.181ab 909.2 2.361

Diet 2 Vivek Hyb 9 213.0 1.979 586.9 2.202a 956.1 2.404

Diet 3 Pusa VQ9 

Improved 210.6
1.980 583.4 2.034c 972.4 2.339

Diet 4 Vivek QPM 9 186.6 2.182 584.8 2.131bc 960.7 2.357

Diet 5 White Maize 191.4 2.096 563.6 2.177ab 962.0 2.252

N 7 7 7 7 7 7

1 2 3 4 5

2.0

2.1

2.2

2.3

BWG

FCR

500

550

600

650

Diets

B
W

G
F

C
R

 (
F

I/
B

W
G

)

1: DPR Maize, 2: Vivek Hyb9, 3: APQH9, 4: Vivek QPM 9, 5: White maize

Effect of feeding different source of maize on

performance in Vanaraja birds during 6 weeks of age

QPM Normal
QPM

+

ProA

Normal  Normal 

VH9 PVQ9I VQ9 Vanaraja

IARI-DPR Experiment
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Díaz-Gómez 

et al. 2015 

Moreno et al. 2016
Commercial        Keto-Carotenoid      High carotenoid      White

Commercial        Keto-Carotenoid     High carotenoid      White

Yellow     white

PVA:

0.33 

ppm

PVA;

0.46

ppm

PVA:

0.13

ppm

PVA:

3.09

ppm

Keto-carotenoid: astaxanthin + violaxanthin + β-carotene

Impact: Effects on egg
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Up-scaling of bio-fortified varieties 

Crop Name of variety Name of the companies  

Rice DRR Dhan 45 (i) Max Yield Bio Gene (India) Pvt. Ltd.

CR Dhan 310 (i) Areia Agrotech Pvt. Ltd.

Wheat DBW 173 54 private seed companies and FPOs

Mustard Pusa Mustard 30 (i) Malwa Enterprises, Punjab

(ii) Arpan Seeds Pvt. Ltd., Rajasthan

(iii) Ananya Seeds Pvt. Ltd., Delhi

(iv) Ajeet Seeds, Aurangabad

(v) Dinkar Seeds, Ahmedabad

Pusa Double Zero 

Mustard 31

(i) Dinkar Seeds, Ahmedabad

(ii) Patanjali

Crop Name of variety
Breeder Seed Produced (q)

2016-17 2017-18 2018-19 Total

Total 370.0 1208.1 1907.7 3483.8

DAC&FW: Seed production and distribution to various agencies

Govt. schemes: Millet Mission, Seed Hubs, Cluster demos etc.
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ncRNAs

• ncRNAs play an important role in gene regulation, chromosomal
structure, genome defense, translation, splicing, DNA
replication, etc.

• ncRNAs show abnormal expressions in disease tissues

• Liu, et al. (2015) explained the biological role played by the long
non-coding RNAs (lncRNAs) [Genomics, Proteomics and
Bioinformatics, 13, 137-147]

• lncRNAs can act as miRNA target mimics, wherein decoy RNAs
bind the miRNAs and stops the interaction between miRNA and
its targets

• Zhu et al. (2014) identified lncRNAs in Arabidopsis thaliana
induced by Fusarium oxysporum infection
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ncRNA

• non-protein coding share of the genome is involved in gene
expression, chromatin modification, cell proliferation and in a
wide range of diseases [Beena, 2014, RNA and Disease, 1:
e355. doi: 10.14800/rd.355]

• LNCipedia [Volders, et al. (2015), NAR, 43, database issue]

• Li et al. (2014) – PLEK – prediction of lncRNAs based on an
improved k-mer scheme [BMC Bioinformatics, 15, 311]
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Overall Conclusion
• Genome/transcriptome level unravel of hidden mechanisms behind

biofortification in plant and animal traits needs more attention.

• Tissue specific as well as over all transcriptome level exploration of regulatory

molecules is essential

• Attention be given on eTMs and interactions among ncRNAs

• Biofortified cultivars of crops and breeds of animals / animal products be

analyzed.

• Meet out SDG goals by alleviating malnutrition
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