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Preface 

The era of the innovative world is coming with the advent of new technologies in the field of 

agriculture and keep enhancing the goal of sustainable development growth worldwide.  The 

most popular and accepted theory of life’s origins reveals that the first biocatalysts were made 

of RNA or a very similar polymer instead of protein. Experiments are beginning to confirm 

that the catalytic abilities of RNA are compatible with this ‘RNA world’ hypothesis. An RNA 

molecule that does not translate into a protein is known as a non-coding RNA (ncRNA). These 

ncRNAs have been revolutionizing the RNA world in various aspect of life. Recently, several 

different systematic screens have identified a surprisingly large number of new ncRNA genes. 

The training program on “RNAome: Profiling and characterization of non-coding RNAs” 

aimed to provide an insight into basic concepts of various theoretical and practical aspects of 

transcriptomics. This manual will help the research scholars to learn and explore the application 

of computational tool/techniques in their research work. The practical-oriented approach would 

be a big help for the new budding technologist for insight mechanisms of multicellular 

processes. The module contains each and every section of the program covered in the training 

program like ‘Transcriptome Data pre-processing and Assembly’, Introduction to Linux, 

Introduction to Ashoka,  ‘Differential gene expression analysis’, ‘Transcriptome data 

annotation’, ‘Prediction and characterization of miRNA’ ‘Overview of lncRNA and circular 

RNA’, long non coding RNAs’s roles in different physiological conditions in livestock, 

lncRNA prediction through machine learning approach and ‘Gene regulatory networks to  

understand disease Resistance’. 

The first talk on “whole transcriptome sequencing by next-generation sequencing (NGS) 

technologies or RNA-Seq” explained the complex landscape and dynamics of the 

transcriptome. The sequence reads obtained from the common NGS platforms, including 

Illumina, SOLiD, and 454, are often very short, ranging from 35bp to 500bp. As a result, it is 

necessary to reconstruct the full-length transcripts by transcriptome assembly. The theory and 

hand-on-session on ‘Transcriptome Data pre-processing and assembly’ provide the 

comprehensive knowledge of reconstructing entire transcriptome from raw NGS read including 

detailed understanding of all informatics challenges. It was followed by lectures on Differential 

gene expression (DGE) analysis. Differential gene expression (DGE) analysis is one of the 

most common applications of RNA-sequencing (RNA-seq) data. This process allows for the 

elucidation of differentially expressed genes across two or more conditions and is widely used 

in many applications of RNA-seq data analysis. Transcriptome annotation provides insight into 



 
 

the function and biological process of transcripts and the proteins they encode. The lectures on 

Transcriptome annotation explained various tools and techniques for transcriptome annotation. 

Micro RNAs (miRNAs) are single stranded, small and non-coding endogenous RNA 

molecules, which control the gene expression at the post-transcriptional level either by 

suppression or degradation. Because of its highly conserved nature, in silico methods can be 

employed to predict novel miRNAs in plant species. The lecture on ‘Prediction and 

characterization of miRNA’ covered bioinformatics tools and techniques for miRNA 

prediction and functional analysis by identifying genes targeted by the miRNA.  

                                 lncRNAs are widely defined as a large and heterogeneous class of 

regulatory transcripts that are at least 200 nt long. circRNAs are also a subtype of endogenous 

ncRNAs with tissue- and cell-specific expression patterns, whose biogenesis is regulated by a 

particular form of alternative splicing, termed backsplicing. With the development of high-

throughput technologies and extensive research reports, lncRNAs and circRNAs have gained 

wide attention for their roles in biological processes. The lectures on ‘Overview of lncRNA 

and circular RNA’ and ‘Regulatory network analysis of lncRNA’ provided detailed 

understanding of their roles and bioinformatics tools and techniques for analysis. 

Although the manual is mainly focuses on hand-on-session but attempts are taken to explain 

theory of each session. The details of computational tools, commands and analysis pipeline via 

flow chart are mentioned for each module separately that will be helpful for the naïve 

bioinformatician.     

Sarika Sahu 

 

 

  



 
 

Overview of Training Programme 

Sarika Sahu, Neeraj Budhlakoti, Soumya Sharma 

Division of Agricultural Bioinformatics  

ICAR-Indian Agricultural Statistics Research Institute, New Delhi 

 

 

Introduction:  

This online training “RNAome: Profiling and characterization of non-coding RNAs” organized 

under the aegis of CRP-Genomics project, aims to provide a comprehensive view of the main 

facets involved in theoretical and practical aspects of this very rapidly growing field of non-

coding RNAs. An RNA molecule that does not translate into a protein is known as a non-

coding RNA (ncRNA). These ncRNAs have been revolutionizing the RNA world in various 

aspect of life. Recently, several different systematic screens have identified a surprisingly large 

number of new ncRNA genes.    

 RNA biology is the combination of all RNAs whether coding or noncoding. The discovery of 

non-coding RNAs led to the revolution in RNA world (Derks et al. 2015). Noncoding RNAs 

(ncRNAs) play an important role in various biological processes and gene-disease association 

(Nallar and Kalvakolanu, 2013). Among the ncRNAs, the most studied ncRNAs are 

microRNA, which play a major role in gene expression (Hermeking, 2012). However, it has 

been revealed that long ncRNAs (lncRNAs) also play a very important role in various 

biological pathways within the cell (Huarte et al., 2010). Researchers reported that several 

lncRNAs are expressed during stress conditions and are involved in stress-responsive 

regulation (Zheng et al. 2014, Heo et al. 2011, Liu et al. 2012). lncRNAs are non-coding RNAs 

whose length is more than 200 base pairs and biochemically resemble mRNAs but they do not 

translate into proteins. Despite noncoding RNAs, lncRNAs function as RNA genes as well as 

regulate distant genes. Ponting et al. (2009) classified lncRNAs into sense, anti-sense, 

bidirectional, intronic and intergenic on the basis of their chromosomal localization. In 

addition, the lncRNAs are normally expressed at low levels and lack sequence similarities 

among the plant species (Marques and Ponting, 2014). Plethora of literature is available for the 

identification of lncRNAs in animals while very few are reported on the presence of lncRNAs 

in plants (Liu et al.,2017). The analysis of lncRNA became very easy with the advent of state-

of-art technologies like next-generation sequencing. lncRNAs were identified in model plant 

organisms like Arabidopsis thaliana (Wang et al. 2014, Lu et al. 2017, Sun et al. 2020)  Two 

lncRNAs namely: COOLAIR (cool-assisted intronic non-coding RNA) and COLDAIR (cold-



 
 

assisted intronic non-coding RNA) regulates the flowering time epigenetic repression of FLC 

(Flowering Locus C) in Arabidopsis (Heo and Sung, 2011). Another important lncRNA: 

LDMAR (long-day-specific male-fertility-associated RNA) is involved in the regulation of 

photoperiod male sterility in rice (Ding et al. 2012) and participated in ripening of tomato 

(Zhu et al. 2015). These are few examples to be mentioned and suggest the importance of 

ncRNAs in the plant and crop systems. 

Objectives of this training were  

To Profile of ncRNAs through Bioinformatics approach. 

To provide insight into the role of RNAs and non-coding RNA in  regulatory networks. 

To Develop an analytical skills through lectures and hands-on session. 

Different modules covered under this training program were as following 

 Differential gene expression. 

     Sequencing platform and Quality Check  

     Assembly: de novo and reference based and annotation  

 Profiling of RNA regulatory molecule and their role in the regulation of biological 

processes 

 Prediction and characterization of miRNAs 

 Prediction and characterization of lncRNAs 

 Prediction and characterization of circRNAs 

 Regulatory network analysis of RNAs.  

Application of machine learning in ncRNAs prediction 

Different theoretical and Practical Sessions were taken during this training program. In this 

manual, different session taken during training are described in detail. Chapter 2 focuses over 

RNA-sequencing analysis. Chapter 3 mentions detailed practical procedure taught in the 

training for Transcriptome Data Pre-processing and Assembly while Chapter 4 given an 

overview of genome annotation with special focus over gene prediction. Chapter 5 gives detail 

about Differential Gene Expression Analysis. Chapter 6 provide detail about different tools and 

execution carried out for Transcriptome data annotation. Chapter 7 provides glimpse about 

world of miRNA. In chapter 8, hands on session over prediction and Characterization of 



 
 

miRNA is covered. Chapter 9 focuses over Circular RNA and about its basic concept and their 

role in various processes and also covers details of Hands-on-session for circRNA prediction. 

In chapter 10, aspects of RNAome in biofortification of plant and animal traits is covered.   
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Introduction 

The advent of Next-Generation Sequencing (NGS) technology has transformed genomic 

studies. One important application of NGS technology is the study of the transcriptome, which 

is defined as the complete collection of all the RNA molecules in a cell. Various types of RNA 

that have been classified so far are shown in Fig. 1. All of these molecules are called transcripts 

since they are produced by process of transcription.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Different types of RNA 

(Image source: 

http://scienceblogs.com/digitalbio/2011/01/08/next-gene-sequencing) 

 

Understanding the transcriptome is essential for interpreting the functional elements of the 

genome and revealing the molecular constituents of cells and tissues, and also for 

understanding development and disease [1]. The main purpose of transcriptomics are: to 

catalogue all species of transcript, including mRNAs, non-coding RNAs and small RNAs; to 

determine the transcriptional structure of genes, in terms of their start sites, 5′ and 3′ ends, 

splicing patterns and other post-transcriptional modifications; and to quantify the changing 

expression levels of each transcript during development and under different conditions. 

The study of transcriptome is carried out through sequencing of RNAs. RNA sequencing (RNA-

Seq) is a powerful method for discovering, profiling, and quantifying RNA transcripts [2]. 



 
 

RNA-Seq uses NGS datasets to obtain sequence reads from millions of individual RNAs. The 

RNA-Seq analysis is performed in several steps: First, all genes are extracted from the 

reference genome (using annotations of type gene). Other annotations on the gene sequences 

are preserved (e.g. CDS information about coding sequences etc). Next, all annotated 

transcripts (using annotations of type mRNA) are extracted [3]. If there are several annotated 

splice variants, they are all extracted. An example is shown in below Fig. 2(a). 

 

 

Fig. 2(a): A simple gene with three exons and two splice variants. 

The given example is a simple gene with three exons and two splice variants. The transcripts 

are extracted as shown in Fig. 2(b). 

 

Fig. 2(b): All the exon-exon junctions are joined in the extracted transcript. 

Next, the reads are mapped against all the transcripts plus the entire gene [see Fig. 2(c)]. 

 

Fig. 2(c): The reference for mapping: all the exon-exon junctions and the gene. 

(Image source: CLC Genomic workbench tutorials) 

From this mapping, the reads are categorized and assigned to the genes and expression values 

for each gene and each transcript are calculated and putative exons are then identified. 

 

RNA Sequencing Experiment 

In a standard RNA-seq experiment, a sample of RNA is converted to a library of 

complementary DNA fragments and then sequenced on a high-throughput sequencing 

platform, such as Illumina's Genome Analyzer, SOLiDor Roche 454 [4]. Millions of short 

sequences, or reads, are obtained from this sequencing and then mapped to a reference genome 

(Fig. 3). The count of reads mapped to a given gene measures the expression level of this gene. 



 
 

The unmapped reads are usually discarded and mapped reads for each sample are assembled 

into gene-level, exon-level or transcript-level expression summaries, depending on the 

objectives of the experiment. The count of reads mapped to a given gene/exon/transcript 

measures the expression level for this region of the genome or transcriptome.  

One of the primary goals for most RNA-seq experiments is to compare the gene expression 

levels across various treatments. A simple and common RNA-seq study involves two 

treatments in a randomized complete design, for example, treated versus untreated cells, two 

different tissues from an organism, plants, etc. In most of the studies, researchers are 

particularly interested in detecting gene with differential expressions (DE). A gene is declared 

differentially expressed if an observed difference or change in read counts between two 

experimental conditions is statistically significant, i.e. if the difference is greater than what 

would be expected just due to random variation [5]. Detecting DE genes can also be an 

important pre-step for subsequent studies, such as clustering gene expression profiles or testing 

gene set enrichments. 

 

Fig. 3: General RNA-seq experiment. mRNA is converted to cDNA, and fragments from that library are 

used to generate short sequence reads. Those reads are assembled into contigs which may be mapped to 

reference sequences (Wang et al., 2009). 

 



 
 

Analysing RNA-Seq data 

RNA-seq experiments must be analyzed with robust, efficient and statistically correct 

algorithms. Fortunately, the bioinformatics community has been striving hard at work for 

incorporating mathematics, statistics and computer science for RNA-seq and building these 

ideas into software tools. RNA-seq analysis tools generally fall into three categories: (i) those 

for read alignment; (ii) those for transcript assembly or genome annotation; and (iii) those for 

transcript and gene quantification. Some of the open source software available for RNA-seq 

analysis are as follows: 

• Data preprocessing 

• Fastx toolkit 

• Samtools 

• Short reads aligners 

• Bowtie, TOPHAT, Stampy, BWA, Novoalign, etc  

• Expression studies 

• Cufflinks package 

• R packages (DESeq, edgeR, more…) 

• Visualisation 

• CummeRbund, IGV, Bedtools, UCSC Genome Browser, etc. 

 

Besides there are commercially data analysis pipelines like GenomeQuest, CLCBio etc 

available for researchers to use. The most commonly used pipeline is to identify protein coding 

genes by aligning RNA-Seq data to annotate data from sources like RefSeq.  After generating 

the alignments, the number of aligning sequences is counted for each position.  Since each 

alignment represents a transcript, the alignments allow to count the number of RNA molecules 

produced from every gene. 

Using NGS technology, RNA-Seq enables to count the number of reads that align to one of 

thousands of different cDNAs, producing results similar to those of gene expression 

microarrays [6]. Sequences generated from an RNA-Seq experiment are usually mapped to 

libraries of known exons in known transcripts. RNA-Seq can be used for discovery applications 



 
 

such as identifying alternative splicing events, allele-specific expression, and rare and novel 

transcripts [7]. The sequencing output files (compressed FASTQ files) are the input for 

secondary analysis. Reads are aligned to an annotated reference genome, and those aligning to 

exons, genes and splice junctions are counted. The final steps are data visualisation and 

interpretation, consisting of calculating gene- and transcript-expression and reporting 

differential expression. A general Bioinformatics workflow to map transcripts from RNA-seq 

data is shown in Fig. 4.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: RNA-seq 

workflow 

(Adapted 

fromAdvancing RNA-Seq analysis Brian J. Haas and Michael C. Zody Nature Biotechnology 28, 421-423 

(2010) 

RPKM (Reads per KB per million reads) 

RNA-Seq provides quantitative approximations of the abundance of target transcripts in the 

form of counts. However, these counts must be normalized to remove technical biases inherent 

in the preparation steps for RNA-Seq, in particular the length of the RNA species and the 

sequencing depth of a sample. The most commonly used is RPKM (Reads Per Kilobase of 

exon model per Million mapped reads). The RPKM measure of read density reflects the molar 

concentration of a transcript in the starting sample by normalizing for RNA length and for the 

total read number in the measurement [8]. RPKM is mathematically represented as: 

RPKM= 
𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑜𝑛 𝑟𝑒𝑎𝑑𝑠

𝑚𝑎𝑝𝑝𝑒𝑑 𝑟𝑒𝑎𝑑𝑠 (𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠)X 𝑒𝑥𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ (𝐾𝐵)
 

Total exon reads 



 
 

This is the number of reads that have been mapped to a region in which an exon is annotated 

for the gene or across the boundaries of two exons or an intron and an exon for an annotated 

transcript of the gene. For eukaryotes, exons and their internal relationships are defined by 

annotations of type mRNA. 

Exon length 

This is calculated as the sum of the lengths of all exons annotated for the gene. Each exon is 

included only once in this sum, even if it is present in more annotated transcripts for the gene. 

Partly overlapping exons will count with their full length, even though they share the same 

region. 

Mapped reads 

The total gene reads for a gene is the total number of reads that after mapping have been 

mapped to the region of the gene. A gene's region is that comprised of the flanking regions, the 

exons, the introns and across exon-exon boundaries of all transcripts annotated for the gene. 

Thus, the sum of the total gene reads numbers is the number of mapped reads for the sample.  

Applications of RNA-seq 

This technique can be used to: 

 Measure gene expression 

 Transcriptome assembly, gene discovery and annotation 

 Detect differential transcript abundances between tissues, developmental stages, 

genetic backgrounds, and environmental conditions 

 Characterize alternative splicing, alternative polyadenylation, and alternative 

transcription. 

Future Directions 

Although RNA-Seq is still in the infancy stages of use, it has clear advantages over previously 

developed transcriptomic methods. Compared with microarray, which has been the dominant 

approach of studying gene expression in the last two decades, RNA-seq technology has a wider 

measurable range of expression levels, less noise, higher throughput, and more information to 

detect allele-specific expression, novel promoters, and isoforms [9]. For these reasons, RNA-

seq is gradually replacing the array-based approach as the major platform in gene expression 

studies. The next big challenge for RNA-Seq is to target more complex transcriptomes to 



 
 

identify and track the expression changes of rare RNA isoforms from all genes. Technologies 

that will advance achievement of this goal are pair-end sequencing, strand-specific sequencing 

and the use of longer reads to increase coverage and depth. As the cost of sequencing continues 

to fall, RNA-Seq is expected to replace microarrays for many applications that involve 

determining the structure and dynamics of the transcriptome. 
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Transcript profiling ("Transcriptomics") is a widely used technique that obtains information on 

the abundance of multiple mRNA transcripts within a biological sample simultaneously. 

Therefore, when a number of such samples are analysed, as in a scientific experiment, large 

and complex data sets are gene-rated. RNA-Seq technology utilizing NGS sequencing has 

emerged as an attractive alternative to traditional microarray platforms for conducting 

transcriptional profiling. Next generation sequencing (NGS) experiments generate a 

tremendous amount of data which can't be directly analyzed in any meaningful way.  Selecting 

the right analytical approach along with an appropriate set of bioinformatics tools is key to 

extract useful information from RNA-Seq data while avoiding misinterpretation or bias. In the 

present section we will discuss about the assembly of short-read Illumina sequencing data, 

which is commonly used for RNA-Seq experiments. 

Requirements for RNA-Seq Data Assembly 

Hardware 

 Linux environment or server 

 Accessed via shell terminals, such as PuTTY or MobaXterm 

 Can use a virtual machine on Windows 

 32GB RAM recommended if working with larger genomes 

 1TB storage or higher recommended for smaller projects 

Software 

 FastQC 

https://www.bioinformatics.babraham.ac.uk/projects/download.html  

 Trimmomatic 

http://www.usadellab.org/cms/?page=trimmomatic  

 Bowtie2 

https://sourceforge.net/projects/bowtie-bio/files/bowtie2/  

 Tophat 

https://ccb.jhu.edu/software/tophat/index.shtml  

 Cufflinks 

http://cole-trapnell-lab.github.io/cufflinks/getting_started/  

 Trinity 

https://github.com/trinityrnaseq/trinityrnaseq/wiki/Installing-Trinity  

Pre-processing of RNA-Seq Data 

First, switch to the where the FASTQ files are stored directory. Use the cd command (i.e., 

change directory) followed by the path of the directory. 

https://www.bioinformatics.babraham.ac.uk/projects/download.html
http://www.usadellab.org/cms/?page=trimmomatic
https://sourceforge.net/projects/bowtie-bio/files/bowtie2/
https://ccb.jhu.edu/software/tophat/index.shtml
http://cole-trapnell-lab.github.io/cufflinks/getting_started/
https://github.com/trinityrnaseq/trinityrnaseq/wiki/Installing-Trinity


 
 

>> cd /path/to/folder_name/ 

Next, you can check the FASTQ files by using the ls command (i.e., listing), which shows the 

contents of the current working directory. 

Data files from sequencing providers are typically compressed and have the extension 

“.fastq.gz”. These files contain structured information about individual NGS reads—a unique 

identifier, the called bases, and the associated quality scores.  

Lastly, you can make an output directory using the mkdir command (i.e., make directory). 

Output files can be stored here. 

>> mkdir /path/to/output_folder/ 

1. Check quality with FastQC 

Run FastQC to check the raw data quality. 

>> fastqc sample_01.fastq.gz --extract -o /path/to/output_folder 

The output contains graphs and statistics about the raw quality, including quality scores, GC 

content, adapter percentage, and more. Below is an examples of the output file “Per base 

Sequence quality”. 



 
 

 

Per base sequence quality. Quality scores for each base position in the read are represented as 

box plots. The blue line represents the average quality score. High-quality data will typically 

have over 80% of bases with a quality score of 30 or higher (i.e., Q30 > 80%). Q30 represents 

99.9% accuracy in the base call, or an error rate of 1 in 1000. A dip in quality is expected 

towards the end of the read. 

2. Trim reads with Trimmomatic 

Poor-quality regions and adapter sequences should be trimmed from the reads before further 

analysis. Trimmomatic can be used for trimming the low quality reads and adapter sequences. 

>> trimmomatic  PE input_forward.fastq.gz  input_reverse.fastq.gz 

output_forward_paired.fastq.gz  output_forward_unpaired.fastq.gz 

output_reverse_paired.fastq.gz  output_reverse_unpaired.fastq.gz  

ILLUMINACLIP:TruSeq3-PE.fa:2:30:10:2:keepBothReads LEADING:3 TRAILING:3 

MINLEN:36 

Run FastQC again on the trimmed treads to confirm that the new quality is acceptable. 



 
 

 

Transcriptome Assembly 

Refrence based Assembly 

1. Indexing the reference genome 

First, index the reference genome using Bowtie2 to prepare it for alignment. Adding gene 

annotation information to the reference genome will facilitate alignment of RNA-Seq reads 

across exon-intron boundaries. This indexing step is only required once; you can then use the 

indexed genome repeatedly in future analysis. 

>> bowtie-build [options]* <input referencegenome fasta file> < basename of the index files 

>  

It results in 6 files with extention .bt2 

2. Map/Align the reads to reference Genome 

Then, align the reads using Tophat. 

>> tophat [options]* <genome_index_base> PE_reads_1.fq.gz,SE_reads.fa PE_reads_2.fq.gz 

‐ or ‐ 



 
 

>> tophat [options]* <genome_index_base> PE_reads_1.fq.gz PE_reads_2.fq.gz,SE_reads.fa  

Check the mapping statistics in the [sample_name]Log.final.out file to ensure the BAM file 

was generated properly and the reads align to the genome correctly. Uniquely mapped reads 

are the most useful for expression analysis, as there is high confidence in which loci they 

represent. In general, >60-70% for the “uniquely mapped reads %” metric is considered good; 

a significantly lower value warrants further investigation. 

3. Assemble the mapped reads 

 

Use Cufflinks program to assemble aligned RNA-Seq reads into transcripts, estimate their 

abundances, test for differential expression and regulation, and provide transcript 

quantification. Some of the tools part of Cufflinks can be run individually, while others are part 

of a larger workflow. 

 

>> cufflinks [options] input_alignments.[sam|bam] 

 

The program cufflinks produces number of files in its predefined output directory. Some of the 

generated files are: 

 

transcripts.gtf: The GTF file contains Cufflinks’ assembled isoforms where there is one GTF 

record per row, and each record represents either a transcript or an exon within a transcript 

isoforms.fpkm_tracking: This file contains the estimated isoform-level expression values in the 

generic FPKM Tracking Format 

genes.fpkm_tracking: This file contains the estimated gene-level expression values in the 

generic FPKM Tracking Format 

De novo Assembly 

De novo transcriptome assembly is often the preferred method to studying non-model 

organisms, since reference-based methods are not possible without an existing genome. De 

novo assembly can be performed using Trinity assembler. 

A typical Trinity command for assembling non-strand-specific RNA-seq data would be like so, 

running the entire process on a single high-memory server (aim for ~1G RAM per ~1M ~76 

base Illumina paired reads, but often much less memory is required): 

Trinity --seqType fq --max_memory 50G  --left reads_1.fq.gz  --right reads_2.fq.gz --CPU 6 



 
 

If multiple sets of fastq files are available, such as corresponding to multiple tissue types or 

conditions, etc., indicate them to Trinity like following: 

 Trinity --seqType fq --max_memory 50G --left condA_1.fq.gz,condB_1.fq.gz,condC_1.fq.gz 

–right condA_2.fq.gz,condB_2.fq.gz,condC_2.fq.gz  --CPU 6   

When Trinity completes, it will create a 'Trinity.fasta' output file in the 'trinity_out_dir/' output 

directory (or output directory specified). 

Trinity groups transcripts into clusters based on shared sequence content. Such a transcript 

cluster is very loosely referred to as a 'gene'. This information is encoded in the Trinity fasta 

accession. 
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Introduction 

Until the genome revolution, genes were identified by researchers with specific interests in a 

particular protein or cellular process. Once identified, these genes were isolated, typically by 

cloning and sequencing cDNAs, usually followed by targeted sequencing of the longer 

genomics segments that code for the cDNAs. Once an organism’s entire genome sequence 

becomes available, there is strong motivation for finding all the genes encoded by a genome at 

once rather than in a piecemeal approach. Such catalogue is immensely valuable to researchers, 

as they can learn much more from the whole picture than from a much more limited set of 

genes. For example, genes of similar sequence can be identified, evolutionary and functional 

relationships can be elucidated, and a global picture of how many and what types of genes are 

present in a genome can be seen. A significant portion of the effort in genome sequencing is 

devoted to the process of annotation, in which genes, regulatory elements, and other features 

of the sequence are identifies as thoroughly as possible and catalogued in a standard format in 

public databases so that researchers can easily use the information. Functional genomics 

research has expanded enormously in the last decade and particularly the plant biology research 

community. Functional annotation of novel DNA sequences is probably one of the top 

requirements in functional genomics as this holds, to a great extent, the key to the biological 

interpretation of experimental results.  

Computational Gene Prediction 

Computational gene prediction is becoming more and more essential for the automatic analysis 

and annotation of large uncharacterized genomic sequences. In the past two decades, many 

algorithms have been evolved to predict protein coding regions of the DNA sequences. They 

all have in common, to varying degree, the ability to differentiate between gene features like 

Exons, Introns, Splicing sites, Regulatory sites etc. Gene prediction methods predicts coding 

region in the query sequences and then annotates the sequences databases. 

Gene Structure and Expression 



 
 

The gene structure and the gene expression mechanism in eukaryotes are far more complicated 

than in prokaryotes. In typical eukaryotes, the region of the DNA coding for a protein is usually 

not continuous. This region is composed of alternating stretches of exons and introns. During 

transcription, both exons and introns are transcribed onto the RNA, in their linear order. 

Thereafter, a process called splicing takes place, in which, the intron sequences are excised and 

discarded from the RNA sequence. The remaining RNA segments, the ones corresponding to 

the exons are ligated to form the mature RNA strand. A typical multi-exon gene has the 

following structure (as illustrated in Fig. 1). 

 

Fig. 1: Representative Diagram of Protein Coding Eukaryotic Gene 

It starts with the promoter region, which is followed by a transcribed but non-coding region 

called 5' untranslated region (5' UTR). Then follows the initial exon which contains the start 

codon. Following the initial exon, there is an alternating series of introns and internal exons, 

followed by the terminating exon, which contains the stop codon. It is followed by another 

non-coding region called the 3' UTR. Ending the eukaryotic gene, there is a polyadenylation 

(polyA) signal: the nucleotide Adenine repeating several times. The exon-intron boundaries 

(i.e., the splice sites) are signalled by specific short (2bp long) sequences. The 5'(3') end of an 

intron (exon) is called the donor site, and the 3'(5') end of an intron (exon) is called the acceptor 

site. The problem of gene identification is complicated in the case of eukaryotes by the vast 

variation that is found in gene structure.  

Gene Prediction Methods 



 
 

There are mainly two classes of methods for computational gene prediction (Fig. 2). One is 

based on sequence similarity searches, while the other is gene structure and signal-based 

searches, which is also referred to as Ab initio gene finding. 

Sequence Similarity Searches 

Sequence similarity search is a conceptually simple approach that is based on finding similarity 

in gene sequences between ESTs (expressed sequence tags), proteins, or other genomes to the 

input genome. This approach is based on the assumption that functional regions (exons) are 

more conserved evolutionarily than non-functional regions (intergenic or intronic regions). 

Once there is similarity between a certain genomic region and an EST, DNA, or protein, the 

similarity information can be used to infer gene structure or function of that region. EST-based 

sequence similarity usually has drawbacks in that ESTs only correspond to small portions of 

the gene sequence, which means that it is often difficult to predict the complete gene structure 

of a given region. Local alignment and global alignment are two methods based on similarity 

searches. The most common local alignment tool is the BLAST family of programs, which 

detects sequence similarity to known genes, proteins, or ESTs. The biggest limitation to this 

type of approaches is that only about half of the genes being discovered have significant 

homology to genes in the databases. 

 

Ab initio Gene Prediction Methods 

The second class of methods for the computational identification of genes is to use gene 

structure as a template to detect genes, which is also called ab initio prediction. Ab initio gene 

predictions rely on two types of sequence information: signal sensors and content sensors. 

Signal sensors refer to short sequence motifs, such as splice sites, branch points, poly 

pyrimidine tracts, start codons and stop codons. Exon detection must rely on the content 

sensors, which refer to the patterns of codon usage that are unique to a species, and allow 

coding sequences to be distinguished from the surrounding non-coding sequences by statistical 

detection algorithms. 



 
 

Many algorithms are applied for modelling gene structure, such as Dynamic Programming, 

linear discriminant analysis, Linguist methods, Hidden Markov Model and Neural Network. 

Based on these models, a great number of ab initio gene prediction programs have been 

developed. 

Fig. 2: Diagrammatic Representation of Gene Prediction and Annotation 

 

 

 

 

Gene Discovery in Prokaryotic Genomes 



 
 

Discovery of genes in Prokaryote is relatively easy, due to the higher gene density typical of 

prokaryotes and the absence of introns in their protein coding regions. DNA sequences that 

encode proteins are transcribed into mRNA, and the mRNA is usually translated into proteins 

without significant modification. The longest ORFs (open reading frames) running from the 

first available start codon on the mRNA to the next stop codon in the same reading frame 

generally provide a good, but not assured prediction of the protein coding regions. Several 

methods have been devised that use different types of Markov models in order to capture the 

compositional differences among coding regions, “shadow" coding regions (coding on the 

opposite DNA strand), and noncoding DNA. Such methods, including ECOPARSE, the widely 

used GENMARK, and Glimmer program, appear to be able to identify most protein coding 

genes with good performance (Fig. 3). 

 

         Fig. 3: Flow Diagram of Prokaryotic Gene Discovery 

 

Gene Discovery in Eukaryotic Genome 

It is a quite different problem from that encountered in prokaryotes. Transcription of protein 

coding regions initiated at specific promoter sequences is followed by removal of noncoding 

sequences (introns) from pre-mRNA by a splicing mechanism, leaving the protein encoding 

exons. Once the introns have been removed and certain other modifications to the mature RNA 

have been made, the resulting mature mRNA can be translated in the 5` to 3` direction, usually 



 
 

from the first start codon to the first stop codon. As a result of the presence of intron sequences 

in the genomic DNA sequences of eukaryotes, the ORF corresponding to an encoded gene will 

be interrupted by the presence of introns that usually generate stop codons (Fig.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Flow Diagram of Eukaryotic Gene Discovery 

Gene Prediction Program 

There are two basic problems in gene prediction: prediction of protein coding regions and 

prediction of the functional sites of genes. Gene prediction program can be classified into four 

generations. The first generation of programs was designed to identify approximate locations 

of coding regions in genomic DNA. The most widely known programs were probably 

TestCode and GRAIL. But they could not accurately predict precise exon locations. The second 

generation, such as SORFIND and Xpound, combined splice signal and coding region 

identification to predict potential exons, but did not attempt to assemble predicted exons into 

complete genes. The next generation of programs attempted the more difficult task of 
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predicting complete gene structures. A variety of programs have been developed, including 

GeneID, GeneParser, GenLang, and FGENEH. However, the performance of those programs 

remained rather poor. Moreover, those programs were all based on the assumption that the 

input sequence contains exactly one complete gene, which is not often the case. To solve this 

problem and improve accuracy and applicability further, GENSCAN and AUGUSTUS were 

developed, which could be classified into the fourth generation.  

 

GeneMark 

GeneMark uses a Markov Chain model to represent the statistics of the coding and noncoding 

frames. The method uses the dicodon statistics to identify coding regions. Consider the analysis 

of a sequence x whose base at the ith position is called xi. The Markov chains used are fifth 

order, and consist of a terms such as P(a/x1x2x3x4x5), which represent the probability of the 

sixth base of the sequence x being given a given that the previous five bases in the sequence x 

where x1x2x3x4x5, resulting in the first dicodon of the sequence being x1x2x3x4x5a. These terms 

must be defined for all possible pentamers with the general sequence b1b2b3b4b5. The values of 

these terms can be obtained of analysis of data, consisting of nucleotide sequence in which the 

coding regions have been actually identified. When there are sufficient data, they are given by 

𝑃(
𝑎

𝑏1𝑏2𝑏3𝑏4𝑏5
) =

𝑛𝑏1𝑏2𝑏3𝑏4𝑏5𝑎

∑ 𝑛𝑏1𝑏2𝑏3𝑏4𝑏5𝑎𝑎=𝐴,𝐶,𝐺,𝑇
 

where, 𝑛𝑏1𝑏2𝑏3𝑏4𝑏5𝑎 is the number of times the sequence b1b2b3b4b5a occurs in the training data. 

This is the maximum likelihood estimators of the probability from the training data. 

Glimmer 

The core of Glimmer is Interpolated Markov Model (IMM), which can be described as a 

generalized Markov chain with variable order. After GeneMark introduces the fixed-order 

Markov chains, Glimmer attempts to find a better approach for modeling the genome content. 

The motivational fact is that the bigger the order of the Markov chain, the more non-

randomness can be described. However, as we move to higher order models, the number of 

probabilities that we must estimate from the data increases exponentially. The major limitation 

of the fixed-order Markov chain is that models from higher order require exponentially more 

training data, which are limited and usually not available for new sequences. However, there 

are some oligomers from higher order that occur often enough to be extremely useful 



 
 

predictors. For the purpose of using these higher-order statistics, whenever sufficient data is 

available, Glimmer IMMs.  

Glimmer calculates the probabilities for all Markov chains from 0th order to 8th. If there are 

longer sequences (e.g. 8-mers) occurring frequently, IMM makes use of them even when there 

is insufficient data to train an 8-th order model. Similarly, when the statistics from the 8-th 

order model do not provide significant information, Glimmer refers to the lower-order models 

to predict genes.  

Opposed to the supervised GeneMark, Glimmer uses the input sequence for training. The ORFs 

longer than a certain threshold are detected and used for training, because there is high 

probability that they are genes in prokaryotes. Another training option is to use the sequences 

with homology to known genes from other organisms, available in public databases. Moreover, 

the user can decide whether to use long ORFs for training purposes or choose any set of genes 

to train and build the IMM. 

GeneMark.hmm 

GeneMark.hmm is designed to improve GeneMark in finding exact gene starts. Therefore, the 

properties of GeneMark.hmm are complementary to GeneMark. GeneMark.hmm uses 

GeneMark models of coding and non-coding regions and incorporates them into hidden 

Markov model framework. In short terms, Hidden Markov Models (HMM) are used to describe 

the transitions from non-coding to coding regions and vice versa. GeneMark.hmm predicts the 

most likely structure of the genome using the Viterbi algorithm, a dynamic programming 

algorithm for finding the most likely sequence of hidden states. To further improve the 

prediction of translation start position, GeneMark.hmm derives a model of the ribosome 

binding site (6-7 nucleotides preceding the start codon, which are bound by the ribosome when 

initiating protein translation). This model is used for refinement of the results.  

Both GeneMark and GeneMark.hmm detect prokaryotic genes in terms of identifying open 

reading frames that contain real genes. Moreover, they both use pre-computed species-specific 

gene models as training data, in order to determine the parameters of the protein-coding and 

non-coding regions. 

Orpheus 

The ORPHEUS program uses homology, codon statistics and ribosome binding sites to 

improve the methods presented so far by using information that those programs ignored. One 

of the key differences is that it uses database searches to help determine putative genes, and is 



 
 

thus an extrinsic method. This initial set of genes is used to define the coding statistics for the 

organism, in this case working at the level of codon, not dicodons. These statistics are then 

used to define a larger set of candidate ORFs. From this set, those ORFs with an unambiguous 

start codon end are used to define a scoring matrix for the ribosome-binding site, which is then 

used to determine the 5` end of those ORFs where alternative start are present.    

EcoParse  

EcoParse is one of the first HMM model based gene finder, was developed for gene finding in 

E.coli. It focuses on the uses the codon structure of genes. With EcoParse a flora of HMM 

based gene finder, usuing dynamic programming and the viterbi algorithm to parse a sequence, 

emerged.     

Evaluation of Gene Prediction Programs 

In the field of gene prediction accuracy can be measured at three levels 

a. Coding nucleotides (base level) 

b. Exon structure (exon level) 

c. Protein product (protein level) 

At base level gene predictions can be evaluated in terms of true positives (TP) (predicted 

features that are real), true negatives (TN) (non-predicted features that are not real), false 

positives (FP) (predicted features that are not real), and false negatives (FN) (real features that 

were not predicted) Fig. 5. Usually the base assignment is to be in a coding or non coding 

segment, but this analysis can be extended to include non coding parts of genes, or any 

functional parts of the sequences. 

 TN FN TP FP TN FP TP FN TN 
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Fig. 5: Four Possible Comparisons of Real and Predicted Genes 

 

 



 
 

Sensitivity (Sn): The fraction of bases in real genes that are correctly predicted to be in genes 

is the sensitivity and interpreted as the probability of correctly predicting a nucleotide to be in 

a given gene that it actually is. 

 

  

Specificity (Sp): The fraction of those bases which are predicted to be in genes that actually 

are is called the specificity and interpreted as the probability of a nucleotide actually being in 

a gene given that it has been predicted to be. 

 

Care has to be taken in using these two values to assess a gene prediction program because, as 

with the normal definition of specificity, extreme results can make them misleading.  

Approximate correlation coefficient (AC) has been proposed as a single measure to circumvent 

these difficulties. This defined as AC=2(ACP-0.5), where  

 

 

At the exon level, determination of prediction accuracy depends on the exact prediction of exon 

start and end points. There are two measures of sensitivity and specificity used in the field, 

each of which measures a different but useful property.  

The sensitivity measures used are 

Sn1 = CE/AE and Sn2 = ME/AE 

The specificity measures used are 

Sp1=CE/PE and Sp2=WE/PE  

Where,  

AE = No of actual exons in the data   

PE = No of predicted exons in the data 

CE = No of correct predicted exons 

ME = No of missing exons (rarely occurs) 

WE = No of wrongly predicted exons (Figure-5) 

 

Fig. 6: Real and Predicted Exons 
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Gene Ontology 

The gene ontology (GO, http:www.geneontology.org)  is probably the most extensive scheme 

today for the description of gene product functions but other systems such as enzyme codes, 

KEGG pathways, FunCat, or COG are also widely used. Here, we describe the Blast2GO (B2G, 

www.blast2go.org) application for the functional annotation, management, and data mining of 

novel sequence data through the use of common controlled vocabulary schemas. The main 

application domain of the tool is the functional genomics of non-model organisms and it is 

primarily intended to support research in experimental labs. Blast2GO strives to be the 

application of choice for the annotation of novel sequences in functional genomics projects 

where thousands of fragments need to be characterized. Functional annotation in Blast2GO is 

based on homology transfer. Within this framework, the actual annotation procedure is 

configurable and permits the design of different annotation strategies. Blast2GO annotation 

parameters include the choice of search database, the strength and number of blast results, the 

extension of the query-hit match, the quality of the transferred annotations, and the inclusion 

of motif annotation. Vocabularies supported by B2G are gene ontology terms, enzyme codes 

(EC), InterPro IDs, and KEGG pathways. 

Fig.7 shows the basic components of the Blast2GO suite. Functional assignments proceed 

through an elaborate annotation procedure that comprises a central strategy plus refinement 

functions. Next, visualization and data mining engines permit exploiting the annotation results 

to gain functional knowledge. GO annotations are generated through a 3-step process: blast, 

mapping, annotation. InterPro terms are obtained from InterProScan at EBI, converted and 

merged to GOs. GO annotation can be modulated from Annex, GOSlim web services and 

manual editing. EC and KEGG annotations are generated from GO. Visual tools include 

sequence color code, KEGG pathways, and GO graphs with node highlighting and filtering 

options. Additional annotation data-mining tools include statistical charts and gene set 

enrichment analysis functions. 



 
 

 

Fig. 7: Schematic Representation of Blast2GO Application. 

The Blast2GO annotation procedure consists of three main steps: blast to find homologous 

sequences, mapping to collect GO terms associated to blast hits, and annotation to assign 

trustworthy information to query sequences.  

 

Blast Step 

The first step in B2G is to find sequences similar to a query set by blast. B2G accepts nucleotide 

and protein sequences in FASTA format and supports the four basic blast programs (blastx, 

blastp, blastn, and tblastx). Homology searches can be launched against public databases such 

as (the) NCBI nr using a query-friendly version of blast (QBlast). This is the default option and 

in this case, no additional installations are needed. Alternatively, blast can be run locally against 

a proprietary FASTA-formatted database, which requires a working www-blast installation. 

The Make Filtered Blast-GO-BD function in the Tools menu allows the creation of customized 

databases containing only GO annotated entries, which can be used in combination with the 

local blast option. Other configurable parameters at the blast step are the expectation value (e-

value) threshold, the number of retrieved hits, and the minimal alignment length (hsp length) 

which permits the exclusion of hits with short, low e-value matches from the sources of 

functional terms. Annotation, however, will ultimately be based on sequence similarity levels 

as similarity percentages are independent of database size and more intuitive than e-values. 

Blast2GO parses blast results and presents the information for each sequence in table format. 



 
 

Query sequence descriptions are obtained by applying a language processing algorithm to hit 

descriptions, which extracts informative names and avoids low content terms such as 

“hypothetical protein” or “expressed protein”. 

Mapping Step 

Mapping is the process of retrieving GO terms associated to the hits obtained after a blast 

search. B2G performs three different mappings as follows.  

a. Blast result accessions are used to retrieve gene names (symbols) making use of two 

mapping files provided by NCBI (geneinfo, gene2accession). Identified gene names are 

searched in the species-specific entries of the gene product table of the GO database.  

b. Blast result GI identifiers are used to retrieve UniProt IDs making use of a mapping file 

from PIR (Non-redundant Reference Protein database) including PSD, UniProt, Swiss-Prot, 

TrEMBL, RefSeq, GenPept, and PDB.  

c. Blast result accessions are searched directly in the DBXRef Table of the GO database. 

Annotation Step 

This is the process of assigning functional terms to query sequences from the pool of GO terms 

gathered in the mapping step. Function assignment is based on the gene ontology vocabulary. 

Mapping from GO terms to enzyme codes permits the subsequent recovery of enzyme codes 

and KEGG pathway annotations. The B2G annotation algorithm takes into consideration the 

similarity between query and hit sequences, the quality of the source of GO assignments, and 

the structure of the GO DAG. For each query sequence and each candidate GO term, an 

annotation score (AS) is computed (see Figure 8). The AS is composed of two terms. The first, 

direct term (DT), represents the highest similarity value among the hit sequences bearing this 

GO term, weighted by a factor corresponding to its evidence code (EC). A GO term EC is 

present for every annotation in the GO database to indicate the procedure of functional 

assignment. 

 
 

 

 

Fig. 8: Blast2GO Annotation Rule 

ECs vary from experimental evidence, such as inferred by direct assay (IDA) to unsupervised 

assignments such as inferred by electronic annotation (IEA). The second term (AT) of the 



 
 

annotation rule introduces the possibility of abstraction into the annotation algorithm. 

Abstraction is defined as the annotation to a parent node when several child nodes are present 

in the GO candidate pool. This term multiplies the number of total GOs unified at the node by 

a user defined factor or GO weight (GOw) that controls the possibility and strength of 

abstraction. When all ECw’s are set to 1 (no EC control) and the GOw is set to 0 (no abstraction 

is possible), the annotation score of a given GO term equals the highest similarity value among 

the blast hits annotated with that term. If the ECw is smaller than one, the DT decreases and 

higher query-hit similarities are required to surpass the annotation threshold. If the GOw is not 

equal to zero, the AT becomes contributing and the annotation of a parent node is possible if 

multiple child nodes coexist that do not reach the annotation cutoff. Default values of B2G 

annotation parameters were chosen to optimize the ratio between annotation coverage and 

annotation accuracy. Finally, the AR selects the lowest terms per branch that exceed a user-

defined threshold. 

Blast2GO includes different functionalities to complete and modify the annotations obtained 

through the above-defined procedure. Enzyme codes and KEGG pathway annotations are 

generated from the direct mapping of GO terms to their enzyme code equivalents. Additionally, 

Blast2GO offers InterPro searches directly from the B2G interface. B2G launches sequence 

queries in batch, and recovers, parses, and uploads InterPro results. Furthermore, InterPro IDs 

can be mapped to GO terms and merged with blast-derived GO annotations to provide one 

integrated annotation result. In this process, B2G ensures that only the lowest term per branch 

remains in the final annotation set, removing possible parent-child relationships originating 

from the merging action. 
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The current ecosystems of RNA-seq tools provide a varied ways analyzing RNA-seq data. 

Depending on the experiment goal one could align the reads to reference genome or 

pseduoalign to transcriptome and perform quantification and differential expression of genes 

or if you want to annotate your reference, assemble RNA-seq reads using a de novo 

transcriptome assembler. In this lecture, we focus on workflows that align reads to reference 

genomes using updated Tuxedo protocol (HISAT, StringTie, Ballgown) by Pertea et al. This 

updated Tuxedo protocol not only scales but is more accurate in detecting differentially 

expressed genes (DEGs). Lastly, we used Blast2GO for annotating the identified DEGs. 

In this example, we have used the example data which is mentioned in the paper. Before starting 

with the actual workflow, we have briefly mentioned the steps required to set up the system. 

1) Setting up the system for differential expression analysis of transcriptome data 

#for windows system, install linux via wsl. 

#install anaconda in linux (Ubuntu) 

#open ubuntu terminal 

$ wget https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh 

$ bash Anaconda3-2022.10-Linux-x86_64.sh 

#set up the conda environment 

$ conda env create -f environment_1.yaml 

$ conda activate rnaseq_py3 

# Set up complete! 

1. Protocol: 

###Align the data to the reference genome using HISAT2 

##build index 

(rnaseq_py3) root@DESKTOP-

BJ5B6HR:/mnt/e/iasri/dabin_training/Nov2022/practical/example# mkdir index 

(rnaseq_py3) root@DESKTOP-

BJ5B6HR:/mnt/e/iasri/dabin_training/Nov2022/practical/example# extract_splice_sites.py 

resources/chrX.gtf > index/chrX.ss 



 
 

(rnaseq_py3) root@DESKTOP-

BJ5B6HR:/mnt/e/iasri/dabin_training/Nov2022/practical/example# extract_exons.py 

resources/chrX.gtf > index/chrX.exon 

(rnaseq_py3) root@DESKTOP-

BJ5B6HR:/mnt/e/iasri/dabin_training/Nov2022/practical/example# cd index 

(rnaseq_py3) root@DESKTOP-

BJ5B6HR:/mnt/e/iasri/dabin_training/Nov2022/practical/example/index# hisat2-build -p 8 --

ss chrX.ss --exon chrX.exon ../resources/chrX.fa chrX_tran 

(rnaseq_py3) root@DESKTOP-

BJ5B6HR:/mnt/e/iasri/dabin_training/Nov2022/practical/example/index# cd .. 

 

##1. mapping   

$ fastqdir=resources/samples 

mapdir=mapped 

mkdir $mapdir 

hisat2 -p 8 --dta -x index/chrX_tran -1 $fastqdir/ERR188044_chrX_1.fastq.gz -2 

$fastqdir/ERR188044_chrX_2.fastq.gz -S $mapdir/ERR188044.sam 

##2. sort mapped files 

$ mapdir=mapped 

samtools sort -@ 8 -o $mapdir/ERR188044.bam $mapdir/ERR188044.sam 

##3. assembly 

gtf=resources/chrX.gtf 

assembly=assembly 

mapdir=mapped 

mkdir $assembly 

stringtie $mapdir/ERR188044.bam -l ERR188044 -p 8 -G $gtf -o $assembly/ERR188044.gtf 

 

##obtain list of each sample .gtf file in a single file (mergelist.txt) 

$ ls assembly/*.gtf > mergelist.txt 

##merge .gtf file of each sample 



 
 

$ stringtie --merge -p 8 -G resources/chrX.gtf -o stringtie_merged.gtf mergelist.txt 

##obtain sequences of transcripts 

$ gffread -w transcripts.fa -g resources/chrX.fa stringtie_merged.gtf 

##compare merged.gtf file with reference .gtf file 

$ gffcompare -r resources/chrX.gtf -G -o merged stringtie_merged.gtf 

##4. abundance estimation 

$ abundancedir=abundance 

mapdir=mapped 

stringtie -e -B -p 8 -G stringtie_merged.gtf -o 

$abundancedir/ERR188044/ERR188044_chrX.gtf $mapdir/ERR188044.bam 

2. Differential expression analysis 

Open R console. 

#Differential expression 

#load the libraries 

library(ggplot2) 

library(ballgown) 

library(genefilter) 

library(RSkittleBrewer) 

library(devtools) 

library(dplyr) 

library(ggrepel) 

library(pheatmap) 

library(gplots) 

library(GenomicRanges) 

library(viridis) 

#lets load the sample information 

pheno_data <- read.csv("resources/geuvadis_phenodata.csv") 



 
 

#let's show information for first 6 samples 

head(pheno_data) 

#Load the expression data using ballgown 

bg_chrX <- ballgown(dataDir="abundance",samplePattern="ERR",pData=pheno_data) 

#Lets filter out transcripts with low variance 

#This is done to remove some genes that have few counts. Filtering improves the statistical 

power of differential expression analysis.  

#We use variance filter to remove transcripts with low variance( 1 or less) 

bg_chrX_filt<- subset(bg_chrX,"rowVars(texpr(bg_chrX))>1",genomesubset=TRUE) 

#Let's test on transcripts 

de_transcripts <- 

stattest(bg_chrX_filt,feature="transcript",covariate="conditions",getFC=TRUE,meas="FPK

M") 

# the results_transcripts does not contain identifiers. We will therefore add this information 

#add identifiers 

de_transcripts = data.frame(geneNames=ballgown::geneNames(bg_chrX_filt), 

geneIDs=ballgown::geneIDs(bg_chrX_filt), de_transcripts) 

# Let's test on genes 

de_genes <- stattest(bg_chrX_filt,feature="gene",covariate="conditions",getFC=TRUE, 

meas="FPKM") 

#lets get the gene names 

bg_filt_table=texpr(bg_chrX_filt,'all') 

gene_names=unique(bg_filt_table[,9:10]) 

features=de_genes$id 

mapped_gene_names=vector() 

for (i in features)  

{  query=gene_names%>%filter(gene_id==i & gene_name != '.') ; n_hit=dim(query)[1]; if 

(n_hit==1) {mapped_gene_names=append(mapped_gene_names,query$gene_name[[1]]) } 

else 

{mapped_gene_names=append(mapped_gene_names,'.') }     



 
 

} 

#add the mapped gene names to the de genes table 

de_genes$gene_name <- mapped_gene_names 

de_genes <- de_genes[, c('feature','gene_name','id','fc','pval','qval')] 

de_genes[,"log2fc"] <- log2(de_genes[,"fc"]) 

de_transcripts[,"log2fc"] <- log2(de_transcripts[,"fc"]) 

#Let's arrange the results from the smallest P value to the largest 

de_transcripts = arrange(de_transcripts,pval) 

de_genes = arrange(de_genes,pval) 

#save result in .csv 

write.csv(de_genes, "de_transcripts.csv", row.names=FALSE) 

write.csv(de_genes, "de_genes.csv", row.names=FALSE) 

#Let's subset transcripts that are detected as differentially expressed at qval <0.05 

subset_transcripts <- subset(de_transcripts,de_transcripts$qval<0.05) 

#do same for the genes 

subset_genes <- subset(de_genes,de_genes$qval<0.05) 

#create plots 

dir.create('plots') 

print('generating plots') 

#volcano plot 

#https://biocorecrg.github.io/CRG_RIntroduction/volcano-plots.html 

de_genes$diffexpressed <- "NO" 

de_genes$diffexpressed[de_genes$log2fc > 1 & de_genes$pval < 0.05] <- "UP" 

de_genes$diffexpressed[de_genes$log2fc < -1 & de_genes$pval < 0.05] <- "DOWN" 

de_genes$delabel <- NA 

de_genes$delabel[de_genes$diffexpressed != "NO"] <- de_genes$id[de_genes$diffexpressed 

!= "NO"] 



 
 

options(ggrepel.max.overlaps = Inf) 

png('plots/volcano.png',width = 1800, height = 1000) #,width = 1800, height = 1000 

volcano=ggplot(data=de_genes, aes(x=log2fc, y=-log10(pval), col=diffexpressed, 

label=delabel)) + 

  geom_point() +  

  theme_minimal() + 

  geom_text_repel() + 

  scale_color_manual(values=c("blue", "black", "red")) + 

  geom_vline(xintercept=c(-0.8, 0.8), col="red") + 

  theme(text=element_text(size=20)) 

   

  #geom_hline(yintercept=-log10(0.05), col="red") 

print(volcano) 

dev.off() 

#DONE 

#MAPLOT 

#https://davetang.org/muse/2017/10/25/getting-started-hisat-stringtie-ballgown/ 

png('plots/maplot.png',width = 1800, height = 1000) 

de_transcripts$mean <- rowMeans(texpr(bg_chrX_filt)) 

maplot=ggplot(de_transcripts, aes(log2(mean), log2(fc), colour = qval<0.05)) + 

  scale_color_manual(values=c("#999999", "#FF0000")) + 

  geom_point() + 

  theme(legend.text=element_text(size=20),legend.title=element_text(size=20)) + 

  theme(axis.text=element_text(size=20),axis.title=element_text(size=20)) + 

  geom_hline(yintercept=0) 

print(maplot) 

dev.off() 



 
 

#DONE   

Exit R. 

##extract DE transcript sequence by ID 

gffread -w transcripts.fa -g chrX.fa stringtie_merged.gtf 

#create index of transc.fa 

cdbfasta transcripts.fa 

cat up17_id_list.txt |cdbyank transcripts.fa.cidx > up17.fasta 

3. Annotation 

Functional annotation is defined as the process of collecting information about and describing 

a gene's biological identity—its various aliases, molecular function, biological role(s), 

subcellular location, and its expression domains within the plant. Blast2GO is a bioinformatics 

platform for high-quality functional annotation and analysis of genomic datasets. The 

following section mentions the four major modules involved in Blast2GO annotation. 

A) Basic Local Alignment Search Tool: to search for similar (or homologous) sequences 

as shown in Fig 1. 

 

 

Figure 1: BLAST 

B) InterProScan: for classification of protein families as shown in Fig 2. 



 
 

 
Fig 2: InterProScan 

 

C) Blast2GO Mapping: to retrieve Gene Ontology (GO) terms as shown in Fig 3. 

 
Fig 3: Mapping 

 

D) Blast2GO Annotation: to select reliable functions as shown in Fig 4. 



 
 

 
Fig 4: Annotation 

 

Result of Blast2GO: 

The result can be visualized in the following forms: 

a) Gene Ontology graphs (as shown in Fig 5) 

b) Pathway analysis (as shown in Fig 6) 

 
Fig 5. Gene Ontology graphs 

 



 
 

 
Fig 6: Pathway Analysis 
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MicroRNAs (miRNAs) represent a class of small non-coding RNAs that are playing diverse 

and pivotal roles in the post-transcriptional regulation of gene expression across various 

organisms. miRNAs are 18-23 nucleotide-long molecules. miRNAs are involved in various 

fundamental biological processes such as development, differentiation, apoptosis, and 

metabolism, highlighting their significance in cellular homeostasis and organismal 

development. Dysregulation of miRNA expression has been implicated in various diseases, 

including cancer, cardiovascular disorders, and neurological conditions, underscoring their 

potential as diagnostic biomarkers and therapeutic targets. Additionally, miRNAs exhibit 

evolutionary conservation, with many miRNA families being conserved across species, 

reflecting their essential roles in gene regulation and organismal evolution. Overall, miRNAs 

represent key players in the intricate regulatory networks governing gene expression and 

cellular function, with profound implications for both basic research and clinical applications. 

 

1. Computational tools for miRNA prediction and characterization 

miRBase: A comprehensive database for miRNA sequences and annotations. It serves as a 

valuable resource for comparing and validating predicted miRNAs. 

miRDeep: A widely-used tool for the prediction of novel miRNAs from small RNA 

sequencing data. It integrates secondary structure analysis, sequence conservation, and 

machine learning algorithms for accurate prediction. 

miRanda: This tool predicts miRNA target sites by examining sequence complementarity 

between miRNAs and potential target mRNAs. It considers both sequence complementarity 

and conservation across species. 

TargetScan: A popular tool for miRNA target prediction, TargetScan predict miRNA target 

sites based on seed sequence matches, site accessibility, and evolutionary conservation. 

RNAhybrid: A tool for predicting the hybridization energy and the minimum free energy 

(MFE) of RNA-RNA duplexes, commonly used to predict potential miRNA-mRNA 

interactions. 

PITA (Probability of Interaction by Target Accessibility): This tool predicts miRNA target 

sites based on thermodynamic stability and target site accessibility, offering a probabilistic 

framework for target prediction. 

miRDeep2: An updated version of miRDeep, miRDeep2 integrates small RNA sequencing 

data with genomic information to predict both known and novel miRNAs with improved 

accuracy. 

miRPlant: Specifically designed for plant miRNA prediction, miRPlant incorporates features 

such as sequence conservation, secondary structure, and thermodynamic stability to identify 

potential miRNA candidates in plant genomes. 

ShortStack: This tool integrates multiple small RNA sequencing data sets to identify and 

characterize miRNAs, including novel miRNAs and their targets, with a focus on plant species. 

psRNATarget: A plant-specific tool for predicting miRNA targets, psRNATarget considers 

various factors such as target site accessibility and conservation across species to provide 

accurate predictions. 

 



 
 

 

2. General workflow for miRNA prediction 

i. Data retrieval: 

Obtain small RNA sequencing data from the organism of interest. This data can be generated 

from high-throughput sequencing platforms such as Illumina or Ion Torrent. 

ii. Quality Control: 

Perform quality control on the raw sequencing data to remove low-quality reads, adaptors, and 

contaminants. Tools like FastQC can be used for this purpose. 

iii. Pre-processing: 

Trim adapter sequences and filter out reads of inappropriate length. Tools such as Cutadapt or 

Trimmomatic can be used for this step. 

iv. Mapping to Reference Genome: 

Map the pre-processed reads to the reference genome or transcriptome using alignment tools 

like Bowtie, BWA, or HISAT. 

v. miRNA Identification: 

Use miRNA prediction tools such as miRDeep, miRDeep2, or miRPlant to identify potential 

miRNA candidates. These tools integrate various features such as sequence conservation, 

secondary structure, and thermodynamic stability to predict miRNAs. 

vi. Novel miRNA Prediction: 

Identify novel miRNAs by comparing predicted miRNAs with known miRNA sequences from 

databases like miRBase. Tools like miRDeep2 and ShortStack often include modules for 

predicting novel miRNAs. 

vii. Target Prediction: 

Predict miRNA target genes using tools like miRanda, TargetScan, or psRNATarget. These 

tools analyze sequence complementarity between miRNAs and potential target mRNAs, 

considering factors such as seed sequence matches, site accessibility, and evolutionary 

conservation. 

viii. Functional Annotation: 

Annotate predicted target genes to elucidate their biological functions and pathways. Tools 

such as DAVID, GO enrichment analysis, or KEGG pathway analysis can be used for 

functional annotation. 

ix. Experimental Validation: 

Experimentally validate predicted miRNAs and their targets using techniques such as qRT-

PCR, luciferase reporter assays, or functional studies in cell lines or model organisms. 

x. Integration and Visualization: 

Integrate miRNA prediction results with other omics data (e.g., mRNA expression data, 

proteomics data) to gain a comprehensive understanding of miRNA-mediated regulatory 

networks. Visualization tools such as Cytoscape can be used to visualize miRNA-mRNA 

interaction networks. 

xi. Validation and Interpretation: 

Validate predicted miRNAs and their targets using experimental techniques. Interpret the 

results in the context of the biological system under study and generate hypotheses for further 

investigation. 

 

 



 
 

 

Procedure of novel potential miRNA prediction by identifying homologs of previously 

known miRNAs in plants (Zakeel et al., 2019) 

3 Integrated analysis of multiOMICS data 

Integrating miRNA data into genomics, transcriptomics, proteomics, and other -omics data sets 

is crucial for a comprehensive understanding of gene regulation and cellular processes. These 

are some key applications of miRNA data integration: 

Regulatory Network Reconstruction: 

Integration of miRNA data allows for the reconstruction of regulatory networks encompassing 

miRNAs, mRNAs, and proteins. This holistic view enables researchers to unravel complex 

regulatory interactions governing cellular processes.Integrating miRNA data with mRNA 

expression profiles facilitates the identification of miRNA targets. By correlating changes in 

miRNA expression with alterations in mRNA abundance, putative miRNA-target interactions 

can be inferred. 

Functional Annotation: 

Integrating miRNA data with functional annotation databases (e.g., Gene Ontology, KEGG 

pathways) provides insights into the biological functions and pathways regulated by miRNAs. 

This aids in understanding the physiological implications of miRNA dysregulation. 

Biomarker Discovery: 

Integration of miRNA expression data with clinical outcomes or disease states can lead to the 

discovery of miRNA biomarkers for diagnosis, prognosis, and treatment response prediction 

in various diseases, including cancer and neurodegenerative disorders. 

Network Dynamics Analysis: 

Integrating miRNA data with dynamic modeling approaches allows for the analysis of network 

dynamics and the prediction of regulatory outcomes under different conditions or 

perturbations. This aids in elucidating the regulatory mechanisms underlying cellular 

responses. 

Drug Discovery and Therapeutic Targeting: 

Integration of miRNA data with drug response profiles and molecular pathways facilitates the 

identification of miRNAs as potential therapeutic targets or biomarkers for drug efficacy. This 

can accelerate drug discovery and personalized medicine approaches. 



 
 

Evolutionary Conservation Studies: 

Integrating miRNA data across species enables comparative genomics analyses to identify 

evolutionarily conserved miRNAs and their targets. This sheds light on the evolutionary 

dynamics of miRNA-mediated gene regulation and functional conservation. 

Systems Biology Insights: 

Integration of miRNA data into systems biology frameworks allows for the modeling and 

simulation of regulatory networks at a systems level. This integrative approach provides 

insights into emergent properties and behaviors of biological systems. 

 

Tools commonly used for integrating omics data with miRNA data: 

 

miRWalk: miRWalk enables the integration of miRNA-target interaction data with gene 

expression profiles. It allows users to input miRNA and mRNA expression data to predict 

potential miRNA-target interactions and perform functional enrichment analysis. 

miRGator: miRGator integrates miRNA expression profiles with mRNA expression data, 

protein-protein interaction networks, and pathway information. It enables users to visualize 

miRNA-mRNA regulatory networks and identify key regulatory modules. 

DIANA-miRPath: This tool integrates miRNA expression data with gene ontology (GO) terms 

and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to predict the functional 

impact of miRNA dysregulation. It identifies enriched biological processes and pathways 

targeted by differentially expressed miRNAs. 

miEAA: miEAA (miRNA-Enriched Annotation Analysis) integrates miRNA expression data 

with functional annotation databases, such as GO and KEGG, to identify miRNA-regulated 

biological processes and pathways. It prioritizes candidate miRNAs based on their functional 

relevance. 

TarBase: TarBase provides a curated database of experimentally validated miRNA-target 

interactions. It allows users to query miRNA-target interactions based on experimental 

evidence and integrates miRNA-target interaction data with other omics data sets for network 

analysis. 

miRNA Target Filter: This tool integrates miRNA expression data with target prediction 

algorithms, such as TargetScan and miRanda, to prioritize miRNA-target interactions based on 

expression correlation and target prediction scores. It facilitates the identification of high-

confidence miRNA-target interactions. 

miRNet: miRNet integrates miRNA expression data with protein-protein interaction networks, 

transcription factor-target interactions, and pathway databases. It enables users to construct and 

visualize miRNA-mediated regulatory networks and identify key regulatory nodes. 

miRNAtap: miRNAtap integrates miRNA expression data with gene expression profiles, 

protein-protein interaction networks, and pathway information. It enables users to identify 

dysregulated miRNA-target interactions associated with specific biological processes or 

diseases. 

These tools facilitate the integration of miRNA data with other omics data sets, enabling 

comprehensive analysis of miRNA-mediated regulatory networks and their functional 

implications. 
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Introduction 

In the eukaryotic organisms mainly two kinds of RNAs are occurred: coding, messenger RNA 

(mRNA), and non-coding RNA (ncRNA). With the advent of high throughput sequencing 

several RNAs have been discovered and are found in cells, such as microRNAs (miRNAs), 

long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), SnoRNA (small 

nucleolar), transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small interfering RNAs 

(siRNAs), small nuclear RNAs (snRNAs), piwi-interacting RNAs (Piwi-RNAs). ncRNA has 

little or no protein-coding potential but plays a vital role in various biological processes like 

gene regulation, chromosomal structure, genome defence, translation, splicing, DNA 

replication, healthy growth and development and stress responses.  One of the important 

ncRNAs is circRNA, discovered over two decades ago as a special group of RNA transcripts 

featuring circular structures. The first identified circRNA was the potato spindle tuber viroid 

in 1976.  Since, last four decades, circRNAs were often considered as by-products of splicing 

or aberrantly spliced products. Recent advancements in high-throughput sequencing 

technologies ease the unbiased deep profiling of circRNA landscape in a genome-wide manner. 

Subsequently, thousands of circRNAs have been reported in eukaryotes and archaea.  

 

2. Biogenesis of circRNA 

CircRNA is an endogenous single-stranded RNA molecule that is generated by the head-to-tail 

joining of pre-mRNA (back-splicing). There are three proposed models of circRNA biogenesis: 

(i) direct back-splicing, (ii) RNA-binding protein-mediated circularization, and (iii) lariat-

driven circularization [Fig 1]. CircRNAs are generated when the pre-mRNA splicing 

machinery back splices to join a down-stream splice donor to an upstream splice acceptor. The 

3′ and 5′ ends usually present in a linear mRNA molecule have been joined together covalently 

forming a characteristic back-splice junction (BSJ) in circRNA. Further, the U2-dependent 

spliceosome is account for the splicing of the vast majority of introns in both plants and 

animals, with GT and AG terminal dinucleotides at their 5′ and 3′ termini, respectively. 

However, in plants, both monocot and dicot species have different mechanism of the splice 

signals for circRNAs. Further, only a small portion (7.3%) of circRNAs possess canonical 



 
 

GT/AG (CT/AC) splicing signals, and a large number of circRNAs share diverse non-GT/AG 

splicing signals, such as GC/GG, CA/GC, GG/AG, GC/CG, and CT/CC was reported in plants. 

CircRNAs have multiple origin sites; they can originate from multi-exonic transcripts, single 

exonic transcripts, uncharacterized transcripts and even fusion genes. In addition, Alternative 

RNA processing events have been observed in circRNAs, including exon skipping, intron 

retention and alternative splicing. Although most circular RNAs are lowly expressed, some of 

them are able to accumulate to high levels and even exceed their cognate mRNAs due to their 

longer half-lives. The majority of circRNAs are ecircRNAs, which are predominantly located 

in the cytoplasm. However, EIcircRNAs and ciRNAs are usually located in the nucleus. Once 

produced in the nucleus, the majority of circular RNAs are exported to the cytoplasm for their 

proper functions or degradation.  

 

Fig1: biogenesis of different types of circRNA 

3. Types of circular RNA 

According to their genomic location, circRNAs are classified into exon, intron, intergenic, and 

exon-intron molecules. Intron circRNA mostly regulates its parental gene than exon circRNA. 

On the basis of origin of circRNA on the genome, circRNAs were classified into ten types (Fig. 

2), at which the two back-splicing sites of a certain circRNA are located.  

 



 
 

Fig2: Types of circRNAs on the basis of their generation from the parent gene. The black, grey 

and blank bars represent exons, introns and UTRs, respectively. The green lines represent 

intergenic region of the genomes 

 

no. on 

fig2 

Type of 

circRNA 

Type of Origin 

1 e-circRNA two back-splicing sites of a circRNA are both at exons 

2 ei-circRNA one back-splicing site of a circRNA is at exon while the other is at intron 

3 i-circRNA two back-splicing sites of a circRNA are both at a single intron 

4 ie-circRNA two back-splicing sites of a circRNA are at two different introns across 

one or several exons 

5 u-circRNA two back-splicing sites of a circRNA are both at UTRs 

6 ue-circRNA one back-splicing site of a circRNA is at UTR while the other is at exon 

7 ui-circRNA one back-splicing site of a circRNA is at UTR while the other is at intron 

8 ig-circRNA two back-splicing sites of a circRNA are both at a single intergenic 

region 

9 igg-

circRNA 

one back-splicing site of a circRNA is at intergenic region while the 

other is at genic region 

10 ag-circRNA  two back-splicing sites of a circRNA are at two different genes 

 

4. Characteristics of Plant circular RNAs  

The nucleotide length of circRNAs are vary and ranges from <100 nt to >4 kb. They are 

conserved and have various isoforms that are generated by alternative circularization in plants. 

However, some circRNAs are only observed in certain plant species. The majority of plant 

exonic circRNAs contain 1-4 exons and large parental genes with multiple shorter exons are 

preferentially circularised. They are less likely to be generated from exon(s) flanked by introns 

containing repetitive and/or reverse complementary sequences. In Arabidopsis, out of the 13 

validated plant circRNAs, only two (~15%) contain >15-bp reverse complementary sequences 

in their flanking introns. Similarly, in cotton (Gossypium sp.), despite circRNAs seem to have 

more repeat sequences in their flanking introns than linear genes, only ~10% of exonic 

circRNAs are associated with reverse complementary intronic sequences. A recent study in 



 
 

maize (Zea mays) found that LLERCPs (reverse complementary pairs of LINE1-like elements) 

are significantly enriched in the 35-kb, particularly in the 5-kb, flanking regions of circRNAs 

20. The study also found that circRNAs with LLERCPs have an expression level significantly 

higher than those without LLERCPs nearby, indicating LLERCPs could reinforce the 

expression of circRNAs, although the numbers of LLERCPs seem not to be related to the 

expression level of circRNAs 20. Because LLERCPs were found in a relatively large flanking 

region of circRNAs, it is of interest to know how they are related to circRNA biogenesis. It is 

also of interest to know whether repeat sequences located at the flanking introns of circRNAs 

are associated with genome complexity so that large and polyploid genomes tend to have more 

repeat sequences in their flanking introns of circRNAs. In addition, multiple circRNAs can be 

generated from a single parental gene through alternative back splicing and circularization. 

Parental genes of over 700 exonic circRNAs (~15% of Arabidopsis circRNAs) are orthologs 

between rice and Arabidopsis. Approximately 34% and 55% of circRNA-producing soybean 

genes are conserved orthologs in Arabidopsis and rice, respectively. In the context of 

expression, they are not highly expressed while few are highly accumulated and exceed their 

cognate mRNAs due to their longer half-lives. Once produced in the nucleus, the majority of 

circular RNAs are exported to the cytoplasm for their proper functions or degradation. 

5. Functional role of circRNA in plant 

(i) Acting as miRNA sponges 

The most extensively studied function of circRNAs is microRNA (miRNA) sponging. miRNAs 

are small noncoding RNAs that bind to target mRNAs and typically induce mRNA degradation 

or translational repression. Further, circRNAs have been found to bind miRNAs, decreasing 

their availability and thereby upregulating the expression of their target mRNAs. The first cases 

of miRNA sponging were discovered for CDR1as, with over 70 conserved target sites for miR-

7, and circSry, with 16 binding sites for miR-138. circRNAs functioning as a miRNA sponge 

continue to be frequently documented and reported. However, studies that analysed thousands 

of circRNAs found that most contain a smaller number of miRNA binding sites and do not 

have other properties of effective miRNA sponges. These findings suggest that the majority of 

circRNAs do not act as miRNA sponges, and many studies have revealed other functions 

(ii) Regulating transcription and translation 

Further studies found that circRNAs perform many other regulatory functions, including 

exerting transcriptional and translational control, sequestering and translocating proteins, 

facilitating interactions between proteins, and translating to proteins. It was also observed that 



 
 

some engineered circRNAs having an internal ribosome entry site (IRES) could be translated 

and form small peptides in vivo. 

(iii) circRNA as biomarkers 

circRNAs could also be used as potential biomarkers in plants due to their unique 

characteristics, including resistance to degradation, long halflives, and ease the specificity of 

detection. Same study was reported in Arabidopsis, circRNAs used as bona fide biomarkers of 

functional exon-skipped AS variants, including in the homeotic MADS-box transcription 

factor family. 

 

Fig3: functional role of parental gene of circRNA 

(iv) Potential role of circRNAs in stress responses 

circRNAs usually exhibit specific cell-type, tissue, and developmental stage expression 

patterns, and furthermore, the expression of circRNAs and circRNA isoforms is often induced 

under diverse environmental stresses, such as low- and high-light stresses, Pi-starvation 

conditions, low temperature stress, dehydration stress, and chewing injury stress by insects, 

which suggests that circRNAs might play important roles in plant development or in the 

response to biotic and abiotic stresses.  Zhao et al discovered total 293 EIcircRNAs, including 

183 and 175 in resistant and susceptible samples, under defoliation damage stress by cotton 

bollworm feeding in soybean, which indicated that EIcircRNAs might participate in the 



 
 

response to chewing injury resistance processes in plants. In addition, circRNAs of barley that 

are highly expressed in the mitochondria might be participated in micronutrient homeostasis. 

(v) Role of circRNA in plant development 

The overexpression of PSY1-circ1, a circRNA derived from Phytoene Synthase 1 (PSY1) in 

tomato, resulted in a significant decrease in lycopene and β-carotene accumulation in 

transgenic tomato fruits, which suggests the involvement of circRNAs in plant development. 



 
 

Table 1: List of tool for the prediction of circRNA 

Tool Version Mapping 

tool 

Address References  

circRNA 

finder 

N/A STAR https://github.com/orzechoj/circRNA_finder Westholm et al., 

2014 

CIRCexplorer 1.1.10 Bowtie1 and 

2 

https://github.com/YangLab/CIRCexplorer Zhang et al., 2014 

CIRI 1.2 Bwa https://sourceforge.net/projects/ciri/files/ Gao et al., 2015 

find circ v2 Bowtie2 https://github.com/marvin-jens/find_circ Memczak et al., 

2013 

Mapsplice 2.2.1 Bowtie1 http://www.netlab.uky.edu/p/bioinfo/MapSplice2 Wang et al., 2010 

circseq-cup 1.0 STAR http://ibi.zju.edu.cn/bioinplant/tools/circseq-

cup.htm 

Ye et al., 2017 

KNIFE 1.4 Bowtie1, 

Bowtie2 

https://github.com/lindaszabo/KNIFE Szabo et al., 2015 

Segemehl 0.2.0 Segemehl http://www.bioinf.uni-

leipzig.de/Software/segemehl/ 

Hoffmann et al., 

2014 

UROBORUS 0.0.2 Bowtie 

Bowtie2 

tophat2 

http://uroborus.openbioinformatics.org/en/latest/ Song et al., 2016 

  

Table 2: List of plant database of circRNA 

Database Organisms URL 

PlantcircBase Oryza sativa, Arabidopsis thaliana, Zea mays, Solanum lycopersicum, Triticum 

aestivum, Glycine max, Gossypium hirsutum, Hordeum vulgare, Solanum 

tuberosum, Poncirus trifoliate, Gossypium arboretum Gossypium raimondii, 

Camellia sinensis, Pyrus betulifolia, Oryza sativa ssp. Indica, Nicotiana 

benthamiana,Brassica rapa, Cucumis sativus, Echinochloa crus-galli, Populus 

trichocarpa 

http://ibi.zju.ed

u.cn/plantcircb

ase/index.php 



 
 

AtCircDB Arabidopsis thaliana http://www.deep

biology.cn/circRN

A/ 

GreenCircRN

A 

Ananas comosus, Amaranthus hypochondriacus, Arabidopsis lyrata, Asparagus 

officinalis, Arabidopsis thaliana, Botryococcus braunii, Brachypodium distachyon, 

Brachypodium hybridum, Brassica oleracea capitate, Brassica rapa FPsc, 

Brachypodium stacei, Brachypodium sylvaticum, Cicer arietinum, Citrus 

clementina, Capsella grandiflora, Carica papaya, Chenopodium quinoa, 

Chlamydomonas reinhardtii, Capsella rubella, Cucumis sativus, Citrus sinensis, 

Chromochloris zofingiensis, Daucus carota, Dunaliella salina, Eucalyptus grandis, 

Eutrema salsugineum, Fragaria vesca, Gossypium hirsutum, Glycine max, 

Gossypium raimondii, Helianthus annuus, Hordeum vulgare, Kalanchoe 

fedtschenkoi, Lactuca sativa, Linum usitatissimum, Musa acuminate, Malus 

domestica, Manihot esculenta, Mimulus guttatus, Marchantia polymorpha, 

Micromonas pusilla CCMP1545, Micromonas sp.RCC299, Medicago truncatula, 

Olea europaea, Oryza sativa, Oryza sativa Kitaake, Populus deltoides WV94, 

Panicum hallii, Physcomitrella patens, Prunus persica, Populus trichocarpa, 

Porphyra umbilicalis, Panicum virgatum, Phaseolus vulgaris, Ricinus communis, 

Sorghum bicolor, Setaria italic, Solanum lycopersicum, Spirodela polyrhiza, Salix 

purpurea, Solanum tuberosum, Setaria viridis, Triticum aestivum, Theobroma 

cacao, Trifolium pratense, Vigna unguiculata, Vitis vinifera, Zostera marina, Zea 

mays 

http://greencirc

.cn 
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Hands-on-session for circRNA prediction 

 Kindly see the manual of bwa link is given below: 

 (https://bio-bwa.sourceforge.net/bwa.shtml) 

 Kindly download CIRI2 from the link given below: 

 https://sourceforge.net/projects/ciri/files/CIRI2/ 

 Step1: bwa index reference_file.fa  

 Step2: bwa mem index_file fastq_file  >  input.sam (single end data) 

 bwa mem index_file read1.fq read2.fq > input.sam (Paired-end data) 

 Step3: perl  CIRI2.pl --help 

 perl CIRI2.pl -I input.sam -O  circRNA –F reference_file.fa -T 10 

 

  

https://bio-bwa.sourceforge.net/bwa.shtml
https://sourceforge.net/projects/ciri/files/CIRI2/


 
 

In-Silico Identification of Long Non Coding RNAs Playing Key Roles during Different 

Physiological Conditions in Livestock 
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Long non-coding RNAs (long ncRNAs, lncRNA) are one among another types of RNA, 

generally defined as transcripts more than 200 nucleotides that are not translated into protein. 

Identification and analysis of the expression profiles of key molecular players specifically 

lncRNAs involved in host-pathogen interactions and host response against any pathogenic 

response like Brucellosis or NDV or during Sex differentiation will be of great value. This 

presentation will end up with the holistic view of the key molecular player involved in host-

pathogen interactions and host response against any pathogen. This training will show insights 

of the interplay of key molecular players specifically lncRNAs which may play role in 

resistance and susceptibility pattern against pathogens. This will surely contribute in the better 

understanding of different physiological conditions at genomic level. 

 

 

 



 
 

Figure 1: Home made algorithm which will be applied for available SRA datasets. This 

algorithm is already applied on ~100 NDV infected Gallus gallus datasets and ~24 Bos taurus 

samples and relevant papers are already published. 

Theme of Research: 

Our team’s research experience spans Genomics, Transcriptomics and Structural 

Bioinformatics. We focus on Identification of long non-coding RNAs and genes, deferential 

expression analysis, functional annotation, co-expression analysis. Apart from this, we also 

perform homology modelling, screening, ADMET analysis and Molecular Dynamics 

Simulation. 

 

Objectives: 

1. Trachea transcriptome analysis to decipher the host response during Newcastle Disease 

challenge in different breeds of chicken. 

2. Identification and differential expression of long non-coding RNAs and their association 

with genes during early embryonic developmental stages of Bos taurus and Sus scrofa.  

3. Deciphering the structure and function of bovine ephemeral fever virus accessory proteins. 

4. Identification of lncRNAs during host response against Bovine tuberculosis in cattle. 

5. Sheep breed classification on the basis of phenotypic characters by using Artificial 

Intelligence. 

6. Identification of role of lncRNAs in Bovine uterine transcriptome response to high fertile 

and low fertile semen in cattle. 

Recent Work: 

1. Trachea transcriptome analysis to decipher the host response during Newcastle Disease 

challenge in different breeds of chicken. 

 

Newcastle disease is a highly infectious economically devastating disease caused by Newcastle 

disease Virus (NDV) in Gallus gallus (Chicken). Leghorn and Fayoumi are two breeds which 

show differential resistance patterns towards NDV. This study aims to identify the 

differentially expressed genes and lncRNAs during NDV challenge which could play a 

potential role in this differential resistance pattern. A total of 552 genes and 1580 lncRNAs 

were found to be differentially expressing. Of them, 52 genes were annotated with both 

Immune related pathways and Gene ontologies. We found that most of these genes were 

upregulated in Leghorn between normal and challenged chicken but several were down 

regulated between different timepoints after NDV challenge, while Fayoumi showed no such 

downregulation. We also observed that higher number of positively correlating lncRNAs were 

found to be downregulated along with these genes. This shows that although Leghorn is 

showing higher number of differentially expressed genes in challenged than in non-challenged, 



 
 

most of them were downregulated during the disease between different timepoints. With this 

we hypothesize that the downregulation of immune related genes and co-expressing lncRNAs 

could play a significant role behind the Leghorn being comparatively susceptible breed than 

Fayoumi. 

 

2. Identification and differential expression of long non-coding RNAs and their 

association with genes during early embryonic developmental stages of Bos taurus and 

Sus scrofa. 

Porcine epiblast derived pleuripotent stem cells have application in livestock breeding. 

The molecular mechanism involved during pig embryo development is  largely regulated by 

long non coding RNAs. Here we analyzed the transcriptome data of porcine scRNA-seq from 

four different stages; E11 epiblast cells, E14 somatic cells E14 Primordial germ cells and E31 

primordial germ cells to understand the role of long non coding RNAs, their distribution across 

the chromosomes over time, their genomic location. The differentially expression profile of the 

genes between different  time points shows some similarity and aslo differences in expression 

for certain genes as the embryo grows from E11 epiblast to E31 primordial germ cells. Further, 

we analyzed the differentially expressed long non coding RNAs and their co-expression. The 

functional annotation of the differentially expressed lncRNAs and  DEGs of the pig early 

embryo shows important functions including anatomical structure developmental, cellular 

processes, metabolic processes, developmental process. 

 

3. Deciphering the structure and function of bovine ephemeral fever virus accessory 

proteins. 

Bovine Ephemeral Fever (BEF) virus is an arthropod-borne rhabdovirus that is enclosed in a 

cone- or bullet-shaped envelope and contains negative-sense single-stranded RNA. The BEF 

virus causes acute febrile illness in cattle and water buffalo, which results in fever, shivering, 

lameness, and stiff muscles in affected animals. The genome is comprised of several open 

reading frames (ORFs) encoding, structural (N, P, M, G & L), non-structural (GNS), and 

several small accessory proteins (α1, α2, α3, β, and γ). The structural proteins, namely, 

nucleoprotein (N, 52 kDa), phosphoprotein (P, 43 kDa), matrix protein (M, 29 kDa), 

glycoprotein (G, 81 kDa), and the polymerase or large protein (L, 180 kDa) constitute the 

virion. Since some of the accessory proteins might have the feature of viroporin. We are 

working on the protein-membrane complex, and we have built the protein-membrane complex 

for further study MDS (Fig. 2). 

 



 
 

 

 

Figure 2 

4. Identification of lncRNAs during host response against Bovine tuberculosis in cattle. 

Long non-coding RNAs (lncRNAs) are the transcripts of length longer than 200 nucleotides. 

They are involved in the regulation of various biological activities. Bovine tuberculosis, caused 

by Mycobacterium tuberculosis bovis (M. bovis), is an important enzootic disease affecting 

mainly cattle, worldwide. Despite the implementation of national campaigns to eliminate the 

disease, bovine tuberculosis remains recalcitrant to eradication in several countries. Here, we 

report the analysis of the transcriptomic data of whole blood cells collected from 

experimentally infected calves with a virulent strain of M. Bovis for studying the lncRNAs 

involved in regulation of these genes. Using bioinformatics approaches, a total of 51,812 

lncRNAs were extracted and 86 and 29 lncRNAs were deferentially expressed from infected 

and uninfected calf samples at each of the 8- and 20- w.p.i time points, respectively. 

 

5. Sheep breed classification on the basis of phenotypic characters by using Artificial 

Intelligence. 

Since a long time ago for the production of wool, meat and milk sheep are farmed by 

human being. Currently the worldwide population of sheep is around 1 billion and it is 

estimated that they come under 1000 distinct breeds. To estimate the commercial value of 

farming, a sheep producer need an automatic method of identification of different breeds which 

can be valuable for the sheep industry. An alternative method for breed identification is DNA 

testing but it is expensive and sometimes not affordable for a huge population. In this study we 

have tried to develop a CNN model and trained it using the facial images of four different 

breeds of sheep found in different parts of our country (India). Our aim is to classify these 

sheep into their respective breeds on the basis of their phenotypic characters by using artificial 

intelligence and deep learning algorithms. Throughout our study, we achieved training 

accuracy 97.68% and testing accuracy 82.66%. For more accurate and efficient classification 

of breeds we can use this technique in sheep farming for the welfare of both sheep and farmer. 



 
 

6. Identification of role of lncRNAs in Bovine uterine transcriptome response to high 

fertile and low fertile semen in cattle. 

Fertility is a vital factor impacting the production of Bos taurus, the widely recognized 

domestic cattle and economically significant livestock species worldwide. However, 

reproductive efficiency in Bos taurus is hindered by various fertility-related issues, which can 

have adverse economic implications. Recent studies have revealed the pivotal role of long non-

coding RNAs (lncRNAs) in governing gene expression and cellular processes, particularly 

those involved in fertility. Initially, we have identified a total of 9078 lncRNAs. After 

differential expression analysis, in High fertile vs Low fertile groups, we have identified 128 

DEGs and 1 DElncRNA. In High fertile vs Control groups, we have identified 283 DEGs and 

20 DElncRNAs. In Low fertile vs Control groups, we have identified 74 DEGs and no 

DElncRNAs. In comparison with the previous study, in High fertile vs Low fertile groups, out 

of 40 DEGs identified in the previous study, 11 DEGs were found to be common with our 

study. In High fertile vs Control groups, out of 376 previous DEGs, 58 DEGs were found to be 

common. In Low fertile vs Control groups, the 1 DEG identified in the previous study was also 

found in our study. In Functional annotation, Cellular Process (GO:0009987) was found to be 

annotated to highest percentage of DEGs (21%), followed by, Metabolic Process 

(GO:0008152) with 17% of DEGs and Biological Regulation (GO:0065007) with 12% DEGs. 

About 3% of the DEGs were found to be annotated with Immune System Process 

(GO:0002376). In pathway annotation, under KEGG pathway categories, highest number of 

the annotated pathways (31%) were found to be under Human Diseases and Metabolism 

categories, followed by Organismal Systems category with 18% of the pathways. Under 

Reactome pathway categories, highest number of the annotated pathways (19%) were found to 

be under Signal Transduction category, 18% of the pathways under Immune System category 

followed by Metabolism category with 17% of the pathways.We also identified several 

DElncRNAs which were co-expressing with these DEGs. In conclusion, this study shows the 

relation of DelncRNAs corresponding to the DEGs and their functions. 

  



 
 

References: 

Vanamamalai VK, E P, T R K, Sharma S. Integrated analysis of genes and long non-coding 

RNAs in trachea transcriptome to decipher the host response during Newcastle disease 

challenge in different breeds of chicken. Int J Biol Macromol. 2023 Oct 2;253(Pt 5):127183. 

doi: 10.1016/j.ijbiomac.2023.127183. Epub ahead of print. PMID: 37793531 

Jali I, Vanamamalai VK, Garg P, Navarrete P, Gutiérrez-Adán A, Sharma S. Identification 

and differential expression of long non-coding RNAs and their association with XIST gene 

during early embryonic developmental stages of Bos taurus. Int J Biol Macromol. 2022 Dec 

24:S0141- 8130(22)03132-4. doi: 10.1016/j.ijbiomac.2022.12.221. Epub ahead of print. 

PMID: 36572076 

Vanamamalai VK, Garg P, Kolluri G, Gandham RK, Jali I, Sharma S. Transcriptomic 

analysis to infer key molecular players involved during host response to NDV challenge in 

Gallus gallus (Leghorn & Fayoumi). Sci Rep. 2021 Apr 19;11(1):8486. doi: 10.1038/s41598-

021-88029-6. PMID: 33875770 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MiRDeep2
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Topics to be covered in this lecture:

• microRNA

• miRDeep2

• miRDeep2 algorithm

• miRDeep2 Workflow

• MiRDeep2 script references

• Analysing and identifying miRNAs from RNA-seq data using the miRDeep2 tool in Galaxy



MiRDeep2 (Friendlar et al.)

• Developed by Sebastian Mackowiak & Marc Friedländer. 

• miRDeep2 discovers active known or novel miRNAs from deep sequencing data 
(Solexa/Illumina, 454, ...).

• User-friendly

• Written in Perl

• Tools for read mapping, RNA folding, and calculating the significance of folding energies



Workflow of MiRDeep2 module algorithm





Analyzing and identifying miRNAs from RNA-
Seq data using the miRDeep2 tool in Galaxy



MiRDeep2 mapper
• The MiRDeep2 Mapper module is designed as a tool to process deep sequencing reads and/or map them to the 

reference genome

Input

• Default input is a file in FASTA format, seq.txt or qseq.txt format. More input can be given depending on the options 
used.

File formats used in MiRDeep2 modules



Output

• The output depends on the options used. Either a FASTA file with processed reads or an arf file with mapped reads, or both, are output.
reads, or both, are output.

• Arf format: This is a proprietary file format generated and processed by miRDeep2. It contains information of reads mapped to a reference genome. Each 
line in such a file contains 13 columns:

• read identifier

• length of read sequence

• start position in read sequence that is mapped

• end position in the read sequence that is mapped

• read sequence

• identifier of the genome part to which a read is mapped to. This is either a scaffold id or a chromosome name

• length of the genome sequence a read is mapped to

• start position in the genome where a read is mapped to

• end position in the genome where a read is mapped to

• genome sequence to which a read is mapped

• genome strand information. Plus means the read is aligned to the sense-strand of the genome. Minus means it is aligned to the antisense strand of the 
is aligned to the antisense strand of the genome.

• Number of mismatches in the read mapping

• Edit string that indicates matches by lowercase 'm' and mismatches by uppercase 'M'



Summary of MiRDeep2 mapper and script 
commands

mapper.pl

clip_adaptor.p

l

collapse_reads.pl

Illumina_to_fasta.

pl



mapper. pl

Processes reads and/or maps them to the reference genome.

Input

Default input is a file in FASTA, seq.txt, or qseq.txt format.

More input can be given depending on the options used.

Output

The output depends on the options used (see below).

Either

•a FASTA file with processed reads, or

•an ARF file with mapped reads, or

•Both are output.



Options:



Removes 3' end adaptors from deep sequenced small RNAs. 

Input

• A FASTA file with the deep sequencing reads and the adapter sequence (both in RNA or DNA alphabet).

Output

• A FASTA file with the clipped reads.

• FASTA IDs are retained. If no matches to the adapter prefixes are identified in a given read, the unclipped read 

is output.

clip_adapters.pl



collapse_reads.pl

Collapses are read in the FASTA file to ensure that each sequence only occurs once. To indicate how 

many times reads the sequence represents, a suffix is added to each FASTA identifier. E.g. a sequence 

that represents ten reads in the data will have the _x10 suffix added to the identifier.

Input

•A FASTA file, either in standard format or in the collapsed suffix format.

Output

•A FASTA file in the collapsed suffix format.



illumina_to_fasta.pl

• parses seq.txt or qseq.txt output from the Solexa/Illumina platform to FASTA format.

Input

• A seq.txt or

• qseq.txt file.

• By default seq.txt.

Output

• A FASTA file, one entry for each line of seq.txt.

• The entries are named seq plus a running number that is incremented by one for each entry. Any . characters in 
the seq.txt file is substituted with an N.



MiRDeep2 quantifier

• The module maps the deep sequencing reads to predefined miRNA precursors and determines the expression of the

corresponding miRNAs. First, the predefined mature miRNA sequences are mapped to the predefined precursors.

Optionally, predefined star sequences can be mapped to the precursors too. By that, the mature and star sequence in

the precursors are determined. Second, the deep sequencing reads are mapped to the precursors. The number of

reads falling into an interval 2nt upstream and 5nt downstream of the mature/star sequence is determined.

• Input

• A FASTA file with precursor sequences, a FASTA file with mature miRNA sequences, a FASTA file with deep

sequencing reads, and optionally a FASTA file with star sequences and the 3-letter code of the species of interest.

• Output

• A tab separated file with miRNA identifiers and their rated read count, a signature file, an HTML file that gives an

overview of all miRNAs the input data, and a pdf that contains for each miRNA a pdf file showing its signature and

structure.



MiRDeep2 quantifier example output



quantifier.pl
The module maps the deep sequencing reads to predefined miRNA precursors and determines by that the 

expression of the corresponding miRNAs. 

Input

•A FASTA file with precursor sequences,

•a FASTA file with mature miRNA sequences,

•a FASTA file with deep sequencing reads, and

•optionally a FASTA file with star sequences and the 3 letter code of the species of interest.

Output

•A 2 column table file called miRNA_expressed.csv with miRNA identifiers and its read count,

•a file called miRNA_not_expressed.csv with all miRNAs having 0 read counts,

•a signature file called miRBase.mrd,

•a file called expression.html that gives an overview of all miRNAs the input data, and

•a directory called pdfs that contains for each miRNA a PDF file showing its signature and structure.

MiRDeep2 quantifier script reference





Flowchart for miRDeep2 module



MiRDeep2 script reference

miRDeep2 analyses can be performed using the three scripts miRDeep2.pl, mapper.pl and quantifier.pl. 

miRDeep2.pl : Wrapper function for the miRDeep2.pl program package. The script runs all necessary scripts of the 

miRDeep2 package to perform a microRNA detection deep sequencing data analysis.

Input

•A FASTA file with deep sequencing reads,

•a FASTA file of the corresponding genome,

•a file of mapped reads to the genome in miRDeep2 ARF format,

•an optional FASTA file with known miRNAs of the analyzed species, and

•an optional FASTA file of known miRNAs of related species.

Output

•A spreadsheet and

•an HTML file

with an overview of all detected miRNAs in the deep sequencing input data.





Examples
• For example: The user wishes to identify miRNAs in mouse deep sequencing data, using default options. The 

miRBase_mmu_v14.fa file contains all miRBase mature mouse miRNAs, while the miRBase_rno_v14.fa file contains all 

the miRBase mature rat miRNAs. The 2> will pipe all progress output to the report.log file.

This command will generate

• a directory with PDFs showing the structures, read signatures, and score breakdowns of novel and known miRNAs in the 

data,

• an HTML webpage that links to all results generated (result.html),

• a copy of the novel and known miRNAs contained in the webpage but in text format which allows easy parsing 

(result.csv),

• a copy of the performance survey contained in the webpage but in text format (survey.csv), and

• a copy of the miRNA read signatures contained in the PDFs but in text format (output.mrd).



Example 2

The user wishes to identify miRNAs in deep sequencing data from an animal with no related species 

in miRBase:

• This command will generate the same type of files as in the example before. Note that there it will in 

practice always improve miRDeep2 performance if miRNAs from some related species is input, 

even if it is not closely related.



RNAfold

 Main secondary structure prediction 

tool

 Computes the minimum free energy 

(MFE) and backtraces an optimal 

secondary structure.



The mapper module 

is used to transform 

the raw Illumina 

sequencing output 

files (qseq.txt) to the 

widely used fasta 

(.fa) files. And maps 

processed reads to a 

reference genome

The miRDeep2 

module identifies 

known and novel 

miRNAs high-

throughput 

sequencing data.

Reference genome 

ex. Homo sapiens hg38

A set of high-throughput 

sequencing reads

File with positions of 

reads mapped against 

the genome

Optionally, known 

mature, star, and 

precursor miRNAs 

from related species 

can be input

MiRDeep2 module homepage in 

Galaxy



Potential miRNA 

precursor 

sequences 

excised from the 

genome using 

mapped repeats 

as guidelines

Select species in 

which the precursor 

sequences can be 

searched. 

Default: All species

Optionally, input star 

sequences.
Excision is 

initiated when 

the highest stack 

of reads is 

encountered 

within 70nt. 

The total number of 

potential precursor 

sequences excised 

should be less than 

50,000 (two precursors 

per genomic locus) for 

downstream analysis to 

take place.randfold P-values are calculated 

for a subset of potential 

precursors. 



Output
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Introduction

DNA

• double stranded, helical structure

• sequences of nucleotides (A, T, G & C)

• base pairs (A with T and G with C)



Introduction…

Central Dogma of Molecular Biology

The Central Dogma. This states that once ‘information’ has passed into

protein it cannot get out again. In more detail, the transfer of information from

nucleic acid to nucleic acid, or from nucleic acid to protein may be possible,

but transfer from protein to protein, or from protein to nucleic acid is

impossible. Information means here the precise determination of sequence,

either of bases in the nucleic acid or of amino acid residues in the protein.

[Francis Crick,1958]

The central dogma of molecular biology deals with the detailed residue-by-

residue transfer of sequential information. It states that such information

cannot be transferred back from protein to either protein or nucleic acid.

[Francis Crick, re-stated in a Nature paper, 1970]



Introduction…

Central Dogma of Molecular Biology



Introduction…

Central Dogma of Molecular Biology



 The advent of Next-Generation Sequencing (NGS) technology has

transformed genomic studies.

 One important application of NGS technology is the study of the

transcriptome.

 Transcriptome is defined as the complete collection of all the RNA

molecules in a cell.

Introduction…



Introduction…

Different types of RNA

 All of these molecules are called transcripts since they are produced by

process of transcription.

 ~ 2% mRNA



 RNA-Sequencing uses NGS technology to reveal the presence and

quantity of RNA in a biological sample at a given moment.

 It allows transcript quantification and differential gene expression

analysis.

 Several machines/ protocols are available for generating RNA-Seq

data:

• Illumina (MiSeq, NextSeq, HiSeq, NovaSeq)

• Ion Torrent (Proton, Personal Genome Machine)

• SOLiD

• Roche 454

Introduction…



 Important steps of RNA-Seq experiments:

• Data generation (experimental design, sample collection, sequencing

design, quality control)

• Quantification of reads to estimate the expression values

• Normalization

• Differential expression analysis

Introduction…



 Applications of RNA-Seq experiments

• Quantification of transcriptome/RNA-Seq expression levels to study

gene expression in complex experiments

• Novel gene discovery

• Gene annotation

• Detection of differentially expressed features (genes/ transcripts/

exons) between different conditions

• Detection of splicing events

• Identification of introns and exon boundaries

Introduction…



Bioinformatics Tools for NGS data preprocessing

Tools for quality check/ filtering/ trimming

 FASTQC - A quality control tool for high throughput sequence data

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

 NGS QC - Quality Control

 FastqCleaner – A shiny app for Quality Control, Filtering and

Trimming of FASTQ Files

 Trimmomatic – Trimming of FASTQ files



Bioinformatics Tools for NGS data preprocessing…

 FASTX toolkit – A collection of command line tools for Short-Reads

FASTA/FASTQ files preprocessing

(http://hannonlab.cshl.edu/fastx_toolkit/)

 ShortRead – R package for filtering and trimming reads, and for

generating a quality assessment report



Bioinformatics Tools for NGS data preprocessing…

Samtools: A suite of programs for interacting with high-throughput

sequencing data (http://www.htslib.org/)

Three separate repositories:

• Samtools - Reading/writing/editing/indexing/viewing SAM/BAM

format

• BCFtools - Reading/writing BCF2/VCF/gVCF files and

calling/filtering/summarising SNP and short indel sequence variants

• HTSlib - A C library for reading/writing high-throughput sequencing

data



Bioinformatics Tools for NGS data preprocessing…

Short read aligners

 Bowtie

 TOPHAT

 BWA

 Novoalign

 STAR



Bioinformatics Tools for NGS data preprocessing…

de novo assemblers

 SOAPdenovo-Trans

 Trans-AbySS

 Trinity

 SPAdes

Tools for Visualization

 CummeRbund

 IGV

 Bedtools

 UCSC Genome Browser



Experimental design and heterogeneity issues

 The purpose of experimental design is to plan experiment in an effective
way so that it can answer the biological question under consideration.

(i) Biological aspects:
• Any biological experimental plan starts with a biological question or

hypothesis.
• The experimenter might have some prior knowledge of the question

under study before conducting the experiments, e.g., expression
levels of some known genes, proteins, etc.

(ii) Technical aspects:
• These include the choice of platform and avoiding systematic errors.
• If the experiment has systematics errors, then the result obtained for

comparative analysis will be biased, irrespective of the precision of
measurement and the number of experimental units.

(iii) Economic aspects:
• Cost of experiment and its analysis
• Budget available
• Time required to complete the experiment and its analysis
• Whether pilot study is required or not, etc.



Other points to be considered:

• Availability of enough samples for experiment;

• Availability of enough RNA, DNA or proteins from samples;

• Biopsies collected from same part of tissue or other tissues;

• Number of replicates required;

• Effect size, etc.

Heterogeneity

 A heterogeneous sample or population means that every observed data
has different value for the corresponding characteristic of interest.

 There may be various factors responsible for influencing expression in
any feature.

 The major sources of variations are due to technical, genetic,
demographic and environmental factors.

Experimental design and heterogeneity issues…



 There are two important points to be considered while designing RNA-
Seq experiments which are namely, the sequencing depth and the
number of replicates (biological and technical) required to observe
significant changes in expression.

 The cost can be reduced by optimizing the designing process of these
experiments.

 Tools and software for sample size estimation and power analysis:

• RNASeqPowerCalculator

• RNASeqPower

• Scotty

• PROPER

Experimental design and heterogeneity issues…



 The basic steps for summarizing a typical RNA-Seq experiment:

• Purified RNA is converted to cDNA, fractionated, ligated with

technology specific adapters and sequencing is done.

• Millions of short read sequences are generated from one end (single-

end) or both ends (paired-end) of the cDNA fragments.

• These sequences are aligned to a reference genome.

• The number of reads mapped to known features are recorded and

summarized in a table.

 The features can be either genes, transcripts (alternative transcripts) or

exon level expression.

RNA-Seq Experiments



Example of a biological experiment with 𝐼 conditions/groups denoted by
𝐺𝑖 𝑖 = 1, 2, … , 𝐼 having 𝑁𝑖 individuals/samples denoted by 𝑆𝑖,𝑗  𝑗 =

𝑮𝟏 ... 𝑮𝒊 ... 𝑮𝑰

𝑺𝟏,𝟏 … 𝑺𝟏,𝒋 … 𝑺𝟏,𝑵𝟏
𝑺𝒊,𝟏 … 𝑺𝒊,𝒋 … 𝑺𝒊,𝑵𝒊

𝑺𝑰,𝟏 … 𝑺𝑰,𝒋 … 𝑺𝑰,𝑵𝑰

𝑭𝟏 𝑦1,1,1 … 𝑦1,𝑗,1 … 𝑦1,𝑁1,1 𝑦𝑖,1,1 … 𝑦𝑖,𝑗,1 … 𝑦𝑖,𝑁𝑖,1 𝑦𝐼,1,1 … 𝑦𝐼,𝑗,1 … 𝑦𝐼,𝑁𝐼 ,1

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

𝑭𝒌 𝑦1,1,𝑘 … 𝑦1,𝑗,𝑘 … 𝑦1,𝑁1,𝑘 𝑦𝑖,1,𝑘 … 𝒚𝒊,𝒋,𝒌 … 𝑦𝑖,𝑁𝑖,𝑘 𝑦𝐼,1,𝑘 … 𝑦𝐼,𝑗,𝑘 … 𝑦𝐼,𝑁𝐼 ,𝑘

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

𝑭𝑲 𝑦1,1,𝐾 … 𝑦1,𝑗,𝐾 … 𝑦1,𝑁1,𝐾 𝑦𝑖,1,𝐾 … 𝑦𝑖,𝑗,𝐾 … 𝑦𝑖,𝑁𝑖,𝐾 𝑦𝐼,1,𝐾 … 𝑦𝐼,𝑗,𝐾 … 𝑦𝐼,𝑁𝐼 ,𝐾

RNA-Seq Experiments…



RNA-Seq Experiments…

A table of read counts for a hypothetical case-control study



Transcript quantification

 The most common application of RNA-seq is to estimate gene and

transcript expression.

 This application is primarily based on the number of reads that map to

each transcript sequence.

 The simplest approach to quantification is to aggregate raw counts of

mapped reads using programs such as HTSeq-count or featureCounts.

 Metrics to normalize data considering the gene length and sequencing

depth

• RPKM (reads aligned per kilobase of exon per million reads mapped)

• FPKM (fragments per kilobase of exon per million fragments mapped)

• TPM (transcripts per kilobase million)

 Normalization is required before performing the differential expression

analysis.



 htseq-count

 featureCounts

 Cufflinks

 Stringtie

 RSEM

 Sailfish

Transcript quantification…



 One of the primary goals for RNA-seq experiments is to compare the

gene expression levels across various experimental conditions,

treatments, tissues, or time points.

 The researchers are particularly interested in detecting gene with

differential expressions.

 The study of determining which genes have changed significantly in

terms of their expression across two or more conditions is referred to

as differential expression analysis.

 Identification of differentially expressed genes helps researchers to

understand the functions of genes in response to a given condition.

Differential Expression Analysis 



 A large number of statistical models and tools have been developed to

perform differential expression analysis for RNA-Seq data.

 Differential expression analysis methods for RNA-Seq can be grouped

into two broad categories:

 Parametric method

• It captures all information about the data within the parameters.

• Each expression value for a given gene is mapped into a particular

distribution, such as Poisson or negative binomial.

 Non-parametric method

• A non-parametric model uses a flexible number of parameters.

• The number of parameters often grows as it learns from more data.

• A non-parametric model is computationally slower, but makes fewer

assumptions about the data.

Differential Expression Analysis… 



RNA-Seq Experiments…

Estimation of parameters based on NB distribution

 The estimation of parameters is an essential step for design, sample size

calculation and differential expression analysis.

 The parameter estimation can be done by using various methods such as

method of moments estimation (MME), maximum likelihood estimation

(MLE), maximum quasi-likelihood estimation (MQLE).

 Besides these methods, there are various methods/models for estimation

of parameters such as pseudo-likelihood, quasi-likelihood, conditional

maximum likelihood (CML), conditional inference, quantile-adjusted CML,

conditional weighted likelihood.



RNA-Seq Experiments…

Estimation of parameters based on NB distribution without scaling factor

 Let 𝑌𝑖𝑗 be a NB random variable with mean 𝜇𝑖 and dispersion parameter
𝜙𝑖, i.e., 𝑌𝑖𝑗~𝑁𝐵 𝜇𝑖 , 𝜙𝑖 , then its probability mass function is given by

𝑝 𝑌𝑖𝑗 = 𝑦𝑖𝑗 =
𝛤 𝑦𝑖𝑗 +

1
𝜙𝑖

𝛤
1
𝜙𝑖

𝛤 𝑦𝑖𝑗 + 1

𝜇𝑖𝜙𝑖
𝑦𝑖𝑗

1 + 𝜇𝑖𝜙𝑖
𝑦𝑖𝑗+

1
𝜙𝑖

; 𝑦 = 0, 1, 2, …

 The likelihood function is given by

𝐿 𝜇𝑖 , 𝜙𝑖 𝑦𝑖𝑗; 𝑗 = 1, 2, … , 𝑁𝑖) =  

𝑗=1

𝑁𝑖 𝛤 𝑦𝑖𝑗 +
1
𝜙𝑖

𝛤
1
𝜙𝑖

𝛤 𝑦𝑖𝑗 + 1

𝜇𝑖𝜙𝑖
𝑦𝑖𝑗

1 + 𝜇𝑖𝜙𝑖
𝑦𝑖𝑗+

1
𝜙𝑖

 The log-likelihood function is given by
𝑙 𝜇𝑖 , 𝜙𝑖 𝑦𝑖𝑗; 𝑗 = 1, 2, … , 𝑁𝑖)

=  

𝑗=1

𝑁𝑖

ln 𝛤 𝑦𝑖𝑗 +
1

𝜙𝑖
− 

𝑗=1

𝑁𝑖

𝛤
1

𝜙𝑖
−  

𝑗=1

𝑁𝑖

ln 𝛤 𝑦𝑖𝑗 + 1

+  

𝑗=1

𝑁𝑖

𝑦𝑖𝑗 ln 𝜇𝑖𝜙𝑖 −  

𝑗=1

𝑁𝑖

𝑦𝑖𝑗 +
1

𝜙𝑖
ln 1 + 𝜇𝑖𝜙𝑖



Differential Expression Analysis… 

Method Read count distribution 

assumption/model

Normalization Differential analysis test

edgeR Negative binomial distribution TMM/ Upper quartile / RLE / 

None (all scaling factors are set 

to be one)

Exact test analogous to 

Fisher’s exact test or 

likelihood ratio test

DESeq Negative binomial distribution DESeq size factors Exact test analogous to 

Fisher’s exact test

DESeq2 Negative binomial distribution DESeq size factors Wald test

baySeq Negative binomial distribution Scaling factors (quantile/ TMM/ 

total)

Posterior probability 

through Bayesian approach

EBSeq Negative binomial-beta empirical 

Bayes model

DESeq median normalization

SAMseq Non-parametric method Based on the read count mean 

over the null features of data set.

Wilcoxon rank statistics 

based permutation test

NOIseq Non-parametric method RPKM / TMM / Upper quartile Corresponding logarithm of 

fold change and absolute 

expression differences have 

a high probability than 

noise values

limma+voom Similar to t-distribution with 

empirical Bayes approach

TMM Moderated t-test



Tools for Differential Expression Analysis

 Cufflinks package

 R packages: DESeq, DESeq2, edgeR

Differential Expression Analysis… 



edgeR for RNA-Seq Data Analysis

1. Download and Install R

https://cran.r-project.org/bin/windows/base/

2. Download and Install RStudio

https://www.rstudio.com/products/rstudio/download/#download

3. Open RStudio

4. Install the required R packages: Here, we will install edgeR.

if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install("edgeR")

https://cran.r-project.org/bin/windows/base/
https://www.rstudio.com/products/rstudio/download/#download


edgeR for RNA-Seq Data Analysis…

https://bioconductor.org/packages/release/bioc/html/edgeR.html

Example: A paired design RNA-seq experiment of oral squamous cell

carcinomas and matched normal tissue from three patients

 The aim of the analysis is to detect genes differentially expressed between

tumor and normal tissue, adjusting for any differences between the patients.

 RNA was sequenced on an Applied Biosystems SOLiD System 3.0 and reads

mapped to the UCSC hg18 reference genome.

 Read counts, summarised at the level of refSeq transcripts are available in

Table S1 of Tuch et al.

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824832/).

https://bioconductor.org/packages/release/bioc/html/edgeR.html


Online Tool for RNA-Seq Data Analysis

http://bioinformatics.sdstate.edu/idep/

https://kcvi.shinyapps.io/START/

http://bioinformatics.sdstate.edu/idep/
https://kcvi.shinyapps.io/START/
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Protein Primary Structures

• Amino acid sequence of a 
polypeptide chain. 

• 20 amino acids, each with a 
different side chain (R).

• Peptide units are building blocks of 
protein structures.

• The angle of rotation around the 
N−Cα bond is called phi (), and the 
angle around the Cα−C′ bond from 
the same Cα atom is called psi ().

(Brandon and 

Tooze, 1998)

R

R



Protein Secondary Structures

• Local substructures as a result of hydrogen bond 
formation between neighboring amino acids 
(backbone interactions).

• The amino acid side chains affect secondary 
structure formation.

• Types of secondary structures:

–  helix,

–  sheet,

– Loop or random coil.



 Helix
• Most abundant secondary structure.

• 3.6 amino acids per turn, and hydrogen bond formed between 
every fourth residue.

• Often found on the surface of proteins.



 Sheet
• Hydrogen bonds formed between adjacent polypeptide 

chains.

• The chain directions can be same (parallel sheet), opposite 
(anti-parallel), or mixed.



Loop or Coil

• Regions between  helices and  sheets.

• Various lengths and 3-D configurations.

• Often functionally significant (e.g., part of an active site).

(Brandon and Tooze, 1998)

The active site of
open /-barrel
structures is in a
crevice outside the
carboxy ends of the 

strands.



Protein Tertiary Structure

• The 3-D structure of a protein is assembled from different 
secondary structure components.

• Tertiary structure is determined primarily by hydrophobic 
interactions between side chains.

• Different classes of protein structures:

Hemoglobin (3HHB)

All 

T cell CD8 (1CD8)

All 

Thermolysin (7TLN)

Mixed



Protein Tertiary Structure (Cont’d)

• Fold:  a certain type of 3-D arrangement of secondary 
structures.

• Protein structures evolves more slowly than primary amino 
acid sequences.

E. coli cytochrome 

b562 (256B)

Four-helix bundles

Human growth 

hormone (1HUW)

Three-helix bundle

Drosophila engrailed 

homeodomain (1ENH)



Protein Quaternary Structure

• Two or more independent tertiary structures are assembled 
into a larger protein complex.

• Important for understanding protein-protein interactions.

E. coli

ribosome

(1ML5)Horse spleen ferritin (1IES)



Information Transfer pathway within the cell

……ATGCATGCATGCATGCATGC..

………CGUACGUACGUACGU…………

………CGUACGUACGUACGU…………

DECODING 

MECHANISM

DNA

RNA

PROTEIN Sequence

PROTEIN Structure

Biological function



From Sequence to Structure

Protein structure is hierarchic: 

• Primary – sequence of covalently attached amino acid

• Secondary – local 3D patterns (helices, sheets, loops) 

• Tertiary – overall 3D fold

• Quaternary – two or more protein chains



Motivation to Acquire a Structure

 Identifying active and binding sites

 Characterization of the protein’s mechanism (catalysis & interactions)

 Searching for ligand of a given binding site

 Understanding the molecular basis of diseases

 Designing mutants 

 Drug design

 And more... 



Similar Protein Structure 

Available Not Available
Threading

Template Based Method Ab initio Modelling



General Scheme

1. Searching for structures related to the query sequence

2. Selecting templates

3. Aligning query sequence with template structures

4. Building a model for the query using information from the template 
structures

5. Evaluating the model



What is Homology Modeling?

An approach to predict a model of the three-
dimensional structure of a given protein
sequence (TARGET) based on an alignment to
one or more known protein structures
(TEMPLATES)

The homology modeling method is based on the
assumption that the structure of an unknown
protein is similar to known structures of
reference proteins



A model is desirable when either X-ray crystallography or
NMR spectroscopy can not determine the structure of a
protein in time or at all.

While the 3-D structure of proteins can be determined by
x-ray crystallography and NMR spectroscopy. These
experimental techniques are time consuming and not
possible if a sufficient quantity and quality of a proteins is
not available.

The built model provides a wealth of information of how
the protein functions with information at residue property
level. This information can than be used for mutational
studies or for drug design..

Why a Model?



Protein Structure 
Determination

 High-resolution structure determination
– X-ray crystallography (~1Å)

– Nuclear magnetic resonance (NMR) (~1-2.5Å)

 Low-resolution structure determination
– Cryo-EM (electron-microscropy) ~10-15Å



X-ray crystallography

 most accurate

 An extremely pure protein sample is needed.

 The protein sample must form crystals that are 
relatively large without flaws.  Generally the biggest 
problem.

 Many proteins aren’t amenable to crystallization at all 
(i.e., proteins that do their work inside of a cell 
membrane).

 ~$100K per structure



Nuclear Magnetic Resonance

 Fairly accurate

 No need for crystals

 limited to small, soluble proteins only.



1. Identification of structures that will form the template
for modelling

2. Sequence Alignment of the target with template

3. Transfer of the coordinates from the template(s) to the
target of structurally conserved regions (SCR’s)

4. Modelling the missing regions

5. Refinement and validation of the model

Steps in homology modelling

Target’s sequence

Target’s structure



Template search

• Homology modeling is based on using similar structures
i.e. no Similar structures = No Model

• 40% amino acid identity or higher is best; below that is  
not advisable but examples of success do exist

• Need sequence similarity across the whole sequence,
not just in one part



Sequence Alignment

GGTGGATCTA

GGA–CT - GTAC 
I I I   I I



Key Step:

Sequence alignment of the target with the 
basis structures

Good Alignment 

Good Model



 Sequence alignment is a basic technique in
homology modeling.

 It is used to establish a one-to-one
correspondence between the amino acids of the
reference protein (template) and those of the
unknown protein (target) in the structurally
conserved regions.

 The correspondence is the basis for transferring
coordinates from the reference to the model
protein



 What is sequence alignment ?
– To find out the conserved residues the residues of one 

sequence are directly mapped on to the residues of other 
sequence. The process of mapping is called sequence 
alignment.

Sequence A

Sequence B

GGTGGAC

AAAGGTGAC

GGTGGAC

AAAGGTG - AC

A Sample alignment of two DNA sequences

(a) Un-gapped alignment

(b) Gapped alignment. The “I” indicates matching 
nucleotides

(a) (b)



 In global alignment whole sequences are
consider where as in local alignment only parts
of sequences are consider.

Local 
Alignment

Global 
Alignment

Sequence Alignment

 Basic Goal: To achieve an alignment which 
gives rise to maximum number of matches. 
(i.e. high sequence similarity)



Applications:

Global alignment : essential for comparative
modeling.

Local alignment : sufficient for functional
domains.

N.B: Global alignment is computationally
more time consuming than the local
alignment.



Computational Methods for Alignment

 Dot – matrix analysis

 Dynamic programming (DP)
algorithms

 Heuristic methods



Dot matrix analysis

 simple graphical method

 used for finding regions of local matches between
two sequences.

 The two sequences to be compared are placed as
row and column of matrix.

 All the residues of the first sequence placed
column wise are compared against all the residues
of the second sequence placed row wise.

 Whenever a match is found a dot is placed on the
corresponding position in the matrix.



Dotplot:

A    

T    

T    

C   

A    

C   

A    

T    

A    

T A C A T T A C G T A C

Sequence 1

Sequence 2

A dotplot gives an overview of all possible alignments



Dotplot:

A    

T    

T    

C   

A    

C   

A    

T    

A    

T A C A T T A C G T A C

T A C A T T A C G T A C

A T A C A C T T A

Sequence 1

Sequence 2

One possible alignment:

In a dotplot each diagonal corresponds to a possible (ungapped) alignment



Automatic procedure that finds the best alignment

with an optimal score depending on the chosen parameters.

Dynamic Programming

• Needleman and Wunsch Algorithm

- Global Alignment -

• Smith and Waterman Algorithm

- Local Alignment -



Needleman and Wunsch
(global alignment)

Sequence 1: H E A G A W G H E E
Sequence 2: P A W H E A E 

Scoring parameters: BLOSUM50

Gap penalty: Linear gap penalty of 8



Basic principles of dynamic programming

- Creation of an alignment path matrix

- Stepwise calculation of score values

- Backtracking (evaluation of the optimal path)



Creation of ………(..contd..)

Idea:

Build up an optimal alignment using previous solutions 
for optimal alignments of smaller subsequences

• Construct matrix F indexed by i and j (one index for each 
sequence)

• F(i,j) is the score of the best alignment between the initial   
segment x1...i of x up to xi and the initial segment y1...j of y
up to yj

• Build F(i,j) recursively beginning with F(0,0) = 0



• If F(i-1,j-1), F(i-1,j) and F(i,j-1) are known we can calculate 
F(i,j)

• Three possibilities:

• xi and yj are aligned, F(i,j) = F(i-1,j-1) + s(xi ,yj)

• xi is aligned to a gap, F(i,j) = F(i-1,j) - d

• yj is aligned to a gap, F(i,j) = F(i,j-1) - d

• The best score up to (i,j) will be the largest of the three 
options

Creation of ………(..contd..)



Smith-Waterman Algorithm

 compares segments of all possible lengths
(LOCAL alignments) and chooses whichever
maximises the similarity measure.

 calculates ALL possible paths leading to 
each cell

 paths can be of any length and can contain 
insertions and deletions



Two differences:

1.

2. An alignment can now end anywhere in the matrix

Smith and Waterman
(local alignment)

Example:
Sequence 1 H E A G A W G H E E
Sequence 2 P A W H E A E 

Scoring parameters: BLOSUM
Gap penalty: Linear gap penalty of 8

0

F(i, j) = F(i-1, j-1) + s(xi ,yj)

F(i, j) = F(i-1, j) - d

F(i, j) = F(i, j-1) - d

F(i, j) = max



Heuristic Methods:

 BLAST

 FASTA



Comparative Modelling Methods

-Assembly of rigid fragments
-COMPOSER
(Sutcliffe et al 1987 Protein Eng. 1 377)

-Segment matching modelling (SMM) 
(Levitt, J.Mol. Biol. 226 507-533)

-Restrained based methods 
-MODELLER
(Sali and Blundell, 1993)



MODELLER is a program for comparative modeling
written by Prof. Šali’s group at Rockefeller
University.

• The program uses a scripting language.

• The user provides an alignment of a sequence to
be modeled with known related structures.

• MODELLER automatically calculates a model
with all non-hydrogen atoms.



The input are:

– Protein Data Bank (PDB) atom files of known 
protein structures;

– their alignment with the target sequence to be 
modeled. 

The output is a model for the target that 
includes all non-hydrogen atoms. 

• MODELLER can calculate sequence and 
structure alignments, however, it is better to 
prepare the alignment carefully by other means. 



Format for Modeller:
INCLUDE
SET ATOM_FILES_DIRECTORY = './:../‘

SET PDB_EXT = '.atm‘

SET STARTING_MODEL = 1

SET ENDING_MODEL = 20

SET MD_LEVEL = 'refine1‘

SET DEVIATION = 4.0

SET KNOWNS ='1JKE‘

SET HETATM_IO = off

SET WATER_IO = off

SET ALIGNMENT_FORMAT = 'PIR‘

SET SEQUENCE = 'target1‘

SET ALNFILE = 'multiple1.ali

CALL ROUTINE = 'model'



Steps for homology Modelling

VDLEKIPIEEVFQQLKCSREGLTTQEGEDRIQIFGPNKLEEKKESKLLKFLGFMWNPLSW

VMEMAAIMAIALANGDGRPPDWQDFVGIICLLVINSTISFIEENNAGNAAAALMAGLAP
K

TKVLRDGKWSEQEAAILVPGDIVSIKLGDIIPADARLLEGDPLKVDQSALTGESLPVTKH

PGQEVFSGSTCKQGEIEAVVIATGVHTFFGKAAHLVDSTNQVGHFQKVLTAIGNFCICSI Target sequence

Perform BLAST search Select PDB in 
BLAST database

Select template from the 
BLAST hit

Do the Sequence alignment 
between target & template

May select more than one 
template, if required

Perform alignment in PIR 
format, modeller accept only 

PIR format

Use the alignment file for modeller



Download modeller and copy alignment.ali and 
model-default.py  in modeller folder. 
Modeller Key is MODELIRANJE

Run modeller by using command in 
DOS: mod9v6 model-default.py

If you have any problem in running modeller,
please write me :skybiotech@gmail.com

Select one or two model based on 
Ramachandran plot and pdf value

Saves server can be run for
Ramachandran plot

Perform energy minimization & 
remove bad contacts

Visualise the structure by using any 
visualiser tool eg. PyMol, 
Chimera, VMD, SPDBviewer



Example
TPQNITDLCAEYHNTQIYTLNDKIFSYTESLAGKREMAIITFKNGAIFQVEVP

GSQHIDSQKKAIERMKDTLRIAYLTEAKVEKLCVWNNKTPHAIAAISMAN

Perform BLAST search 

Select Protein Data Bank

Paste your sequence here



BLAST Result 

Template selected 

Download pdb file from PDB 
(www.rcsb.org/pdb)

>ctx

TPQNITDLCAEYHNTQIYTLNDKIFSYTESLAGKREMAIITFKNGAIFQVEVPGSQHID

SQKKAIERMKDTLRIAYLTEAKVEKLCVWNNKTPHAIAAISMAN

>2CHB

TPQNITDLCAEYHNTQIHTLNDKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHID

SQKKAIERMKDTLRIAYLTEAKVEKLCVWNNKTPHAIAAISMAN

Target sequence

Template sequence

Do the Sequence alignment between 
target & template



Use ClustalW for Alignment

Paste here Target & Template 
Sequences in fasta format

Select here PIR



Alignment.ali 

>P1;ctx

sequence:ctx::::::::

TPQNITDLCAEYHNTQIYTLNDKIFSYTESLAGKREMAIITFKNGAIFQVEVPGSQHID

SQKKAIERMKDTLRIAYLTEAKVEKLCVWNNKTPHAIAAISMAN

*

>P1;2CHB

structureX:2CHB:1:D:103:D::::

TPQNITDLCAEYHNTQIHTLNDKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHID

SQKKAIERMKDTLRIAYLTEAKVEKLCVWNNKTPHAIAAISMAN

*



# Homology modeling with multiple templates

from modeller import *              # Load standard Modeller 

classes

from modeller.automodel import *    # Load the automodel class

log.verbose()    # request verbose output

env = environ()  # create a new MODELLER environment to build 

this model in

# directories for input atom files

env.io.atom_files_directory = './:../atom_files'

a = automodel(env,

              alnfile  = 'alignment.ali', # alignment filename

              knowns   = ('2CHB'),     # codes of the templates

              sequence = 'ctx')               # code of the 

target

a.starting_model= 1                 # index of the first model 

a.ending_model  = 30                 # index of the last model

                                    # (determines how many models 

to calculate)

a.make()                            # do the actual homology 

modeling

Model-default. py









Modelling on the Web

 Prior to 1998 homology modelling could 
only be done with commercial software or 
command-line freeware

The process was time-consuming and 
labor-intensive

The past few years has seen an explosion 
in automated web-based homology 
modelling servers

Now anyone can homology model!





Application of Comparative Modeling

- Comparative modeling is an efficient way to obtain 
useful information about the proteins of interest. 
For example – comparative modeling can be helpful 
in
- Designing mutants to text hypothesis about the 
proteins function.
- Identifying active and binding sites.
- Searching for designing and improving.
- Modeling substrate specificity.
- predicting antigenic epitopes.
- Simulating protein – protein docking.

- Confirming a remote structural relationship.



Ab initio protein structure prediction is a method to
determine the tertiary structure of protein in the
absence of experimentally solved structure of a
similar/homologous protein. This method builds
protein structure guided by energy FUNCTION.

ab Initio modelling conducts a conformational
search under the guidance of A designed energy

function.

This procedure usually generates a number of
possible conformations (structure decoys) and final
models are selected from them.

ab initio method of Modelling





I-TASSER

 I-TASSER server is an on-line platform for protein structure and
function predictions. 3D models are built based on multiple-threading
alignments by LOMETS and iterative template fragment assembly
simulations; function inslights are derived by matching the 3D models
with BioLiP protein function database.

 I-TASSER (as 'Zhang-Server') was ranked as the No 1 server for
protein structure prediction in recent CASP7, CASP8, CASP9,
and CASP10 experiments.

 It was also ranked as the best for function prediction in CASP9. The
server is in active development with the goal to provide the most
accurate structural and function predictions using state-of-the-art
algorithms. The server is only for non-commercial use

http://zhanglab.ccmb.med.umich.edu/LOMETS/
http://zhanglab.ccmb.med.umich.edu/BioLiP/
http://zhanglab.ccmb.med.umich.edu/casp7/21.html
http://predictioncenter.org/casp8/groups_analysis.cgi?target_type=0&gr_type=server&domain_classifications_id=1,2,3,4&field=sum_z_gdt_ts_server_pos
http://prodata.swmed.edu/CASP9/serveronly/DomainsAll.First.html
http://predictioncenter.org/casp10/groups_analysis.cgi?type=server&tbm=on&tbm_hard=on&tbmfm=on&fm=on&submit=Filter
http://predictioncenter.org/casp9/doc/presentations/CASP9_FN.pdf




Protein-Protein & Protein-Ligand 
Interactions 



Prediction of the optimal physical configuration 
and energy between two molecules 

The docking problem optimizes:


Binding between two molecules such that their orientation 
maximizes the interaction


Evaluates the total energy of interaction such that for the 
best binding configuration the binding energy is the 
minimum


The resultant structural changes brought about by the 
interaction

What is docking?



Molecular Docking
• In the process of “docking” a ligand to a binding site

mimics the natural course of interaction of the ligand
and its receptor via a lowest energy pathway.

• Put a compound in the approximate area where
binding occurs and evaluate the following:

Do the molecules bind to each other?
If yes, how strong is the binding?
How does the molecule (or) the protein-ligand 

complex look like. (understand the intermolecular 
interactions)

Quantify the extent of binding.



Few terms

 Receptor: The receiving molecule, most commonly a protein or
other biopolymer.

 Ligand: The complementary partener molecule which binds to
the receptor. Ligands are most often small molecules but could
also be another biopolymer.

 Docking: Computational simulation of a candidate ligand binding
to a receptor.

 Binding mode: The orientation of the ligand relative to the
receptor as well as the conformation of the ligand and receptor
when bound to each other.

 Pose: A candidate binding mode.
 Scoring: The process of evaluating a particular pose by counting

the number of favorable intermolecular interactions such as
hydrogen bonds and hydrophobic contacts.

 Ranking: The process of classifying which ligands are most likely
to interact favorably to a particular receptor based on the
predicted free-energy of binding.



Classes of Docking

• Protein-Protein docking

 Both molecules usually considered rigid

 6 degree of freedom, 3 for rotation, 3 for translation

 First apply only steric constraints to limit search
space.

 Then examine energetics of possible binding
confirmations

 The first approximation is to allow the substrate to do
a random walk in the space around the protein to find
the lowest energy.

• Protein-ligand docking

 Flexible ligand, rigid receptor

 Search space much larger



1. Protein-Protein Docking

2. Protein-Ligand Docking

optimized



MESDAMESETMESSRSMYN

AMEISWALTERYALLKINCAL

LMEWALLYIPREFERDREVIL

MYSELFIMACENTERDIRATV

ANDYINTENNESSEEILIKENM

RANDDYNAMICSRPADNAPRI

MASERADCALCYCLINNDRKI

NASEMRPCALTRACTINKAR

KICIPCDPKIQDENVSDETAVS

WILLWINITALL

3D 

structure

Biological Structure

Organism

Cell

System Dynamics

Structural Scales



Some Available Programs to 

Perform Docking

• Affinity

• AutoDock

• BioMedCAChe

• CAChe for 
Medicinal Chemists

• DOCK

• DockVision

• FlexX

• Glide

• GOLD

• Hammerhead

• PRO_LEADS

• SLIDE

• VRDD





Ligand in Active Site Region

Ligand

Active site residues
Histidine 6; Phenylalanine 5; Tyrosine 21; Aspartic acid 91; Aspartic acid 48; Tyrosine 51; Histidine 47; 
Glycine 29; Leucine 2; Glycine 31; Glycine 22; Alanine 18; Cysteine 28; Valine 20; Lysine 62











Protein – Ligand Docking Programs

AutoDock http://www.scripps.edu/mb/olson/doc/autodock/

GOLD
http://www.ccdc.cam.ac.uk/products/life_sciences/gold/

FLEXX

http://www.biosolveit.de/FlexX/

GLIDE

http://www.schrodinger.com/

ICM

http://www.molsoft.com/docking.html

Dock

http://www.cmpharm.ucsf.edu/kuntz/dock.html

http://www.scripps.edu/mb/olson/doc/autodock/
http://www.ccdc.cam.ac.uk/products/life_sciences/gold/
http://www.biosolveit.de/FlexX/
http://www.schrodinger.com/
http://www.molsoft.com/docking.html
http://www.cmpharm.ucsf.edu/kuntz/dock.html


Protein protein Docking Programs
ZDOCK : http://zlab.bu.edu/zdock/

HEX : http://www.csd.abdn.ac.uk/hex/

GRAMM : 

http://vakser.bioinformatics.ku.edu/resources/gramm

ICM : http://www.molsoft.com/docking.html

CLUSPRO : http://nrc.bu.edu/cluster/clusdoc.html

KORDO : 

http://www.bioinfo.de/isb/gcb99/poster/zimmermann/

MOLFIT : 

http://www.weizmann.ac.il/Chemical_Research_Support//molfi

t/

PATCHDOCK:

http://zlab.bu.edu/zdock/
http://www.csd.abdn.ac.uk/hex/
http://vakser.bioinformatics.ku.edu/resources/gramm
http://www.molsoft.com/docking.html
http://nrc.bu.edu/cluster/clusdoc.html
http://www.bioinfo.de/isb/gcb99/poster/zimmermann/
http://www.weizmann.ac.il/Chemical_Research_Support/molfit/


Case Studies



 Spot blotch disease of wheat, caused by the fungus Bipolaris sorokiniana (Sacc.) Shoem., produces
several toxins which interact with the plants and thereby increase the blightening of the wheat
leaves, and Bipolaroxin is one of them.

 There is an urgent need to decipher the molecular interaction between wheat and the toxin
Bipolaroxin for in-depth understanding of host–pathogen interactions.

 we have developed the three-dimensional structure of G-protein alpha subunit from Triticum
aestivum. Molecular docking studies were performed using the active site of the modelled G-protein
alpha and cryo-EM structure of beta subunit from T. aestivum and ‘Bipolaroxin’

 All-atoms molecular dynamics (MD) simulation studies were conducted for G-alpha and -beta subunit
and Bipolaroxin complexes to explore the stability, conformational flexibility, and dynamic behavior
of the complex system.

 In planta studies clearly indicated that application of Bipolaroxin significantly impacted the physio-
biochemical pathways in wheat and led to the blightening of leaves in susceptible cultivars as
compared to resistant ones. Further, it interacted with the Gα and Gβ subunits of G-protein,
phenylpropanoid, and MAPK pathways, which is clearly supported by the qPCR results.

 This study gives deeper insights into understanding the molecular dialogues between Bipolaroxin and
the Gα and Gβ subunits of the wheat heterotrimeric G-protein during host–pathogen interaction.

Antioxidant; 2022; IF 7.6



Figure 1. Three-dimensional model and 2D representation of the interaction

between Biopolaroxin and G-Alpha subunit. (A) The solid ribbon representation of three-

dimensional architecture of modeled G alpha subunit of wheat with domains (helical: lower half

and Ras domain: upper half). (B) The topology of architecture of the modeled structure where

the position of each helix and strand has been labeled from N-terminal end to c-terminal end.

(C) Molecular representation of the top-ranked docked complex obtained from molecular

docking of G-alpha subunit with Bipolaroxin rendered using LigPlot+ tool. The green dotted lines

show the hydrogen bonds, residues with dark-red semicircles forming hydrophobic contacts, and

residues labeled in green portray the H-bond forming amino acids.



Figure 2. Ramachandran plot and ProSA z-score analysis of the

modeled G-alpha subunit of Triticum aestivum. (A) The Ramachandran

plot was generated using Procheck tool embedded in SAVES and the

z-score plot was plotted using ProSA-Web (B).

Table 1. Model validation statistics of G-protein alpha subunit of Triticum 

aestivum using various structural evaluation servers.



Figure 3. Intermolecular contact analyses of the top-

ranked poses of Bipolaroxin with G-protein alpha

(A) subunit and G-beta subunit of Triticum

aestivum (B). The image was generated using

BIOVIA DSV.

Table 2. Molecular docking results of Bipolaroxin with G-protein alpha and beta subunit of Triticum aestivum using AutoDock.



Figure 4. Docked conformational states and electrostatic surface representation of Bipolaroxin with G-protein alpha and G beta subunit. (A)

Solid ribbon representation of the G-protein alpha subunit with Bipolaroxin (stick format) with the binding pocket residues. (B) Electrostatic

surface potential map of G-protein alpha subunit with Bipolaroxin (ligand binding pocket has been marked in circle). (C) Solid ribbon

representation of the G protein beta subunit with Bipolaroxin (stick format). (D) Electrostatic surface potential map of G protein beta subunit

with Bipolaroxin (ligand binding pocket has been marked in circle). The electrostatic surface potential maps were generated using APBS and

rendered using Chimera.



Figure 5. Intrinsic dynamics stability parameters of the G-alpha and G-beta subunit Bipolaroxin complexes during 50 ns MD simulation. (A)

Root mean square deviation (RMSD) of backbone atoms of the modeled G-alpha subunit and experimental beta subunit in complexes with

Bipolaroxin during 50 ns MD. (B) The compactness of the trajectory by calculating the radius of gyration (Rg) of the proteins during 50 ns MD in

aqueous solution. (C) The root mean square fluctuation (RMSF) for Cα atoms of the G-alpha (left) and G-beta (right) complex systems.



Figure 6. PCA of the protein–ligand (Gα and Gβ) systems using the resultant MD trajectories. (A) Eigenvalues for the complex as

a function of the first 20 eigenvectors. (B) The cloud epitomizes the 50 ns trajectories projected onto the first two PCs where the x-

axis and y-axis show the projection of the structures of the main-chain atoms in the MD trajectories onto the phase space defined

by first two sets PCs (PC1 vs. PC2). (C) Porcupine plot depicting the movement of main-chain atoms of the first PC (PC1) of the

G-α- Bipolaroxin complex. (D) Porcupine plot depicting the movement of main-chain atoms of the first PC of the G-β- Bipolaroxin

complex. The direction of arrows indicates the motion and thickness of the arrow indicates the strength of motion. The image was

generated using modevector.py script in PyMOL.



Figure 7. Structural superimposed view of the top two structural ensemble (top-ranked two clusters obtained from clustering). (A)

Superimposed architecture of top-ranked two clusters from G-alpha subunit complex. (B) Superimposed architecture of top-ranked two clusters

from G-beta subunit complex. Both the images were rendered using PyMOL. (C) Intermolecular contact of top-ranked cluster of Bipolaroxin with

Gα subunit where the H-bond forming residues are marked in red while other nonbonded contacts are in pink. (D) Protein–ligand interaction

analysis of the top-ranked cluster of Bipolaroxin with Gβ subunit where the H-bond forming residues are marked in blue while other nonbonded

contacts are in red. The image was generated using BIOVIA DSV.



• Ralstonia solanacearum is among the most damaging bacterial phytopathogens with a wide number of

hosts and a broad geographic distribution worldwide. The pathway of phenotype conversion (Phc) is

operated by quorum-sensing signals and modulated through the (R)-methyl 3-hydroxypalmitate (3-OH

PAME) in R. solanacearum. However, the molecular structures of the Phc pathway components are not

yet established, and the structural consequences of 3-OH PAME on quorum sensing are not well

studied.

• In this study, 3D structures of quorum-sensing proteins of the Phc pathway (PhcA and PhcR) were

computationally modeled, followed by the virtual screening of the natural compounds library against

the predicted active site residues of PhcA and PhcR proteins that could be employed in limiting

signaling through 3-OH PAME.

• Two of the best scoring common ligands ZINC000014762512 and ZINC000011865192 for PhcA and

PhcR were further analyzed utilizing orbital energies such as HOMO and LUMO, followed by

molecular dynamics simulations of the complexes for 100 ns to determine the ligands binding stability.

• The findings indicate that ZINC000014762512 and ZINC000011865192 may be capable of inhibiting

both PhcA and PhcR. We believe that, after further validation, these compounds may have the potential

to disrupt bacterial quorum sensing and thus control this devastating phytopathogenic bacterial

pathogen. Molecules; 2022; IF: 4.9



Figure Interaction of PhcA with

ZINC000014762512. (B) Interaction of

PhcA with ZINC000011865192.
Figure Interaction of PhcR with

ZINC000014762512. (B) Interaction of

PhcR with ZINC000011865192.

Figure. Intermolecular H-bonding,

electrostatic, and hydrophobic interactions

formed between PhccA–

ZINC000014762512 complexes. The image

(A) is drawn by the LigPlot+ tool and (B)

ligand interaction module of Schrödinger.

Figure 5. Intermolecular H-bonding, electrostatic,

and hydrophobic interactions formed between

PhccR–ZINC000011865192 complexes. The image

(A) is drawn by the LigPlot+ tool and (B) ligand

interaction module of Schrödinger.

Figure Conformational

constancy of ‘Apo’ and ‘Holo’

states of PhcA protein

simulation study. (A)

Backbone-RMSD of PhcA. (B)

Cα-RMSF profile of PhcA. (C)

Rg profile of PhcA. (D) SASA

analysis of Apo and Holo

states of PhcA protein

throughout the simulations.



• An absolute or relative deficiency of pancreatic β-cells mass and functionality is a crucial pathological

feature common to type 1 diabetes mellitus and type 2 diabetes mellitus. Glucagon-like-peptide-1

receptor (GLP1R) agonists have been the focus of considerable research attention for their ability to

protect β-cell mass and augment insulin secretion with no risk of hypoglycemia.

• Presently commercially available GLP1R agonists are peptides that limit their use due to cost,

stability, and mode of administration.

• To address this drawback, strategically designed distinct sets of small molecules were docked on

GLP1R ectodomain and compared with previously known small molecule GLP1R agonists. One of the

small molecule PK2 (6-((1-(4-nitrobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-6Hindolo[2,3-b]quinoxaline)

displays stable binding with GLP1R ectodomain and induces GLP1R internalization and increasing

cAMP levels.

• PK2 also increases insulin secretion in the INS1 cells. The oral administration of PK2 protects against

diabetes induced by multiple low-dose streptozotocin administration by lowering high blood glucose

levels.

• Similar to GLP1R peptidic agonists, treatment of PK2 induces β-cell replication and attenuate β-cell

apoptosis in STZ-treated mice. Mechanistically, this protection was associated with decreased

thioredoxin-interacting protein expression, a potent inducer of diabetic β-cell apoptosis and

dysfunction. Together, this report describes a small molecule, PK2, as an orally active nonpeptidic

GLP1R agonist that has efficacy to preserve or restore functional β-cell mass
JBC; 2022; IF: 5.35



• The functional activity among STAT3 and PIM1, are key signaling events for cancer cell function. Curcumin, a

diarylheptanoid isolated from turmeric, effectively inhibits STAT3 signaling.

• Selectively, we attempted to address interactions of STAT3, PIM1 and Curcumin for therapeutic intervention

using in silico and in vitro experimental approaches.

• Firstly, protein-protein interactions (PPI) between STAT3-PIM1 by molecular docking studies reflected salt

bridges among Arg279 (STAT3)-Glu140 (PIM1) and Arg282 (STAT3)-Asp100 (PIM1), with a binding affinity of

−38.6 kcal/mol.

• Secondly, molecular dynamics simulations of heterodimeric STAT3-PIM1 complex with curcumin revealed

binding of curcumin on PIM-1 interface of the complex through hydrogen bonds (Asp155) and hydrophobic

interactions (Leu13, Phe18, Val21, etc.) with a binding energy of −7.3 kcal/mol.

• These PPIs were confirmed in vitro by immunoprecipitation assays in MDA-MB-231 cells. Corroborating our

results, expression levels of STAT3 and PIM1 decreased after curcumin treatment.

• We observed that PIM1 interacts with STAT3 and these functional interactions are disrupted by curcumin. The

calculated band energy gap of heterodimeric STAT3-PIM1-Curcumin complex was of 9.621 kcal/mol.

• The present study revealed the role of curcumin in STAT3/PIM1 signaling and its binding affinity to the

complex for design of advanced cancer therapeutics.
IJBM; 2022; IF: 8.05

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/stat3
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/pim1
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/docking-molecular
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/binding-affinity
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/hydrogen-bond
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/immunoprecipitation


Figure Protein- protein interaction and three-dimensional structure analysis of hPim-1 kinase (PIM1) with Signal transducer and activator of transcription

3 (STAT3)



A Drug Repurposing Approach to Identify Therapeutics by Screening Pathogen Box 

Exploiting SARS-CoV-2 Main Protease

• (COVID-19) is caused by severe acute respiratory syndrome coronavirus -2 (SARS-CoV2) and

is responsible for a higher degree of morbidity and mortality worldwide. There is a smaller

number of approved therapeutics available to target the SARS-CoV-2 virus. The main protease

(Mpro) enzyme of SARS-CoV-2 is essential for replication and transcription of the viral

genome, thus could be a potent target for the treatment of COVID-19.

• We performed an in-silico screening analysis of 400 diverse bioactive inhibitors with proven

antibacterial and antiviral properties against Mpro drug target. Ten compounds showed a

higher binding affinity for Mpro than the reference compound (N3), with desired

physicochemical properties.

• in-depth docking and superimposition revealed that three compounds (MMV1782211,

MMV1782220, and MMV1578574) are actively interacting with the catalytic domain of Mpro. In

addition, the molecular dynamics simulation study showed a solid and stable interaction of

MMV178221-Mpro complex compared to the other two molecules (MMV1782220, and

MMV1578574).

• In conclusion, the present in silico analysis revealed MMV1782211 as a possible and potent

molecule to target the Mpro and must be explored in vitro and in vivo to combat the COVID-19

JBSD; 2023; IF: 5.25





WJMB; 2023; IF: 4.25







JBSD; 2023; IF: 5.25
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RNA-Protein Interactions 












