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ICAR-IASRI is a premier Institute of relevance in Statistical Sciences (Statistics, Computer
Applications and Bioinformatics) and their judicious fusion in agricultural sciences for enriching
quality of agricultural research and informed policy decision making. Ever since its inception in 1930,
as a small Statistical Section of the then Imperial Council of Agricultural Research, the Institute has
grown in stature and made its presence felt both nationally and internationally. The Institute has been
very actively pursuing advisory service that has enabled the institute to make its presence felt both in
National Agricultural Research and Education System (NARES) and National Agricultural Statistics

System (NASS). The Institute has taken a lead in creating a high-end statistical computing environment
in NARES.

Bioinformatics is an interdisciplinary field comprising of biology, statistics and computer science.
During the last two decades enormous sequence data have been generated in biological science, firstly
with the onset of sequencing the genomes of living organisms and, secondly, rapid application of high
throughput experimental techniques in laboratory research. Application of various bioinformatics tools
in biological research enables storage, retrieval, analysis, annotation and visualization of results, and
promotes better understanding of biological systems in their entirety. This will further lead to
development of tools and techniques for sustainable agriculture. The training programmes organized
by the Institute are very useful in understanding the advances in agricultural bioinformatics and
computational biology to the researchers.

The training programme Statistical and Computational Advances for Bioinformatics Data
Analysis in Agriculture: Practical Aspects has been especially designed to derive the maximum
academic advantage through interaction with faculty members and fellow participants. | am sure that
the knowledge assimilated from this training programme will enable the participants to have better
understanding of bioinformatics and computational biology, which will also benefit them in handling
and analyzing the bioinformatics data by using appropriate tools and software.

The course contents are intertwining of theory and application. The topics are covered under different
modules: (1) Basics of Computational Tools and Techniques [Introduction to Linux; R/Python/Perl
Programming Languages; Methods/Tools/Software/Databases relevant to Bioinformatics)], (2) NGS
Data Analysis [NGS Data Pre-processing; Genome Assembly and Annotation; Analysis of
Transcriptomics, Metagenomics and Non-coding RNA Data; Genome-Wide Association Studies and
Genomic Selection], and (3) Proteomics Data Analysis [Protein Structure Prediction; Molecular
Docking; Protein-Protein Interaction Network; Molecular Dynamics and Simulation; Proteomics
Expression Data Analysis].

The faculty for this course comprises of eminent scientists well established in the field of
Bioinformatics/ Computational Biology/ Agricultural Statistics’ Computer Applications/
Genomics and other disciplines. The lecture notes given in the reference manual provide an exposition
of the subject. I hope that the reference manual will be quite useful to the participants. | take this
opportunity to thank the entire faculty for doing a wonderful job. | wish to complement Course
Coordinator & Head, Division of Agricultural Bioinformatics, Dr. Girish K. Jha and Course Co-
coordinators, Dr. Sudhir Srivastava and Dr. Neeraj Budhlakoti of this training programme, for bringing
out this valuable document in time. We look forward to suggestions from every corner in improving
this reference manual.

q\,_\\ m{wjﬂ (/

. /
New Delhi (Rajender Parsad)
January 01, 2024 Director, ICAR-IASRI
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PREFACE

The ICAR-Indian Agricultural Statistics Research Institute is a premier Institute in the disciplines of
Agricultural Statistics, Computer Applications and Bioinformatics in the country. The Institute has been
engaged in conducting research, teaching and organizing training programmes in Agricultural Statistics
with special emphasis on Experimental Designs, Sampling Techniques, Statistical Genetics, Forecasting
Techniques, Bioinformatics and Computer Applications. The Institute has been very actively pursuing
advisory service that has enabled the institute to make its presence felt both in National Agricultural
Research and Education System (NARES) and National Agricultural Statistics System (NASS). The
Institute has taken a lead in developing Statistical Software Packages useful for Agricultural Research.

During the last two decades enormous sequence data have been generated in biological science,
firstly with the onset of sequencing the genomes of living organisms and, secondly, rapid application of
high throughput experimental techniques in laboratory research. Application of various bioinformatics
tools in biological research enables storage, retrieval, analysis, annotation and visualization of results, and
promotes better understanding of biological systems in their entirety. This will further lead to
development of tools and techniques for sustainable agriculture. The aim of the training programme is to
familiarize the participants to statistical and computational approaches for bioinformatics data analysis in
agriculture and in upgrading their capabilities in research, teaching and training.

The training focus on the basics of computational tools & techniques, statistical and
computational approaches involved in the analysis of genomics, transcriptomics, metagenomics, and
proteomics data. Special emphasis has been laid on concepts, issues and solutions related to
agricultural bioinformatics. Various lectures were included in this training programme: Super-
Computing Facility ASHOKA; Basics of Linux and R/Python/Perl Programming Languages;
Biological Databases; Sequence and Phylogenetic Analysis; SNP and SSR Mining; Introduction to
NGS Data Analysis; Genome Assembly and Annotation; Analysis of Transcriptomics, Metagenomics
and Non-coding RNA Data; Genome-Wide Association Studies and Genomic Selection; Protein
Structure Prediction; Molecular Docking; Molecular Dynamics and Simulation; Proteomics
Expression Data Analysis; Post-Translational Modifications.

We would like to take this opportunity to thank the faculty of the Institute who spared their
valuable time in making this course meaningful and successful that helped in bringing out this
manual in time. We are also thankful to the various ICAR Institutes, State Agricultural Universities
and Bureaus for deputing their employees in this training programme. We are grateful to Dr. Rajender
Parsad, Director, ICAR-IASRI for his valuable guidance and making all necessary facilities available
for smooth conduct of the course. We are thankful to each one who supported directly or indirectly
for preparing this training manual.

Gl 72+ 3&:'%%3@ Al k™

b
(Girish K. Jha) (Sudhir Srivastava) (Neera} Budhlakoti)
Course Coordinator & Course Co-Coordinator Course Co-Coordinator

Head, Division of Bioinformatics
ICAR-IASRI
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Introduction to Bioinformatics
Girish Kumar Jha, Sneha Murmu, Soumya Sharma and Ritwika Das

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

History
+ 1950-70s:

In the early 1950s, there was still controversy surrounding DNA's role as the carrier of
genetic information. DNA's genetic role was firmly established in 1952 through the Hershey-
Chase experiment. While the double-helix structure of DNA was revealed in 1953, it took
more years to decipher the genetic code and develop DNA sequencing methods. Meanwhile,
significant progress was made in protein analysis, especially with the publication of insulin's
amino acid sequence in the late 1950s. This achievement spurred the development of protein
sequencing methods, like the Edman degradation method, which allowed for automated
sequencing of more than 15 protein families. However, a challenge with protein sequencing
was assembling the complete sequence for large proteins, leading to the early development of
bioinformatics software to address this issue.

Margaret Dayhoff, often referred to as the "mother and father of bioinformatics,” was a
physical chemist who recognized the potential of applying computational methods to biology
and medicine. She collaborated with physicist Robert S. Ledley and together, in the late
1950s, they developed COMPROTEIN, one of the earliest bioinformatics software, for
determining protein primary structure using Edman peptide sequencing data. They used this
software to tackle the challenge of assembling complete sequences for large proteins, which
was a significant computational problem. Dayhoff contributed to simplifying the handling of
protein sequence data by developing the one-letter amino acid code, which is still in use
today.

» The Birth of Sequence Databases:

Dayhoff and Eck's 1965 "Atlas of Protein Sequence and Structure” was the first biological
sequence database. It contained 65 protein sequences, providing a basis for early
computational analysis. Researchers began to consider the idea that protein sequences might
reveal evolutionary history, similar to how language evolves, where the arrangement of letters
conveys meaning.

» The Concept of Orthology:

Emile Zuckerkandl and Linus Pauling introduced the term "Paleogenetics™ in 1963 to explore
the evolutionary aspects of biomolecular sequences. They observed that orthologous proteins
from different species showed varying degrees of similarity, correlating with their
evolutionary divergence. Orthology, defined by Walter M. Fitch in 1970, described homology
resulting from speciation events. This observation led to the hypothesis that orthologous
proteins evolved from a common ancestor, and their sequences could be used to predict
ancestral sequences and trace evolutionary history.

» Challenges in Sequence Alignment:

Initial efforts in sequence-based phylogenetic studies focused on closely related proteins that
could be assessed visually for homology. However, for more distant or unequal-length protein
sequences, visual comparison was impractical and often led to errors.



In 1970, Needleman and Wunsch developed the first dynamic programming algorithm for
pairwise protein sequence alignments. Multiple sequence alignment (MSA) algorithms
emerged in the early 1980s, addressing the challenge of aligning numerous sequences of
different lengths more efficiently. In 1987, Da-Fei Feng and Russell F. Doolitle developed a
practical approach to multiple sequence alignment (MSA) known as "progressive sequence
alignment." Their method involved several steps:

e Performing a Needleman—-Wunsch alignment for all possible sequence pairs.

e Extracting pairwise similarity scores from each of these pairwise alignments.

e Using these similarity scores to construct a guide tree, which represents the
relationships between sequences.

e Aligning the sequences in a stepwise manner, starting with the two most similar
sequences and then progressively adding the next most similar sequences according to
the guide tree.

In 1988, the popular MSA software CLUSTAL was developed as a simplification of the
Feng—Doolittle algorithm. CLUSTAL has remained in use and continued to be maintained up
to the present day. This software made MSA more accessible and efficient, allowing
researchers to align multiple sequences effectively.

» A Mathematical Framework for Amino Acid Substitutions (1978):

Margaret Dayhoff, Schwartz, and Orcutt developed the first probabilistic model of amino
acid substitutions. The model was based on 1572 point accepted mutations (PAMS) in the
phylogenetic trees of 71 protein families. They created a 20x20 asymmetric substitution
matrix containing probability values based on observed amino acid mutations. This matrix
introduced the concept of substitutions as a measurement of evolutionary change, shifting
from the previous concept of evolutionary distance based on the least number of changes.

+ Paradigm Shift from Protein to DNA Analysis (1970-1980):

Francis Crick's sequence hypothesis confirmed that DNA encodes information for proteins.
DNA sequencing methods, including Maxam-Gilbert (1976) and Sanger's "plus and minus"
method (1977), made DNA sequencing more accessible. The Sanger chain termination
method (1977) remains in use today. DNA sequences could potentially provide information
about all proteins in an organism. Manual tasks like comparisons, calculations, and pattern
matching were more efficiently performed by computers.

> Development of Sequence Analysis Software (1979):

Roger Staden's software (1979) was one of the first to analyze Sanger sequencing reads. The
software could search for overlaps, verify, edit, and join sequence reads, and annotate and
manipulate sequence files. It introduced additional characters (“uncertainty codes") to record
basecalling uncertainties in sequence reads. Staden's Package is still developed and
maintained today.

» Using DNA Sequences in Phylogenetic Inference:

Early phylogenetic trees were reconstructed from protein sequences with a focus on
maximum parsimony. Parsimony methods assumed minimal evolutionary changes but could
fail with moderate to large changes. DNA sequences provided additional information, such as
synonymous mutations. Joseph Felsenstein introduced maximum likelihood (ML) methods
for phylogenetic tree inference from DNA sequences. ML estimation involved finding the
tree with the highest probability of evolving the observed data. Bioinformatics tools and



statistical methods based on ML and Bayesian statistics have been developed and are still in
use today.

» Overcoming Technical Limitations in the Late 1970s:

The late 1970s faced technical limitations that needed addressing to broaden computer use in
DNA analysis. The subsequent decade played a pivotal role in addressing these issues and
advancing the field.

» Molecular Methods for Targeting and Amplifying Specific Genes:

Genes are less abundant and cannot be individually sequenced, as they are contiguous on
DNA molecules and present in low copies per cell. A solution emerged when Jackson,
Symons, and Berg (1972) used restriction endonucleases and DNA ligase to cut and insert
circular SV40 viral DNA into lambda DNA. E. coli cells were transformed with this
construct, and the inserted DNA was replicated and amplified in the host organism. This
experiment pioneered the isolation and amplification of genes independently from their
source organism. Concerns about ethical issues led to a moratorium on the use of
recombinant DNA, and guidelines were established during the 1975 Asilomar conference.

> Invention of Polymerase Chain Reaction (PCR):

The polymerase chain reaction (PCR) was a significant development that allows DNA
amplification without cloning procedures. The first description of "repair synthesis" using
DNA polymerase was in 1971 by Kjell Kleppe et al. The invention of PCR is credited to Kary
Mullis for his substantial optimizations, including the use of thermostable Tag polymerase
and the development of the thermal cycler. Mullis patented the process and gained
recognition for inventing PCR. Both gene cloning and PCR are widely used in DNA library
preparation, critical for obtaining sequence data.

+ DNA Sequencing and Bioinformatics in the 1980s:

The late 1970s saw the emergence of DNA sequencing, along with enhanced DNA
manipulation techniques. DNA sequencing and manipulation led to increased availability of
sequence data. Access to computers and bioinformatics software also grew during the 1980s,
facilitating the analysis of sequence data.

+ 1990-2000: Genomics, Structural Bioinformatics, and the Information Superhighway

» Dawn of the Genomics Era:

In 1995, the first complete genome sequencing of a free-living organism (Haemophilus
influenzae) was achieved by The Institute for Genomic Research (TIGR), led by J. Craig
Venter. The Human Genome Project, initiated in 1991 by the U.S. National Institutes of
Health, aimed to sequence the human genome and cost $2.7 billion over 13 years. Celera
Genomics led a private effort to sequence the human genome in competition with the publicly
funded Human Genome Project, achieving it at one-tenth of the cost due to different
experimental strategies.

» Challenges in Early Genomics:

Sequencing genomes was costly and time-consuming; for example, sequencing a human
genome with 2018 technology would cost $1000 and take less than a week, but older methods
were much slower. Specialized software was needed to handle the massive amount of



sequencing data. Several Perl-based software tools were developed in the mid to late 1990s
for assembling whole-genome sequencing reads.

» Emergence of the Internet:

The rise of the World Wide Web (WWW) in the mid-1990s revolutionized communication
and enabled the creation of online bioinformatics resources. Nucleotide sequence databases
like EMBL and GenBank became accessible online in the early 1990s. The National Center
for Biotechnology Information (NCBI) made its website and tools, including BLAST,
available online in 1994. Major databases such as Genomes (1995), PubMed (1997), and
Human Genome (1999) were established and are still in use today.

> Structural Bioinformatics:

Advances allowed computers to predict protein secondary and tertiary structures with varying
degrees of certainty. Molecular dynamics simulations became possible, although they
required significant computational resources. The use of graphics processing units (GPUs)
and supercomputers aided in making molecular dynamics simulations more accessible.

+ 2000-2010: High-Throughput Bioinformatics

» Second-Generation Sequencing:

Second-generation sequencing (next-generation sequencing or NGS) began with the '454'
pyrosequencing technology. These technologies enabled the sequencing of thousands to
millions of DNA molecules in a single machine run.

» Biological Big Data:

The drop in DNA sequencing costs and the adoption of massively parallel sequencing
resulted in exponential growth in sequence data in public databases. Sequencing data has
exceeded the exabyte (10718) level. New repository infrastructure for model organisms and
general genomic databases emerged to store, organize, and make data accessible. The
Genomic Standards Consortium was established in 2005 to define the minimum information
required for genomic sequences.

Aim
= Data acquisition and database development

To organize data in a way that allows researchers to access existing information and to
submit new entries as they are produced.

= Tool development
To develop tools and resources that aid in the analysis of data.

= Data analysis
To use different tools to analyze the data and interpret the results in a biologically
meaningful manner

Branches

There are several branches of Bioinformatics (Figure 1). Some of them are explained below.
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Figure 1: Branches of Bioinformatics

+ Genomics
Genomics is a fundamental field in bioinformatics that focuses on the study of an
organism's entire genetic material, which is stored in its DNA (or RNA for some viruses).
This genetic material, often referred to as the genome, contains all the information needed
to build and maintain an organism. Genomics aims to understand and analyze the
structure, function, evolution, and variations in the genome. Here are the key components
of genomics in bioinformatics:

Sequencing: Genomic research often begins with DNA sequencing. This process
involves determining the order of nucleotides (A, T, C, G) in a DNA molecule. There
are various sequencing technologies, such as Sanger sequencing and next-generation
sequencing (NGS), which allow scientists to read and decode the genetic information.

Genome Assembly: The raw sequencing data obtained is fragmented into smaller
pieces, and the bioinformatics part of genomics involves assembling these pieces to
create a complete genome. Genome assembly algorithms help organize and connect
these sequences to form a coherent picture of the genome.

Functional Annotation: Once the genome is assembled, the next step is to identify and
annotate the functional elements. This includes finding genes (coding regions),
regulatory sequences, non-coding regions, and other structural components.
Bioinformatics tools predict the locations of genes and their functions based on
sequence similarity, conserved motifs, and other features.

Comparative Genomics: Genomic sequences of different organisms, both within the
same species and across species, are compared to identify similarities and differences.
Comparative genomics helps in understanding evolutionary relationships, studying
gene conservation, and discovering genes responsible for specific traits or diseases.

Structural Genomics: Structural genomics focuses on determining the three-
dimensional structures of proteins and other macromolecules encoded by the genome.
This is crucial for understanding protein functions and interactions. Techniques like
X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy are used
in structural genomics.



Functional Genomics: This field aims to understand the functions of genes and their
products. Functional genomics methods, such as transcriptomics (studying gene
expression), proteomics (studying proteins), and metabolomics (studying
metabolites), provide insights into how genes are expressed and how they influence
an organism'’s biology.

Phylogenomics: Phylogenomics combines genomics and phylogenetics to study
evolutionary relationships among species. It uses genomic data to reconstruct
phylogenetic trees and understand the evolutionary history of different organisms.

Genomic Variation: Genomic variation studies focus on identifying variations in the
genome, such as single nucleotide polymorphisms (SNPs), insertions, deletions, and
copy number variations. These variations can be associated with diseases and traits.

+ Transcriptomics

Transcriptomics is a branch of bioinformatics and genomics that focuses on the study of
transcriptomes, which are the complete sets of RNA transcripts produced in a cell, tissue,
or organism. These RNA transcripts, often referred to as messenger RNA (mRNA),
provide critical information about which genes are actively being expressed and to what
extent in a specific biological sample. Understanding transcriptomes is vital for
unraveling the molecular mechanisms underlying various biological processes and
diseases. Here are the key components of transcriptomics in bioinformatics:

Data Generation: Transcriptomics begins with the generation of RNA sequencing
(RNA-Seq) data. RNA-Seq is a high-throughput technology that allows researchers to
identify and quantify the RNA molecules present in a biological sample. It provides
information about gene expression levels, alternative splicing, and the presence of
non-coding RNAs, among other things.

Data Preprocessing: The raw RNA-Seq data typically contains errors, biases, and
artifacts. Preprocessing involves cleaning and quality-checking the data to ensure its
reliability. This step includes tasks like adapter removal, read alignment to the
reference genome or transcriptome, and removal of duplicate reads.

Gene Expression Quantification: After preprocessing, bioinformaticians quantify gene
expression levels. This step involves determining the number of RNA fragments that
map to each gene, which serves as a measure of the gene's activity. Different
algorithms and tools are available for this purpose.

Differential Expression Analysis: One of the key objectives in transcriptomics is to
identify genes that are differentially expressed under different experimental
conditions. This analysis helps researchers understand how gene expression is altered
in response to various stimuli, diseases, or genetic mutations. Statistical methods are
used to compare expression levels between conditions.

Functional Analysis: Transcriptomics data can be further analyzed to gain insights
into the biological functions and pathways affected by changes in gene expression.
Tools and databases, such as gene ontology (GO) analysis and pathway enrichment
analysis, help in understanding the roles of differentially expressed genes.



Alternative Splicing Analysis: In addition to quantifying gene expression,
transcriptomics also allows for the study of alternative splicing events. Alternative
splicing can generate multiple mRNA isoforms from a single gene, expanding the
functional diversity of the proteome.

Long Non-Coding RNA (IncRNA) Analysis: Transcriptomics can reveal the presence
and differential expression of long non-coding RNAs, which play crucial roles in gene
regulation and various cellular processes.

+ Proteomics

Proteomics is a branch of bioinformatics and biology that focuses on the large-scale study
of proteins. It involves the comprehensive analysis of the structure, function, and
expression of all the proteins in a biological system, such as a cell, tissue, or organism.
Proteins are crucial molecules in living organisms, responsible for performing various
biological functions, and understanding their properties and behaviors is essential for
gaining insights into complex biological processes. Here are some key aspects of
proteomics in bioinformatics:

Protein ldentification and Characterization: Proteomics involves identifying and
characterizing proteins. This can include determining the amino acid sequence, post-
translational modifications (e.g., phosphorylation, glycosylation), and three-
dimensional structures of proteins.

Protein Expression and Quantification: Proteomic studies aim to measure the relative
abundance of proteins in different biological conditions. This can help researchers
understand how proteins are regulated and expressed under various circumstances,
such as disease states or drug treatments.

Protein-Protein Interactions: Proteins rarely function in isolation; they often work
together in complexes. Proteomics helps in identifying protein-protein interactions,
which are crucial for understanding cellular processes and signaling pathways.

Functional Annotation: Assigning biological functions to proteins is a fundamental
goal of proteomics. This may involve studying the role of proteins in specific
pathways, cellular processes, and disease mechanisms.

Biomarker Discovery: Proteomics plays a vital role in biomarker discovery for
diseases. By comparing protein profiles in healthy and diseased samples, researchers
can identify potential biomarkers for early disease diagnosis or monitoring treatment
responses.

Mass Spectrometry and Other Techniques: Mass spectrometry is a common
technology used in proteomics. It allows the precise measurement of protein masses
and has the capability to identify and quantify thousands of proteins simultaneously.
Other techniques, like gel electrophoresis and antibody-based assays, are also used in
proteomic studies.



+ Metabolomics

Metabolomics is a subfield of bioinformatics that focuses on the comprehensive analysis
of small molecules, known as metabolites, in biological systems. Metabolites include a
wide range of compounds such as sugars, amino acids, lipids, organic acids, and other
small molecules that play crucial roles in various biochemical processes within living
organisms. Metabolomics aims to identify, quantify, and analyze these metabolites to gain
insights into an organism's metabolism and understand its biochemical pathways, which
can be essential for both basic research and practical applications. Following are the key
concepts of metabolomics in bioinformatics:

= Data Generation: Metabolomics data is generated through various analytical
techniques, such as mass spectrometry (MS), nuclear magnetic resonance
spectroscopy (NMR), and liquid or gas chromatography. These techniques allow
researchers to detect and quantify a wide range of metabolites present in a biological
sample.

= Data Preprocessing: Metabolomics datasets can be large and complex, and
preprocessing is a crucial step in data analysis. It involves data cleaning, alignment,
normalization, and the removal of any technical variation or noise. This step ensures
that the data is suitable for subsequent analysis.

= Metabolite Identification: One of the primary goals of metabolomics is to identify the
metabolites detected in the sample. Bioinformatics tools and databases play a critical
role in matching experimental data to known metabolite profiles. This process often
involves spectral databases, reference libraries, and computational algorithms to make
accurate identifications.

= Quantitative Analysis: Metabolomics data also provides quantitative information
about the abundance of metabolites in a sample. Researchers can compare the
concentration of specific metabolites across different samples or conditions to
understand the metabolic changes.

= Statistical and Multivariate Analysis: Bioinformatics tools are used to analyze
metabolomics data statistically. Techniques like principal component analysis (PCA),
partial least squares-discriminant analysis (PLS-DA), and hierarchical clustering can
reveal patterns and trends in the data, helping researchers identify biomarkers or
distinguish between sample groups.

= Pathway Analysis: Metabolomics data can be integrated with other omics data, such
as genomics and proteomics, to gain a more comprehensive understanding of the
biological systems. Pathway analysis tools help researchers map metabolites onto
known metabolic pathways, identifying key pathways and their interactions.

= Biomarker Discovery: Metabolomics is often applied to discover biomarkers, which
are specific metabolites associated with a particular disease or condition. Identifying
biomarkers can be valuable in disease diagnosis, prognosis, and treatment monitoring.

+ System Biology
Systems biology is an interdisciplinary field in bioinformatics that focuses on
understanding complex biological systems by studying how individual components, such



as genes, proteins, and metabolites, interact and function as a whole. It aims to provide a
comprehensive and integrated view of biological processes to better explain and predict
the behavior of living organisms. Following are the key aspects of systems biology in
bioinformatics:

= Holistic Approach: Systems biology takes a holistic approach to biology, looking
beyond the individual components. It considers the interactions, feedback loops, and
dependencies among genes, proteins, and other molecules in biological systems.

= Data Integration: It involves integrating data from various sources, such as genomics,
transcriptomics, proteomics, and metabolomics, to create a comprehensive picture of
biological processes. This integration is often achieved through computational
methods.

= Mathematical and Computational Modeling: Systems biology heavily relies on
mathematical and computational modeling techniques. These models simulate
biological processes and provide a framework for understanding and predicting
system behavior. Examples of modeling techniques include differential equations,
agent-based models, and network analysis.

= Network Analysis: Biological networks, such as protein-protein interaction networks
and metabolic pathways, are a central focus of systems biology. Network analysis
helps uncover relationships and patterns within complex biological systems.

= Dynamic Processes: Systems biology often deals with dynamic processes. It explores
how biological systems change over time in response to various stimuli,
environmental conditions, or genetic variations.

= Hypothesis Generation and Testing: Systems biology generates hypotheses about how
biological systems work. These hypotheses can then be tested through experiments,
helping to refine the models and improve our understanding of the system.

= Biomedical Applications: Systems biology has practical applications in medicine and
drug discovery. It can be used to study complex diseases, identify potential drug
targets, and optimize treatment strategies.

= Quantitative Biology: A quantitative approach is a hallmark of systems biology. It
involves measuring and quantifying various biological components and processes,
often using high-throughput technologies.

Nutritional Genomics

Nutritional genomics, often referred to as nutrigenomics, is a branch of genomics that
focuses on the interaction between nutrition and genes. It aims to understand how an
individual's genetic makeup influences their response to specific nutrients, foods, and
dietary patterns. Nutritional genomics plays a significant role in agriculture by helping
improve crop production and the nutritional quality of food. Following are the key points
how it applies to agriculture in the context of bioinformatics:

= Genomic Sequencing of Crops: One of the key aspects of nutritional genomics in
agriculture is the genomic sequencing of crop plants. Advances in bioinformatics and



genomics have made it possible to sequence the entire genomes of various crops, such
as rice, wheat, and maize. This provides a comprehensive understanding of the genes
and genetic variations present in these crops.

Identification of Nutritional Genes: Bioinformatics tools are used to identify genes
related to the nutritional content of crops. This includes genes that influence the levels
of essential nutrients like vitamins, minerals, and proteins. By identifying these genes,
researchers can target specific genetic traits for crop improvement.

Marker-Assisted Breeding: Nutritional genomics, coupled with bioinformatics,
facilitates marker-assisted breeding programs. Researchers can identify genetic
markers associated with desirable nutritional traits in crops. This helps in the selection
and breeding of crop varieties with improved nutritional content.

Customized Diets for Livestock: Nutritional genomics also plays a role in livestock
agriculture. By understanding the genetic makeup of animals, farmers can tailor their
diets to optimize growth, health, and the nutritional quality of animal products, such
as meat and dairy.

Optimizing Soil and Crop Interactions: Understanding the genetic factors that
influence a crop's ability to absorb nutrients from the soil is crucial for sustainable
agriculture. Bioinformatics helps in studying these interactions and optimizing
nutrient uptake for crop growth.

Resilience to Environmental Stress: Nutritional genomics can help in developing crop
varieties that are resilient to environmental stress, such as drought or nutrient-poor
soil. By understanding the genetic basis of stress responses, crops can be engineered
to thrive under challenging conditions.

Personalized Nutrition: In the context of agriculture, personalized nutrition refers to
tailoring crop choices and farming practices based on the nutritional needs of specific
regions or populations. Nutritional genomics can help identify which crops are best
suited for a particular area, taking into account genetic factors.

Metagenomics

Metagenomics is a powerful field within bioinformatics that has significant implications
for agriculture. It involves the study of genetic material collected directly from
environmental samples, such as soil, water, or plant tissues. In the context of agriculture,
metagenomics has several applications:

Soil Health and Microbiome Analysis: Metagenomics is used to analyze the soil
microbiome, which includes bacteria, fungi, and other microorganisms.
Understanding the diversity and functional potential of these microorganisms is
crucial for assessing soil health. Healthy soils are essential for crop growth and
productivity. Metagenomics helps in identifying beneficial microbes, understanding
their roles in nutrient cycling and disease suppression, and designing strategies for
sustainable agriculture.

Plant-Microbe Interactions: Metagenomics enables the study of interactions between
plants and the microorganisms in the rhizosphere (the soil zone around plant roots).
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These interactions play a vital role in nutrient uptake, disease resistance, and overall
plant health. By analyzing the metagenome of the rhizosphere, researchers can gain
insights into the beneficial or pathogenic microorganisms present and their impact on
crop growth.

Crop Pathogen Detection: Metagenomics can be used to identify and characterize
pathogens in agricultural environments. By analyzing metagenomic data from
infected plant samples, researchers can detect the presence of harmful pathogens, such
as viruses, bacteria, or fungi. This information is valuable for disease management
and gquarantine measures.

Biological Control: Metagenomics can assist in identifying natural enemies of
agricultural pests. Beneficial microorganisms or nematodes can be detected and used
for biological pest control strategies, reducing the reliance on chemical pesticides.

Microbial-Based Crop Enhancements: Metagenomics helps in the discovery and
development of microbial-based products that can enhance crop growth, nutrient
uptake, and stress resistance. These products, such as biofertilizers or biostimulants,
are environmentally friendly alternatives to traditional agricultural inputs.

Monitoring Ecosystem Changes: Metagenomics can be used to monitor changes in
agricultural ecosystems over time. This includes tracking shifts in microbial
populations due to changes in land use, cropping systems, or climate conditions.
Understanding these changes can guide more sustainable agricultural practices.

Resilience to Climate Change: As climate change impacts agriculture, metagenomics
can provide insights into how plant-microbe interactions may be affected. This
information is essential for developing crop varieties and management strategies that
can adapt to changing environmental conditions.

Waste Management: In livestock farming, metagenomics can be used to manage
waste, such as manure. By understanding the microbial communities in waste,
strategies for reducing environmental contamination and converting waste into
bioenergy or other valuable products can be developed.

Cheminformatics

Cheminformatics is a specialized field within bioinformatics that deals with the storage,
retrieval, and analysis of chemical information and data, particularly in the context of
biological and agricultural applications. In the context of agriculture, cheminformatics
plays a crucial role in various aspects of crop management, agricultural research, and
biotechnology. Here's how cheminformatics is applied in bioinformatics to benefit
agriculture:

Pesticide and Fertilizer Development: Cheminformatics is used to design and develop
new pesticides and fertilizers. Researchers can use databases of chemical structures
and properties to predict the effectiveness and safety of these agrochemicals. This
helps in reducing the environmental impact and improving crop yields.
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= Chemical Safety: Cheminformatics tools are used to assess the safety of chemicals
used in agriculture. This includes predicting the toxicity of pesticides and assessing
their impact on non-target organisms, such as beneficial insects and pollinators.

= Drug Discovery for Plant Health: Bioinformatics and cheminformatics can be used to
discover compounds that protect plants from diseases. This is essential in reducing the
need for chemical pesticides. Identifying compounds that enhance plant immunity or
inhibit pathogens is a common application.

= Plant Breeding: In modern agriculture, cheminformatics plays a role in crop
improvement. For instance, researchers can use chemical profiling to identify
compounds responsible for desirable traits in crops, such as nutritional content or
disease resistance. This information can guide traditional breeding programs or
genetic engineering efforts.

= Metabolomics: Cheminformatics tools are crucial in metabolomics, which involves
studying the chemical processes occurring within organisms, including plants.
Metabolomics data can be used to understand how plants respond to environmental
changes, stress, and disease, helping in crop management and breeding.

= Herbicide Design: Cheminformatics assists in designing herbicides that selectively
target weeds while sparing crop plants. Understanding the chemical properties and
interactions of herbicides with plant biology is key to developing effective and
environmentally friendly weed control solutions.

= Molecular Docking: Cheminformatics and molecular docking techniques are used to
study how chemicals interact with biological molecules like plant proteins and
enzymes. This information is valuable in understanding how chemicals can influence
plant processes and can be used in the development of targeted agrochemicals.

= Environmental Impact Assessment. Cheminformatics can be used to assess the
environmental impact of agricultural chemicals. This includes predicting their
persistence in soil and water, their potential to leach into groundwater, and their
impact on non-target organisms.

Computational resources

Databases and algorithms are essential components of bioinformatics, a multidisciplinary
field that combines biology, computer science, and data analysis. They play a crucial role in
managing, analyzing, and interpreting biological data, making it easier for researchers to
extract meaningful information from large datasets. An overview of databases and algorithms
commonly used in bioinformatics are as follows:

4+ Databases in Bioinformatics:

Genomic Databases: These contain DNA and RNA sequences from various species.
Examples include GenBank, Ensembl, and RefSeq. Genomic databases provide a wealth of
genetic information used in sequence analysis, gene annotation, and comparative genomics.

Protein Databases: These store information about proteins, including sequences, structures,
and functional annotations. Popular protein databases include UniProt, Protein Data Bank
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(PDB), and Pfam. Researchers use these databases to study protein structure, function, and
evolution.

Gene Expression Databases: These house data related to gene expression levels in different
tissues, conditions, or experimental settings. The Gene Expression Omnibus (GEO) and
ArrayExpress are examples of repositories for gene expression data.

Metabolic Pathway Databases: These contain information about biochemical pathways and
the interactions between molecules in metabolic processes. KEGG and Reactome are widely
used for pathway analysis.

+ Algorithms

In bioinformatics, several key algorithms and methods are used for tasks related to sequence
analysis and phylogenetics. These algorithms are fundamental for understanding the
relationships between biological sequences, such as DNA, RNA, and proteins. Here, I'll
provide an overview of pairwise and multiple sequence alignment, substitution matrices, and
phylogenetic tree reconstruction algorithms:

1. Pairwise Sequence Alignment:

Pairwise sequence alignment is used to identify regions of similarity between two biological
sequences. This can be helpful for comparing sequences for structural and functional
analysis.

Needleman-Wunsch Algorithm: This algorithm performs global alignment, meaning it
compares the entire sequences and finds the optimal alignment by maximizing a similarity
score.

Smith-Waterman Algorithm: It's used for local sequence alignment, which finds the best-
matching subsequence within the sequences.

2. Substitution Matrices:

Substitution matrices are used to score the substitution of one amino acid or nucleotide with
another in sequence alignments. They provide a measure of evolutionary relatedness between
sequences.

PAM (Point Accepted Mutation) Matrices: Developed by Margaret Dayhoff, PAM matrices
describe the probability of specific amino acid substitutions over a fixed evolutionary
distance.

BLOSUM (Blocks Substitution Matrix) Matrices: These matrices are used in protein
sequence alignment and are based on observed substitutions within closely related sequences.

3. Phylogenetic Tree Reconstruction:

Phylogenetic tree reconstruction is used to infer evolutionary relationships and construct a
tree that represents the divergence of species or sequences over time.

Neighbor-Joining (NJ): A distance-based method that constructs a tree by iteratively joining
the closest neighbors.

Maximum Parsimony: This method seeks the tree that requires the fewest evolutionary
changes (mutations) to explain the observed sequence data.

Maximum Likelihood: A likelihood-based approach that estimates the probability of
observing the given sequences under different tree topologies.

Bayesian Inference: Uses a Bayesian framework to estimate the posterior distribution of tree
topologies and model parameters.
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Challenges

= Traditional bioinformatics methods heavily rely on reference databases, limiting
analysis to known sequences and structures.

= These methods struggle to predict novel patterns, making them less effective in
underexplored biological areas.

= Rapid improvements in high throughput sequencing technologies have given rise to
heterogeneous and enormous amounts of omics data making it a big data problem.

= Moreover, there has been a shift in data types, transitioning from conventional
structured data to a more diverse range of architectures, including unstructured, semi-
structured, and heterogeneous formats, each with distinct characteristics.

= There is a need for advanced computational techniques such as Artificial Intelligence
(Al) to leverage various data types, including sequences, images, and unstructured
text, facilitating the integration of diverse biological information.

Big Data

In bioinformatics, as in other fields, the concept of "Big Data" is characterized by the "5
Vs," which describe key aspects of the data challenges faced. These Vs are Volume,
\elocity, Variety, Veracity, and Value.

+ \olume: Big data in bioinformatics originates from various sources, including genomics
(DNA sequencing), transcriptomics (RNA sequencing), proteomics (protein data),
metabolomics (small molecule data), structural biology (protein structures), and more.
Additionally, data sources include literature, and data from high-throughput experiments.
Genomic data, in particular, has seen a dramatic increase in the form of DNA and RNA
sequences, with millions of sequences available in public databases. This volume
continues to expand rapidly.

+ Variety: Biological data comes in diverse formats, such as sequences, alignments, 3D
structures, images, clinical records, and omics data. Integrating and analyzing these
various data types poses challenges.

+ \elocity: The speed at which new biological data is generated is incredibly high,
especially with the advent of high-throughput sequencing technologies. Keeping up with
the pace of data generation is a significant challenge for bioinformaticians.

+ \eracity: Veracity relates to the accuracy, quality, and reliability of data. In
bioinformatics, ensuring the veracity of data is crucial since errors or inaccuracies can
lead to incorrect scientific conclusions.

+ Value: The value of big data in bioinformatics is the benefit that can be derived from it. It
involves extracting meaningful insights, making discoveries, and ultimately improving
healthcare, agriculture, and various biological research fields.

Artificial Intelligence in Bioinformatics

Artificial intelligence (Al) was formally defined at the Dartmouth conference in 1956. It
quickly entered a period of rapid development and innovation, becoming known as the
"golden age” of Al. The field of Al encompasses a wide array of content, and one of its
crucial branches is machine learning (ML). ML is a methodology for achieving Al and
includes a range of mathematical tools and algorithms. Although ML initially achieved
remarkable progress, it faced a significant setback in the 1960s due to theoretical limitations.
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It wasn't until the introduction of the backpropagation algorithm in the 1980s that ML
experienced a resurgence in activity and widespread application. Subsequently, deep learning
(DL) emerged from artificial neural networks (ANN) within the realm of machine learning
and has been a driving force behind the current era of deep learning since 2006.

Over the last decade, Al has found extensive use in omics studies, thanks to the accumulation
of large-scale omics data and the growing need for big data analysis. Machine learning, as a
subset of Al, focuses on acquiring insights and establishing patterns from data through
computational models and algorithms. Its goal is to enhance system performance through
computation and learning from experiences. Machine learning has diverse applications,
spanning natural language processing, computer vision, data mining, and more. Various
machine learning algorithms serve distinct purposes, including clustering, classification,
regression, association rule mining, dimension reduction, and others. Based on the nature of
the data and training strategies, machine learning is categorized into three primary types:
supervised, unsupervised, and reinforcement learning.

Supervised learning deals primarily with regression and classification problems, while
unsupervised learning focuses on clustering. Reinforcement learning, on the other hand,
involves learning from new experiences through trial-and-error. The field boasts a variety of
traditional machine learning algorithms such as generalized regression, decision trees, naive
Bayes, support vector machines (SVM), K-means clustering, and more.

Deep learning, a critical branch of machine learning, originated from artificial neural
networks and was formally introduced in 2006. It has since experienced rapid and substantial
development. Deep learning encompasses a multidisciplinary approach, merging elements of
statistics, optimization, algorithms, programming, distributed computing, and other fields. By
constructing models with multiple hidden layers, deep learning allows for the discovery of
intricate relationships within data, improving the accuracy of classification and prediction.
This evolution has had a significant impact on various fields, making it a fundamental
component of the broader Al landscape.

In the forthcoming sections, various applications of ML in different omics have been
discussed.

+ Machine learning in genomics:

In the field of genomics and genome research, machine learning has become a crucial tool
for various applications. These applications encompass diverse aspects of genomics, from
predicting 3D genome structures to genome annotation, transcription regulation, effects of
genetic variants, and even genome editing (Figure 2).

1. Reconstruction of 3D Genome Structure:

Understanding the spatial organization of the eukaryotic genome is essential for
elucidating chromosomal activities within the cell. Experimental techniques, such as
chromosome conformation capture (3C)-based technologies, provide insights into 3D
genome organization but have limitations in resolution and cost. Therefore, machine
learning methods have been developed to complement experimental studies. These
methods are categorized based on their training data, including genomic sequences, 3C-
based interactions, chromatin states derived from epigenetic modifications, or hybrid
data. They aim to predict various aspects of 3D genome structure, including
reconstruction, compartmentalization, topologically associating domains (TADs), and
chromatin loops.
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2. Computational Modeling of Epigenomic and Chromatin States:

Epigenomic modifications play a crucial role in genome regulation. Machine learning
approaches have been employed to interpret and predict the effects of epigenetic
modifications, DNA methylation, histone modifications, and chromatin states. These
methods generate features from epigenetic data and leverage deep learning techniques to
understand and predict epigenomic changes.

3. Genome Annotation and Transcription Regulation:

Machine learning is applied to the annotation of the genome, including the identification
of protein-coding genes, non-coding RNAs, microRNAs, transcript splicing isoforms,
regulatory elements, protein-binding sites, and cis-regulatory binding modules. It goes
beyond simple identification to elucidate their functions and interactions. This is essential
for understanding the roles of different genomic elements in gene regulation.

4. Identifying the Effects of Genetic Variants:

Genetic variants, especially those in non-coding regions, can significantly impact gene
expression and phenotypes. Machine learning models have been developed to classify and
predict the pathogenicity of genetic variants. These models help identify functional
effects of non-coding variants and their contributions to diseases.

5. Machine Learning in Genome Editing:

The advent of genome editing technologies, such as CRISPR, has opened new
possibilities in genome engineering. Machine learning is applied to design guide RNAS
for CRISPR-based editing, predict cleavage tendencies, evaluate off-target effects, and
identify optimal editing locations. These methods contribute to more precise and efficient
genome editing.
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Figure 2: Schematics representation of the application of Al in genomics (Li et al., 2022)

4 Machine learning in transcriptomics
Machine learning, particularly deep learning, has made significant contributions to
various aspects of transcriptomics, including the prediction and understanding of gene
expression, splicing patterns, and transcription factor binding sites (Figure 3).

1. Prediction of Gene Expression:

Machine learning, especially deep learning, has proven highly effective in predicting gene
expression levels based on genetic and epigenetic information. For instance, deep neural
networks (DNNs) have been used to build models like D-GEX, which can predict target
gene expression based on landmark genes. Histone modifications, which play a vital role
in gene regulation, have also been leveraged for gene expression prediction using models
like DeepChrome, demonstrating the superior performance of deep learning compared to
traditional machine learning methods.

2. Prediction and Classification of Splicing:

Splicing, which determines how the genome is transcribed, influences the diversity of
transcriptomes and proteomes. Aberrant splicing can lead to diseases, making it a crucial
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area of study. Deep learning methods, including deep neural networks, are employed to
predict and classify splicing patterns based on RNA-seq data, genomic sequences, and
epigenetic features. These models accurately predict splicing outcomes in different
biological contexts and contribute to our understanding of splicing regulation.

3. Prediction of Transcription Factor Binding Sites:

Transcription factors (TFs) are central to gene regulation, and their binding sites on DNA
are essential for controlling gene expression. Machine learning, particularly deep
learning, has been applied to identify TF-binding sites more accurately and efficiently.
Models like PIQ and DeepBind have demonstrated the ability of deep learning to predict
TF-binding sites. These models improve the accuracy of prediction, especially in
comparison to traditional methods based on position weight matrices (PWMs).

4. Auxiliary Diagnosis Using Transcriptomics:

Machine learning plays a significant role in aiding disease diagnosis, particularly in the
medical field. Artificial neural networks (ANNSs) can analyze gene expression data to
enhance the accuracy and efficiency of disease classification and diagnosis. Machine
learning models combined with gene expression data are used for various medical
applications, including predicting myopathy subtypes, drug-induced liver injury, and
diagnoses related to mental and neurological diseases. In the context of cancer, machine
learning assists in cancer classification, predicting molecular subtypes, early diagnosis,
prognosis, and recurrence prediction. The integration of multiple cohort datasets is a
promising avenue for improving auxiliary diagnosis, although the challenge of limited
data remains.
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Figure 3: Schematics representation of the application of Al in transcriptomics (Li et al.,
2022)
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+ Machine learning in proteomics
Machine learning is playing a pivotal role in the field of proteomics, where it aids in
efficiently processing and analyzing vast amounts of proteomic data (Figure 4).
Specifically, machine learning methods are significantly impacting proteomics in various
areas, as outlined below.

1. Biomass Spectrometry

Mass spectrometry (MS) is an indispensable tool for studying protein structures and
components. However, the processing of MS data has often lagged behind the
development of MS instruments. Machine learning, particularly deep learning, is stepping
in to address the challenges posed by high-dimensional and sparse proteomic data. Deep
learning models are being harnessed for tasks like de novo sequencing, peptide property
prediction, and mass spectrometry imaging analysis. For instance, DeepNovo, a deep
learning-based model, is enhancing the accuracy of de novo peptide sequencing.
Moreover, DeepRT employs deep learning to predict peptide retention times, a critical
factor in liquid chromatography-mass spectrometry tandem analysis. Machine learning
has the potential to significantly enhance the retrieval and analysis of peptide data,
thereby advancing our understanding of proteome characterization.

2. Screening of Protein Biomarkers

Biomarkers are vital for disease screening, diagnosis, and therapy guidance. Traditional
statistical methods often face limitations in biomarker discovery due to classification
boundaries and variable correlations. Machine learning methods, both supervised and
unsupervised, offer more flexibility in this context. Researchers have been combining
machine learning with proteomic techniques, such as mass spectrometry, to identify
disease-specific protein markers. For example, a study utilized a deep belief network
(DBN) to screen for protein diagnostic markers in Alzheimer's disease, yielding a marker
group with high diagnostic accuracy. While machine learning holds immense promise in
biomarker discovery, challenges like overfitting and model interpretability need to be
addressed.

3. Nucleic Acid-Binding Protein Prediction

Identifying proteins that bind to nucleic acids is essential for understanding various
biological processes. Traditionally, this identification has been hampered by accuracy and
scalability issues. However, with the availability of high-throughput measurements, such
as protein binding microarrays and SELEX, machine learning has emerged as a highly
accurate predictor of nucleic acid-binding properties in proteins. Tasks include DNA-
binding domain recognition and predicting protein-DNA/RNA docking interactions.
Despite the success, challenges remain, particularly in reducing cross-prediction between
DNA and RNA-binding residues.

4. Predicting Protein—Protein Interactions (PPIs)

PPIs are a critical domain where machine learning is revolutionizing our understanding of
protein functions. While public databases offer some PPI data, they often lack specificity
and comprehensiveness. Combining experimental methods with machine learning is
proving effective in predicting PPIs accurately. Various machine learning algorithms,
including random forests, support vector machines, and Bayesian probabilistic inference,
are being used for PPI prediction. Deep learning has also found application in predicting
PPIs through methods like domain-based ensemble models. Accurate identification of
PPlIs is instrumental in comprehending a wide range of physiological activities.
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5. Protein Post-Translational Modification (PTM)
PTM prediction is yet another area significantly benefiting from machine learning
methods. PTMs, such as phosphorylation and glycosylation, play vital roles in regulating

protein function. Machine learning models have been developed to predict PTM sites
with high accuracy. For example, Musite predicts phosphorylation sites, while GlycoEP
identifies N-, O-, and C-linked glycosylation sites. Additionally, web servers like

MusiteDeep employ convolutional neural networks (CNNSs) for predicting multiple PTM

sites simultaneously, offering advantages in accuracy and speed. Furthermore, tools like
SAPH-ire TFx assist in the identification of functional PTM sites from large-scale

datasets.
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Figure 4: Schematics representation of the application of Al in proteomics (Li et al., 2022)

#+ Machine learning in metabolomics

Metabolomics, akin to genomics and proteomics, focuses on quantitatively analyzing all
metabolites in organisms to uncover their relationships with physiological and
pathological changes. It's a valuable technology for diagnosing diverse diseases
characterized by metabolic variations. Traditional methods often struggle with the




sparsity of large-scale metabolomic data obtained through mass spectrometry,
chromatography, and nuclear magnetic resonance. This challenge has led to an increased
interest in machine learning algorithms. In the field of metabolomics, various machine
learning techniques are being employed, contributing to advancements in data processing,
metabolic phenotype stratification, and metabolic modeling (Figure 5).

1. Data Processing and Analysis:

Machine learning has significantly enhanced the processing and analysis of metabolomic
data. These algorithms excel in pattern recognition and multivariate classification,
assisting in classifying data based on complex patterns. Traditional methods like partial
least squares discriminant analysis (PLS-DA), as well as support vector machines (SVM),
have been employed for this purpose. SVM has gained prominence in metabolomics due
to its high prediction and classification accuracy. Deep learning, a subset of machine
learning, has also been applied in metabolomics for processes like estimating the
detection probability of specific peaks. Deep learning, through methods like deep neural
networks (DNNSs), aids in eliminating false-positive peaks, enhancing the quality of
metabolomic data. Tandem mass spectrometry (MS/MS) is used to identify unknown
metabolites. The application of deep learning, such as the DeepMASS framework, helps
effectively identify these unknown metabolites. Additionally, machine learning methods
are being used to automate quality control and quality assurance processes in data
processing.

2. Stratification of Metabolic Phenotypes:

Machine learning, particularly deep learning, is revolutionizing the stratification of
metabolic phenotypes. This approach characterizes the metabolic profiles and processes
of individuals based on the presence, content, and ratios of specific metabolites. Deep
learning techniques have demonstrated success in capturing the intricate metabolic
characteristics present in the data. For example, deep neural networks combined with t-
distribution random neighborhood embedding have revealed the metabolic heterogeneity
in human colorectal cancer. Deep learning frameworks are also employed in classifying
the estrogen receptor status of breast cancer, surpassing other machine learning methods
in prediction accuracy. Novel methods combining deep neural networks enhance
metabolic phenotype stratification and metabolite selection, offering high classification
accuracy.

3. Genome-Scale Construction of Metabolic Models:

Machine learning is also playing a vital role in constructing genome-scale metabolic
models (GEMs). GEMs encompass the metabolic reactions of a specific organism's
genome and serve as a platform for metabolic flux modeling. The modeling process
involves constraint-based quantitative modeling, integrating biochemical and genetic
information. Machine learning optimizes model parameters, tests various input
conditions, and enhances biomarker recognition, quantifying metabolite flux, and
predicting metabolic genes. Applications extend to determining predictors of metabolic-
related drug side effects, generating collision cross-section values of small molecules, and
identifying early metabolic disease markers. Despite these advancements, challenges
persist, including experimental limitations, small sample sizes, interpretability issues, and
a lack of comprehensive reference data.
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ASHOKA: Functioning and Activities
K.K. Chaturvedi, U.B. Angadi and Jai Bhagwan
ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Introduction

First HPC systems were vector-based systems (e.g. Cray) named ‘supercomputers’ because
they were an order of magnitude more powerful than commercial systems. The
‘supercomputer’, a large systems are just scaled up versions of smaller systems. High
performance computing can mean high flop count per processor and totalled over many
processors working on the same or related problems. This can have faster turnaround time,
more powerful system, scheduled to first available system(s) and using multiple systems
simultaneously. The HPC is any computational technique that solves a large problem faster
than possible using single, commodity systems, Custom-designed, high-performance
processors, Parallel computing, Distributed computing and Grid computing.

Parallel computing is a single system with many processors working on the common task. The
Distributed computing is configured as many systems loosely coupled by a scheduler to work
on related problems and Grid Computing is defined as many systems tightly coupled by
software and networks to work together on single problems or on related problems.

Parallel computer is a computer that contains multiple processors where each processor works
on its section of the problem and allowed to exchange information with other processors.

Two big advantages of parallel computers are performance and memory. Parallel computers
enable us to solve problems that benefit from or require, fast solution, require large amounts of
memory and both.

As per the Moore’s Law ‘predicts’ that single processor performance doubles every 18 months,
eventually physical limits on manufacturing technology will be reached as in figure 1.

70 -

—+—Moore's Law
——Future (?)

p erformance

50
40 -
30
20 -
10 -

Fig. 1: Moore’s Law towards performance of the system

There are two types of parallel computers by their memory model namely shared memory and
distributed memory. All processors have access to a pool of shared memory (Figure 2-A) while
each processor has its own local memory in distributed memory (Figure 2-B).
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Fig. 2: Shared Memory and distributed memory system

Shared memory have two types of architecture i.e., Uniform memory access (UMA) and Non-
uniform memory access (NUMA\). Each processor has uniform access to memory in UMA and
also called as symmetric multiprocessors, or SMPs (Figure 3-A). Time for memory access
depends on location of data in NUMA as local access is faster than non-local access but it is
easy to scale up than SMPs (Figure 3-B).
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Fig. 3: Shared Memory with UMA and NUMA

The distributed memory is two types namely Massively Parallel Processor (MPP) and cluster.
MPP is tightly integrated, single system image and cluster is an individual computers connected
by specialized software and connected using interconnect network. Distributed memory is
shown in figure 4.

Interconnect

/ Network

TIT T)/ |

Fig. 4: Distributed Memory

Both types of memory systems have processors, memory and network/interconnect.
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Terminology

Clock period (cp): The minimum time interval between successive actions in the processor. It
is measured in nanoseconds (~1-5 for fastest processors) which is inverse of frequency (MHz).

Instruction: An action executed by a processor, such as a mathematical operation or a memory
operation.

Register: A small and extremely fast location for storing data or instructions in the processor.

Functional Unit (FU): A hardware element that performs an operation on an operand or pair of
operations. Common FUs are ADD, MULT, INV, SQRT, etc.

Pipeline: A Technique enables multiple instructions to be overlapped during execution.
Superscalar: Multiple instructions are possible per clock period.
Flops: Floating point operations per second.

Cache: A Fast memory in the processor which keep instructions and data close to functional
units so processor can execute more instructions more rapidly.

SRAM: Static Random Access Memory (RAM). Very fast (~10 nanoseconds), made using the
same kind of circuitry as the processors, so speed is comparable.

DRAM: Dynamic RAM. Longer access times (~100 nanoseconds), but hold more bits and are
much less expensive (10x cheaper).

Memory hierarchy: The hierarchy of memory in a parallel system, from registers to cache to
local memory to remote memory.

Networks Latency: How long does it take to start sending a "message"? Measured in
microseconds.

Networks Processors: How long does it take to output results of some operations, such as
floating point add, divide etc., which are pipelined?)

Networks Bandwidth: What data rate can be sustained once the message is started? Measured
in Mbytes/sec or Gbytes/sec

Types of Clusters/Processors

Symmetric Multiprocessors (SMPs) connect processors to global shared memory using either
bus or crossbar. It provides simple programming model, but has problems with buses can
become saturated and crossbar size must increase with number of processors. Problem grows
with number of processors, limiting maximum size of SMPs. Programming models are easier
since message passing is not necessary. The techniques are auto-parallelization via compiler
options, loop-level parallelism via compiler directives, OpenMP, and pthreads.

In MPP, each processor has its own memory and is not shared globally but the processors adds
another layer to memory hierarchy (remote memory). The processor/memory nodes are
connected by interconnect network using many possible topologies. The processors must pass
data via messages so the communication overhead can be minimized. Many vendors have
custom interconnects that provide high performance for their MPP system such as Gigabit
Ethernet, Fast Ethernet, etc.
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Clusters are similar to MPPs with processors and memory. The processor performance must
be maximized and memory hierarchy needs remote memory as no shared memory for message
passing to avoid the communication overhead.

Clusters are different from MPPs as commodity processors including interconnect and OS with
multiple independent systems and separate 1/0 systems. The advantages of clusters are
inexpensive, fastest processors first, potential for true parallel 1/0 and high availability while
the disadvantages are less mature software (programming and system), more difficult to
manage (changing slowly), lower performance interconnects (not as scalable to large number).

Distributed Memory Programming provides message passing using MPI, MPI-2 and
active/one-sided messages.

There are two types of parallelism i.e., data and task. Each processor performs the same task
on different sets or sub-regions of data in data parallelism. Each processor performs a different
task in task parallelism. Most parallel applications fall somewhere on the continuum between
these two extremes.

Example of data parallelism in a bottling plant, there are several ‘processors’, or bottle cappers,
applying bottle caps concurrently on rows of bottles.

Example of task parallelism in a restaurant Kitchen, there are several chefs, or ‘processors’,
working simultaneously on different parts of different meals. A good restaurant kitchen also
demonstrates load balancing and synchronization--more on those topics later.

A common form of parallelism used in developing applications was Master-Worker parallelism
where a single processor is responsible for distributing data and collecting results (task
parallelism) and all other processors perform same task on their portion of data (data
parallelism).

According to Flynn’s Taxonomy, the computing systems are classified into the following broad
categories:

SISD: Single Instruction and Single Data
SIMD: Single Instruction and Multiple Data
MISD: Multiple Instruction and Single Data
MIMD: Multiple Instruction and Multiple Data

The purpose of High-performance computing (HPC) platform is to provide the access to the
compute resources remotely. The user can login remotely and submit compute their jobs either
from the command line or through the GUI based interface provided to them. The computing
systems are connected together through a high bandwidth data transfer and made available to
the users in a queue-based job submission system. There are many open-source and commercial
software packages installed.

At IASRI, New Delhi

The National Agricultural Bioinformatics Grid in ICAR consists of an advanced HPC
infrastructure at IASRI, New Delhi and moderate HPC facilities at the domain centres for
undertaking research in the field of agricultural bioinformatics. Clusters are collections of
computers that are connected together. The special sets of software are used to configure HPC
environment. This set up has been named as Advanced Supercomputing Hub for Omics
Knowledge in Agriculture (ASHOKA). The importance of HPC is rapidly growing because
more and more scientific and technical problems are being studied on the huge data sets which
require very high computational power as well. HPC offers environment for biologists,
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scientists, analysts, engineers and students to utilize the computing resources in making vital
decisions, to speed up research and development, by reducing the execution time.

The following HPC infrastructure are set up under NAIP project NABG which are as follows
in the form of clusters, network and storage.

Types of Clusters

a. 256 Nodes Linux Based Cluster with two masters

b. 16 Nodes Windows Based Cluster with one master

c. 16 Nodes GPGPU Based Linux Cluster with one master

d. 16 Nodes Linux based SMP system

e. 16 Nodes Linux Based Cluster at each of the five domains with one master

Types of Networks

a. High bandwidth network with low latency (Q-logic QDR InfiniBand switch)
b. Gigabit network for cluster administration and management
c. 1LO3 Management Network

Types of Storage

a. Parallel File System (PFS) for computational purpose
b. Network Attached Storage (NAS) for user Home Directory
c. Archival Storage for back up.

The hardware configuration of the Head/Master node is as follows

Server Name : HP ProLiant DL380-G7 Server
Type of Processor : Intel Xeon X5675 3.07Ghz
Number of Processors : 2

Core per Processor : 6

Total memory (RAM) : 96GB

Memory per Core : 8GB

Hard Disk : 6*600GB SAS

oS : RHEL 6.2 (Linux)

The hardware configuration of each compute node is as follows
Server Name : HP ProLiant SL390-G7 Server
Type of Processor : Intel Xeon X5675 3.07 Ghz
Number of Processors : 2

Core per Processor : 6

Total memory (RAM) : 96G

Memory per Core : 8GB

Hard Disk : 300GB SAS

0S : RHEL 6.2 (Linux)

Measuring Performance

The memory is measured in terms of bytes i.e., Kilo (22° or 10%), Mega (2% or 10%) , Giga (2*°
or 10% — Tera (2 or 10'?), Peta (2°° or 10'°) , Exa (2%° or 10'®)

The computational performance is measured in Flop/s (Flop/s = floating point operations per
second) i.e., Mega Flops, Tera Flops, Peta Flops etc.
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One can calculate peak performance of the cluster using standard formula i.e. Cluster
Performance = (Number of nodes) * (number of CPUs per node) * (number of cores per CPU)
* (CPU speed in GHz) * (CPU instruction per cycle)

The grid has been established using the following network diagram as in figure 5.

(256 Nodes Linux + 16 GPGPU + 16 Nodes Windows + 1 SMP) Portal for
job
—_ ‘ (__,_.——-—-‘) submission
o - € Internet

‘Gige e GW/Router

Head node

[TTHTT 3 Application/Database
Monitoring (Windows + Linux)
Infiniband \ Core Switches
Switch Storage

Fig. 5: Network diagram of NABG Grid
The hardware and software specifications of the SMP is as follows

Server Name : HP ProLiant DL 980 G7
Type of Processor : Intel Xeon E7- 2830 2.13GHz
Number of Processors : 8

Core per Processor : 8

Total memory (RAM) : 1.5TB

Hard Disk : 396 GB

0S : RHEL 6.2

A switched fabric computer network communications link, is being used in HPC and enterprise
data centre with InfiniBand interconnect switch. The InfiniBand architecture specification
defines a connection between processor nodes and high performance 1/0 nodes such as storage
devices as in figure 6.
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Fig. 6: InfiniBand interconnect switch

Main purpose of Ethernet network in the cluster is to provide services like cluster management,
cluster monitoring, compute node deployment and many other things in figure 7.

Fig. 7: InfiniBand interconnect switch

Different types of file system are configured for storing user’s data, running parallel jobs and
archiving the important data. There are three types of storage (i) Network Attached Storage
(NAS), (ii) Parallel File System (PFS) and (iii) Archival Storage.

The following challenges in bioinformatics are exists which essentially require the grid based
architecture.

Protein folding & structure prediction
Homology search

Multiple alignment

Genomic sequence analysis

Gene finding

Gene expression data analysis

Drug discovery

Phylogenetic inference
Computational genomics, proteomics
Computational evolutionary biology
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Introduction to Linux Basics
S. B. Lal
ICAR-Indian Agricultural Statistics Research Institute, New Delhi

The Linux operating system is basically a variant of the UNIX operating system, and
Linux has probably all that UNIX offers and more. It is a multi-user, multitasking,
network operating system which also has a user friendly Graphical User Interface
(GUI).

Every desktop computer uses an operating system. The most popular operating systems
are Windows, Mac OS, UNIX, Linux.

What is an Operating System?

An operating system is the first piece of software that the computer executes when a
system is turned on. The operating system loads itself into memory and begins
managing the resources available in the computer. It provides those resources to other
applications that the user wants to run. Typical services that an operating system
provides include:

A task scheduler - The task scheduler is able to allocate the execution of the CPU to a
number of different tasks. Some of those tasks are the different applications that the
user is running, and some of them are operating system tasks.

A memory manager - The memory manager controls the system’s RAM and normally
creates a larger virtual memory space using a file on the hard disk.

A disk manager - The disk manager creates and maintains the directories and files on
the disk. When a file is needed, the disk manager makes it available from the disk.

A network manager - The network manager controls all data moving between the
computer and the network.

Other 1/0 services manager - The OS manages the keyboard, mouse, video display,
printers, etc.

Security manager - The OS maintains the security of the information in the computer’s
files and controls who can access the computer.

An operating system normally also provides the default user interface for the system.
The standard “look” of Windows 98 includes the Start button, the task bar, etc. The
Mac OS provides a completely different look and feel for Macintosh computers.

To understand why Linux has become so popular, it is helpful to know a little bit about
its history.

Background on Linux

Linux, a UNIX-like operating system, is based on Minix and has been invented by Linus
Benedict Torvalds in 1991. The following is an excerpt of a newsgroup, called
“comp.os.minix” where Linus posted this text on 08/01/91: *“...As I mentioned a month
ago, I’m working on a free version of a Minix-look-alike for AT-386 computers. It has
finally reached the stage where it’s even usable (though may not be, depending on what
you want), and I am willing to put out the sources for wider distribution. It is just version
0.02... but I’ve successfully run bash, gcc, gnu-make, gnu-sed, compress, etc. under it.”
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Linux is a free version of UNIX that continues to be developed by the cooperative
efforts of volunteer groups of programmers, primarily on the Internet, who exchange
code, report bug, and fix problems in an open-ended environment. As a result, the world
now has a powerful, robust, and full-featured operating system that continues to change
and grow.

In other words, Linux is little bit harder to manage than something like Windows, but
offers more flexibility and configuration options.

Linux is licensed under the GPL (General Public license) from the GNU organization,
under which the kernel is provided with the source code, and is available for free. As a
result, Linux is considered to be more secure and stable than closed source or
proprietary systems like Windows because anyone can analyse the source code written
in the C language and find bugs or add new features. One important point that should
be noted is that even though the source is free, anyone is allowed to sell it for profit.

Linux is known as an open source operating system and also called free software
because everything about Linux is accessible to the public and is freely available to
anyone. Since the Linux source code is available, anyone can copy, modify, and
distribute this software. This allows for various companies such as SUSE, Red Hat,
Caldera and others to sell and distribute Linux; however, at the same time, these
companies must keep their Linux distribution code open for public inspection,
comment, and changes. Despite of the command-line origins of Linux, these
distributing companies are working to make the Graphical User Interface (GUI).

The GNU General Public License

To make software free, you need a license that defines the rights and the limits, that
have to be regarded by the open source developer that wants to obtain, edit and
eventually redistribute your source code. Because of that exists the GNU GPL (General
Public License). Of course, there are also other licenses, but today’s most open source
programs are distributed under this popular license.

The GNU project was started in 1984 and “GNU is recursive acronym for “GNU’s Not
Unix”; The Free Software Foundation, which stands for the freedom, the security and
the protection of free source code therefore founded this kind of license, designed to
protect open source code. GNU is also founder and maintainer of many software
packages for the Linux operating system, such as basic tools and file system software.

Is Linux Right for you?

It depends on you and what you would like to do. Linux is not an all-purpose operating
system and it would probably be more suited for some people and not so pleasing for
others. If you are a person using your computer for some entertainment at home and are
satisfied with your Windows system there are no compelling reasons for switching over
to Linux, but you do have a choice now. There are several other reasons to consider
Linux. Linux is not just a simple operating system. It is an entire server and desktop
environment, equipped with add-ons, GUI tools and interfaces, and supplementary
programs.

You can use Linux at home and even in college to understand the commands and even
the internal workings of UNIX systems.
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Distributions

When people use the name Linux they are probably referring to a particular distribution
of Linux. There are several software packages provided for Linux over the Internet but
selecting and downloading one is a complicated task not necessarily manageable for
new users who want to try out Linux. This is exactly where a distribution kicks in.

A distribution is a set of software packages that are tested and provided on CD by a
company for a small fee just like Windows. The advantages of using distributions are
the support and manuals, as well as the fact that Linux can be specialized for use in a
particular area. For example, if you would like using Linux for embedded systems a
distribution may offer just the right amount of required software, leaving out optional
things like the graphical user interface. So you get what you want instead of a general
package for all users.

The mainstream distributions, which are seemingly popular, are RedHat, SUSE, Caldera
and Debian. Among these distributions RedHat seems to be most widespread.

Caldera is probably more suited for those who are already using Windows. SUSE is a
German based distribution known for its large number of bundled packages and
support. Debian is unique because its not owned by a company and it’s a non-profit
volunteer-based distribution developed solely by users.

Getting Started with Linux

Once the installation is complete, the system will reboot and start up with Linux. There
are a series of messages on the screen while booting of the system regarding the
hardware enabled, services started etc. After a while, the system will display a login:
prompt. You can now log in.

Some systems are configured to start graphical mode with a box in the middle
containing both login: and Password: prompts. Press [CTRL]-[ALT]-[F1] to switch to
the virtual console (text login screen), where you can log in to the system in the usual
way.

Accounts and Privileges

Linux is a multi-user system, meaning that many users can use one Linux system
simultaneously, from different terminals. So to avoid confusion, each user's workspace
must be kept separate from the others.

Even if a particular Linux system is a stand-alone personal computer with no other
terminals physically connected to it, it can be shared by different people at different
times, making the separation of user workspace is important.

This separation is accomplished by giving each individual user an account on the
system. You need an account in order to use the system; with an account you are issued
an individual workspace to use, and a unique username that identifies you to the system
and to other users. It is the name along with the password by which the system will
recognize the user.

Logging into the System

To begin a session on a Linux system, you need to log in. Do this by entering your
username at the login: prompt on your terminal, and then entering your password when
asked.
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Every Linux system has its own name, called the system's hostname; a Linux system is
sometimes called a host, and it identifies itself with its hostname at the login: prompt.
It's important to name your system -- like a username for a user account, a hostname
gives name to the system you are using (and it becomes especially important when
putting the system on a network). The system administrator usually names the system
when it is being initially configured (the hostname can be changed later; its name is
kept in the file “/etc/hostname’). The name of the terminal you are connecting from is
displayed just after the hostname.

To log in to the system, type your username (followed by) at the login: prompt, and
then type your password when asked (also followed by); for security purposes, your
password is not displayed on the screen when you type it.

Once you've entered your username and password, you are "logged in" to the system.
You can then use the system and run commands.

As soon as you log in, the system displays the contents of “/etc/motd’, the "Message of
the Day" file. The system then displays the time and date of your last login, and reports
whether or not you have electronic mail waiting for you. Finally, the system puts you
in a shell---the environment in which you interact with the system and give it
commands. Bash is the default shell on most Linux systems.

The dollar sign (°$') displayed to the left of the cursor is called the shell prompt; it
means that the system is ready and waiting for input. By default, the shell prompt
includes the name of the current directory.

Logging Out of the System

To end your session on the system, type logout at the shell prompt. This command logs
you out of the system, and a new login: prompt appears on your terminal.

e To log out of the system
$ logout
You can also logout by just pressing Ctrl+d.

Logging out of the system frees the terminal you were using and ensures that nobody
can access your account from this terminal.

Console Basics

A Linux terminal is a place to put input and get output from the system, and usually has
at least a keyboard and monitor.

When you access a Linux system by the keyboard and monitor that are directly
connected to it, you are said to be using the console terminal.

Linux systems feature virtual consoles, which act as separate console displays that can
run separate login sessions, but are accessed from the same physical console terminal.
Linux systems are configured to have seven virtual consoles by default. When you are
at the console terminal, you can switch between virtual consoles at any time, and you
can log in and use the system from several virtual consoles at once.

Switching Between Consoles

To switch to a different virtual console, press [ALT]-[Fn], where n is the number of
the console to switch to.

e To switch to the fourth virtual console, press [ALT]-[F4].
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You can also cycle through the different virtual consoles with the left and right arrow
keys. To switch to the next-lowest virtual console, press [ALT]-[«]and to the next-
highest virtual console, press [ALT]-[—].

e To switch from the fourth to the third virtual console, press [ALT]-[«]

The seventh virtual console is reserved for the X Window System. If X is installed, this
virtual terminal will never show a login: prompt, but when you are using X, this is
where your X session appears. If your system is configured to start X immediately, this
virtual console will show an X login screen.

You can switch to a virtual console from the X Window System using [CTRL] in
conjunction with the usual [ALT] and function keys. This is the only console
manipulation keystroke that works in X.

o To switch from X to the first virtual console, press: [CTRL]-[ALT]-[F1]
Running a Command

A command is the name of a tool that performs a certain function along with the options
and arguments. Commands are case sensitive.

To run the hostname command just type the command in front of prompt ($)
$ hostname

Options always begin with a hyphen character, "-', which is usually followed by one
alphanumeric character. Always separate the command, each option, and each
argument with a space character.

Long-style options begin with two hyphen characters ("--).

For example, many commands have an option, “--version', to output the version number
of the hostname.

$ hostname --version

Sometimes, an option itself may take an argument. For example, hostname has an
option for specifying a file name to use to read the hostname from, "-F'; it takes as an
argument the name of the file that hostname should read from. To run hostname and
specify that the file "host.info' is the file to read from

$ hostname -F host.info

Changing Your Password

To change your password, use the passwd command. It prompts you for your current
password and a new password to replace it with. You must type it exactly the same way
both times, or passwd will not change your password.

$ passwd username

Listing Your Username

Use whoami to output the username of the user that is logged in at your terminal.
$ whoami

Listing Who Is on the System

Use who to output a list of all the users currently logged in to the system. It outputs a
minimum of three columns, listing the username, terminal location, and time of login
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for all users on the system. A fourth column is displayed if a user is using the X Window
System.

$ who

abc ttyl Oct 20 20:09

def tty2 Oct?2114:37

def ttypl Oct 21 15:04 (:0.0)

$

The output in this example shows that the user abc is logged in on tty1 (the first virtual
console on the system), and has been on since 20:09 on 20 October. The user def is
logged in twice -- on tty2 (the second virtual console), and ttyp1, which is an X session
with a window location of "(:0.0)".

Listing the Last Times a User Logged In

Use last to find out who has recently used the system, which terminals they used, and
when they logged in and out.

$ last abc
Listing System Activity

When you run a command, you are starting a process on the system, which is a program
that is currently executing. Every process is given a unique number, called its process
ID, or "PID."

Use ps to list processes on the system. By default, ps outputs 5 columns: process ID,
the name of the terminal from which the process was started, the current status of the
process (including °S' for sleeping, meaning that it is on hold at the moment, 'R’
meaning that it is running, and "Z' meaning that it is a process that has already died),
the total amount of time the CPU has spent on the process since the process started, and
finally the name of the command being run.

Listing Your Current Processes

Type ps with no arguments to list the processes you have running in your current shell
session.

$ps
PIDTTY STAT TIME COMMAND
193 1S 0:01 -bash
204 1S 0:00ps
$
Listing All of a User’s Processes

To list all the running processes of a specific user, use ps and give the username to list
as an argument with the "-u' option.

$ ps -u abc

Listing All Processes on the System

To list all processes running by all users on the system, use the “aux' options.
$ ps aux
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Listing Processes by Name or Number

To list processes whose output contains a name or other text to match, list all processes
and pipe the output to grep. This is useful for when you want to see which users are
running a particular program or command.

To list all the processes whose commands contain reference to an “shin' directory in
them

$ ps aux | grep shin
To list any processes whose process IDs contain a 13 in them
$ ps aux | grep 13

To list the process, which corresponds to a process 1D, give that PID as an argument to
the "-p’ option (PID is 344 )

$ ps-p 344
Finding the System Manual of a Command

Use the man command to view a page in the system manual. As an argument to man,
give the name of the program whose manual page you want to view.

$ man ps

Use the up and down arrow keys to move through the text. Press [Q] to stop viewing
the manual page and exit man.

Working with Shell

Shell is a program that reads your command input and runs the specified commands.
The shell environment is the most fundamental way to interact with the system -- you
are said to be in a shell from the very moment you've successfully logged in to the
system.

The °$' character preceding the cursor is called the shell prompt; it tells you that the
system is ready and waiting for input.

If your shell prompt shows a number sign ("#') instead of a *$', this means that you're
logged in with the superuser, or root, account. Beware: the root account has complete
control over the system; one wrong keystroke and you might accidentally break it
something awful. You need to have a different user account for yourself, and use that
account for your regular use.

Every Linux system has at least one shell program, and most have several. The standard
shell on most Linux systems is bash( "Bourne again shell™).

Running a List of Commands

To run more than one command on the input line, type each command in the order you
want them to run, separating each command from the next with a semicolon (';"). For
example, to clear the screen and then log out of the system

$ clear; logout
Redirecting Input and Output

The shell moves text in designated "streams.” The standard output is where the shell
streams the text output of commands -- the screen on your terminal, by default. The
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standard input, typically the keyboard, is where you input data for commands. You can
redirect these streams -- to a file, or even another command -- with redirection.

Redirecting Input to a File

To redirect standard input to a file, use the "<' operator. To do so, follow a command
with < and the name of the file it should take input from. For example, to redirect
standard input for Is -l to file "listing'

$Is -l < listing
Redirecting Output to a File

Use the ">' operator to redirect standard output to a file. If you redirect standard output
to an existing file, it will overwrite the file, unless you use the “>>' operator to append
the standard output to the contents of the existing file. For example, to append the
standard output of Is -I to an existing file ‘commands'

$ Is -I>> commands
Redirecting Output to another Command's Input

Piping is to connect the standard output of one command to the standard input of
another. You do this by specifying the two commands in order, separated by a vertical
bar character, *|' (also called as a "pipe"). Commands built in this fashion are called
pipelines.

For example, it's often useful to pipe commands that display a lot of text output to more
for perusing text.To pipe the output of apropos bash shell shells to less

$1s—1 | more
Managing Jobs

The processes you have running in a particular shell are called your jobs. You can have
more than one job running from a shell at once, but only one job can be active at the
terminal, reading standard input and writing standard output. This job is the foreground
job, while any other jobs are said to be running in the background.

The shell assigns each job a unique job number. Use the job number as an argument to
specify the job to commands. Do this by giving the job number preceded by a %'
character.

Suspending a Job

Type Ctrl+z to suspend or stop the foreground job. This is useful when you want to do
something else in the shell and return to the current job later. The job stops until you
either bring it back to the foreground or make it run in the background.

For example, if you are finding a file at Linux partition from root (/), typing Ctrl+z will
suspend the find program and return you to a shell prompt where you can do something
else. The shell outputs a line giving the job number (in brackets) of the suspended job,
the text “Stopped' to indicate that the job has stopped, and the command line itself, as
shown here:

[1]+ Stopped find / -name abc

In this example, the job number is 1 and the command that has stopped is “find / -name
abc'. The “+' character next to the job number indicates that this is the most recent job.
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If you have any stopped jobs when you log out, the shell will tell you this instead of
logging you out:

$ logout

There are stopped jobs.

$
At this point you can list your jobs, stop any jobs you have running and then log out.
Putting a Job in the Background

New jobs run in the foreground unless you specify otherwise. To run a job in the
background, end the input line with an ampersand ("&"). This is useful for running non-
interactive programs that perform a lot of calculations. To run the command find / -
name abc > shell-commands as a background job

$ find / -name abc > shell-commands &
[1] 6575
$

The shell outputs the job number (in this case, 1) and process ID (in this case, 6575),
and then returns to a shell prompt. When the background job finishes, the shell will list
the job number, the command, and the text "Done’, indicating that the job has completed
successfully:

[1]+ Done find / -name abc >shell-commands

To move a job from the foreground to the background, first suspend it and then type
bg (for "background").

e For example, to start the command find / -name abc > shell-commands in the
foreground, suspend it, and then specify that it finish in the background, you would

type:
$ find / -name abc > shell-commands
Ctrl+z

[1]+ Stopped find / -name abc >shell-commands
$ bg

[1]+ find / -name abc &

$

If you have suspended multiple jobs, specify the job to be put in the background by
giving its job number as an argument. TFor example, to run job 4 in the background

$ bg %4
Putting a Job in the Foreground

Type fg to move a background job to the foreground. By default, fg works on the most
recent background job. For example, to bring the most recent background job to the
foreground

$ fg
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To move a specific job to the foreground when you have multiple jobs in the
background, specify the job number as an option to fg. To bring job 3 to the foreground

$ fg %3
Listing Your Jobs
To list the jobs running in the current shell, type jobs.

$ jobs

[1]- Stopped find / -name abc >shell-commands
[2]+ Stopped find / -name abc >bash-commands
$

This example shows two jobs--- find / -name abc > shell-commands and find / -name
abc > bash-commands. The "+' character next to a job number indicates that it's the
most recent job, and the "-' character indicates that it's the job previous to the most
recent job. If you have no current jobs, jobs returns nothing.

Stopping a Job

Typing Ctrl+c interrupts the foreground job before it completes, exiting the program.
To interrupt cat, a job running in the foreground

$ cat
Ctrl+c
$

Use kill to interrupt ("kill") a background job, specifying the job number as an
argument. To Kill job number 2

$ kill %2
Command History

Your command history is the sequential list of commands you have typed, in the current
or previous shell sessions. The commands in this history list are called events.

By default, bash remembers the last 500 events, but this number is configurable.

Your command history is stored in a text file in your home directory called
“.bash_history'; you can view this file or edit it like you would any other text file.

Viewing Your Command History
Use history to view your command history. To view your command history
$ history
1 who
2 apropos shell >shell-commands
3 apropos bash >bash-commands
4 history
$
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This command shows the contents of your command history file, listing one command
per line prefaced by its event number. Use an event number to specify that event in your
history. To search your history for the text “find'

$ history | grep find
Specifying a Command from Your History
You can specify a past event from your history on the input line, in order to run it again.

The simplest way to specify a history event is to use the up and down arrow keys at the
shell prompt to browse your history. The up arrow key takes you back through past
events, and the down arrow key moves you forward into recent history. When a history
event is on the input line, you can edit it as normal, and type to run it as a command; it
will then become the newest event in your history.

To run a history event by its event number, enter an exclamation mark (*!') followed by
the event number (1).

$11
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Biological Databases: An Overview
K. K. Chaturvedi
ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Introduction

Bioinformatics is the field of science in which biology, physics, chemistry, mathematics.
Statistical and computer science, information and communication technology become a single
discipline. It is emerging field that application of computer to collection, organization, storing,
maintaining, accessing, sharing, analysis, interpretation and presentation of biological data
(nucleotide and amino acids sequences, protein domains, protein structures) which helps to
accomplishing life science research.

The potential flood of sequence data and the rapidly evolving database technologies
empowered researchers to establish international DNA data banks in the early 1980s. Today,
we have massive sequence data in the public biological databases due to concerted effort at a
number of molecular biology laboratories throughout the world, and the internet and computer
technologies. At the beginning, the main concern of bioinformatics was the creation and
maintenance of database to store nucleotide and amino acid sequences with wen based
interfaces user can access existing data and submitting new data to the database. Hence,
database creation and maintenance is major components in bioinformatics. Now, emphasis has
shifted to decipher the functional, structural and evolutionary clues encoded in the languages
of biology, in which sequences is represented by as sentence, motifs and patterns are by words
and nucleotides and amino acids are by letters. However, database design and management is
core area in bioinformatics.

Data represents facts or value of results and relations between them have the capacity to
represent information (Figure 1). Patterns of relationship between information have the
capacity to represent knowledge. Each data is assigned to one data type, which indicates
possible relationship with other data. For example; text, integer, float/double, character, time,
date and binary.

A database is a collection of data organized in the way which can be easily, stored, accessed
and managed. Database system is amalgamation of database, database management system and
users. (Fig. 1)

Types of Database models

In mid of 1960 the “database” word was first introduced with direct-access-storage. Charles
Bachman has introduced Integrated Data Store (IDS), founded, the group “Database Task
Group” responsible for the creation and standardization of COBOL. In 1971 the DTG within
CODASYL (Conference on Data Systems Languages) delivered standard for database, which
generally became known as the "Codasyl approach”, this led to network database. Same period
IBM was developed IMS (Information Management System), which is similar to Codasyl
approach and used hierarchical model of data. Edgar Codd worked at IBM in San Jose,
California and he was unhappy with the above two models. He wrote a number of papers those
illustrated a new approach based on relational algebra for construction of database that led to a
well accepted Relational Model of Data for Large Shared Data Banks. This based on concept
relational algebra. There are three main types of database models; 1) Network Model, 2)
Hierarchy Model, and 3) Relational Model. Main objective of these models is integration of
data, which is process of combining data of different sources under single query interface.
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Data to Knowledge

Knowledge
160.48 tones Paddy stover 60.

available in Dharwad district

Put in use

Distr. Crop Prod FSR \%
Dharwad Paddy 123.45 X 1.2 =160.48

Information Meaning of data (relationship)

123.4
Dha
c
Categorized, classified, condensed, organized, tabulated

Physical value related to facts/things

Fig. 1: Data to knowledge

Network Database Model

This model visualizes data in a flexible way of representing objects and their relationships. Its
distinguishing feature is that the schema, viewed as a graph in which object types are nodes
and relationship types are arcs, is not restricted to being a hierarchy or lattice.

Hierarchical database model

This model is a data model in which the data is organized into a reverse tree-like structure. In
this data can be represented as parent and child relationships by 1 to many relationships that
each parent can have many children, but each child has only one parent. All attributes of a
specific record are listed under an entity type.

Relational Database Model

In this model, database structure is represented in terms of tuples (rows), grouped into relations
(tables) and values in each columns of tuple are represented as attributes values (data) and
identified solely by the attribute name (Field).

Major Components and Architecture of Database System
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____________________________________________

3-tier I

Database

Fig. 2: Architecture of Database

e Users: DB Administrator, Developer and end-user.
e Application: Application software to any specific domain.
e DBMS: Software for creation, insertion, deletion and modification.
e Database: Collection of data
Database architecture logically divided in to two types

e 2 - tier: End-user < -- > DBMS; Here end-user/client can directly communicate with
database server.

e 3-tier: End-user < -- > Application Software < -- > DBMS; Here end-user/client will
communicate with database server through application tools.

Basic Concept of DataBase Management System (DBMS)

Database Management Systems (DBMS) is specially designed applications software that
designed to interact with the user, other applications and database(s) to capture and analyse
data. The DBMS have facilities to allow the definition, creation, querying, update, and
administration of databases. Well-known DBMSs include MySQL, PostgreSQL, Microsoft
SQL Server, Oracle, SAP, MS Access, FoxPro, IBM DB2/TeraByte, etc. Now database have
generally portable across different DBMS by using standards such as SQL and ODBC or JDBC
to allow a single application to work with more than one database.

Major functions of DBMS
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e Data definition: Defining new data structures, removing and modifying the
existing structure.

e Update: Inserting, modifying, and deleting data.

e Retrieval: Obtaining information for end-user queries or for applications.

e Administration: Registering and monitoring users, enforcing data security,
monitoring performance, maintaining data integrity, dealing with concurrency
control, and recovering information if the system fails.

Benefits of DBMS

e Segregation of work to end-users

e Easy editing, maintenance and retrieval

e Minimizing data duplication

e Reducing time in development and maintenance

e Data security

e Multiple user accessing

e Backup and recovery

Relational Database Management System (RDBMS)

A Relational database Management System (RDBMYS) is a database management system to
manage relational database based on relation database model as discussed above, which is
introduced by E. F. Codd. In this data is represented in terms of tuples (rows) Relational
database is collection of tables, table is consist of rows usually called as records and columns
called as field or attributes, and columns are identified by unique name. Table is most simplest
and fundamental unit of data storage. Each table has its own primary key (one or more fields),
which ensures that uniqueness of each record with set of fields. The keys are very important
part of relational database. They are used to establish and identify relationship between tables.
The RDBMS supports Structured Query Language (SQL).

Normalization

Normalization is a systematics pre-process of decomposing tables to eliminate data
redundancy. This will help to easy insertion, updation and deletion. Normalization rule are
divided into following form

e First Normal Form: Row cannot contain repeating group of data.
e Second Normal Form: Remove partial dependency between columns
e Remove transitive functional dependency

e Boyce and Codd Normal Form: This deals with certain anomaly that is not handled
by3NF.

Entity-Relationship (E-R) Diagram

ER diagram is visual diagrammatic representation of data with standard symbols and notation,
which describes how data is related to each other (Fig. 3).

44



Major symbols and notations

Joining

Entity Relationship

Fig. 3: Symbols and Notations

Entity may be any object, person, place and etc. Attributes are features or characteristics. For
Example livestock census statistics is shown in table 1.

Table 1: Livestock data before normalization

State State Dist Dist Year | Animal | Category | Population | Population
Capital Head (000)
Qrts
Karnataka | Bangalore | Dharwad | Dharwad | 2007 | Cattle | <1 year 14355 14.356
Karnataka | Bangalore | Dharwad | Dharwad | 2007 | Cattle | 1-2.5 24675 24.675
year

Karnataka | Bangalore | Dharwad | Dharwad | 2007 | Cattle | >2.5 year 44355 44.355

Karnataka | Bangalore | Uttar Karwar | 2007 | Cattle | <1 year 45255 45.255
Kannada

Karnataka | Bangalore | Uttar Karwar | 2007 | Cattle |1-2.5 56555 56.555
Kannada year

Karnataka | Bangalore | Uttar Karwar | 2007 | Cattle | >2.5year 1836 1.836
Kannada

The ER diagram for the table 1 is shown in Fig. 4.
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Animals W‘ Category States
Ani_Code S_Code
Census D_Code Dists
l R_Code
Year Regions

Fig. 4: ER-Diagram

The relationships of the tables are shown in Fig. 5.

Dists g
1 9 DCODE . Regions
RUM / Dists # RagionID
ANLCAT Wiv_cen GISSID Region
ANIMALS ¥ ANILCAT 2 ? DCODE : Regionsc
 ANI_CODE ANI_CODE \ ? VEAR Statescad
ANIMAL CATEGORY ¥ carecory Dists1
RLU POPULATION
DMF Popu_Actuals
DCPF GR STATE
TDNF Pop_Last 1 7
SCODE

MNode_Index STATE
Dof GISSID
ConF
GreenF

Fig. 5: Relationship diagram from MS Access

Structured Query Language (SQL)

SQL is a tool for communicate with database. SQL is a plat form independent common
language is used to perform all types of data operation such as data defining, storing and
managing in RDBMS database concept. Now, all RDBMS software employs this language as
standard database language. Some of the sample commands are mentioned in table 2.

Table 2: Sample of SQL commands



Command Description Syntax
Data Definition
create To create new table | CREATE TABLE "tablename” (columnl_name" "data
or database type",

"column2_name" "data type"”, “...")

alter For alteration ALTER TABLE table_name ADD column_name datatype;
ALTER TABLE table name DROP COLUMN
column_name;
ALTER TABLE table name MODIFY COLUMN
column_name datatype;

drop To drop a table DROP TABLE "tablename"

rename To rename a table RENAME TABLE tbl_name TO new_tbl_name;

Data Manipulation

Insert Toinsertanew row | INSERT INTO tablename™ (columnl,... column_last)
VALUES (valuel, ... value_last);
update To update existing | UPDATE "tablename” SET "columnname™ = “"newvalue"
row [,"nextcolumn” = "newvalue2"...] WHERE "columnname"
OPERATOR "value" [AND|OR "column"
OPERATOR "value"];
delete To delete a row DELETE FROM "tablename" WHERE "columnname"

OPERATOR "value™ [AND|OR "column” OPERATOR
"value"];

Transaction control

commit To permanently | COMMIT;
save

rollback To undo change ROLLBACK;

savepoint | To save temporarly | SAVEPOINT SAVEPOINT_NAME;

Data query

select SELECTI[ALL| DISTINCT] columnl [,column2]
FROM tablel [,table2] [WHERE "conditions"] [GROUP BY
"column-list"] [HAVING “conditions] [ORDER BY

"column-list" [ASC | DESC] ]

Biological Database

Life science is a field which generates an enormous amount of un-integrated data. Biological
databases are collection of life sciences data, information and knowledge collected from
different sources such as scientific experiments, published literature, high-throughput
experiment, and computational & statistical analyses in form text, numbers, videos, images and
diagrams. These data are broadly classified into four categories based type of data such as
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literature, sequences, structures and micro-array data. Also area wise classified into Genomics,
Proteomics, Metabolomics, and Micro-array (gene expression) and Phylogenetics.

Primary Genomic Databases

e GenBank  (National Center  for Biotechnology Information) url:
http://www.ncbi.nlm.nih.gov/genome

e DNA Data Bank of Japan (National Institute of Genetics) url:
http://www.ddbj.nig.ac.jp/

e FEuropean Nucleotide Archive (European Bioinformatics Institute) url:
http://www.ebi.ac.uk/ena/

Primary Protein Databases
e Uniprot (Universal Protein Resources) url:www.uniprot.org
e PDB url: www.rcsb.org/pdb/
Metabolomics databases
e META Cyc url: http://metacyc.org/
e KEGG: url : http://www.genome.jp/kegg/pathway.html
e Plant Metabolic Network (PMN) url: http://www.plantcyc.org/
Phylogenetics databases
e PhylomeDB url: http://phylomedb.org
e TreeBASE url: http://treebase.org
Microarray Database
e EMBL-EBI microarray database array express url: http://www.ebi.ac.uk/arrayexpress/
e Stanford University database url: http://smd.princeton.edu/
e Gene expression Omnibus (GEO) (NLM) url: http://www.ncbi.nlm.nih.gov/geo/
e ExpressDB - Harvard url: http://arep.med.harvard.edu/ExpressDB/

Similarly many bioinformatics databases such as Compound-Specific Databases,
Comprehensive Metabolomic Database, drug database, RNA database, SNP database,
Microsatellites, Literature database, Crystallographic database, NMR spectra database,
Carbohydrate structure databases, Protein-protein interactions database, Signal transduction
pathway databases, primer databases, Taxonomic databases and etc.
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Sequence Analysis
S. B. Lal
ICAR-Indian Agricultural Statistics Research Institute, New Delhi

1. Introduction

Since the development of high-throughput methods for production of gene and protein
sequences during 90s, the rate of addition of new sequences to the databases increases
very rapidly. However, comparing sequences with known functions with these new
sequences is one way of understanding the biology of that organism from which the
new sequence comes. Thus, sequence analysis can be used to study of the similarities
between the compared sequences. Now a days, there are many tools and techniques that
provide the sequence comparisons (sequence alignment) and analyze the alignment to
understand the biology.

Sequence analysis in molecular biology and bioinformatics is an automated, computer-
based examination of characteristic fragments, e.g. of a DNA strand. It basically
includes relevant topics:

1. The comparison of sequences in order to find similarity and dissimilarity in
compared sequences (sequence alignment)

2. ldentification of gene-structures, reading frames, distributions of introns, exons
and regulatory elements

3. Finding and comparing point mutations or the single nucleotide polymorphism
(SNP) in organism in order to get the genetic marker.

4. Revealing the evolution and genetic diversity of organisms.
5. Functional annotation of genes.

Sequence alignment is a way to identify regions of similarity in DNA, RNA, or protein
sequences that may be a consequence of functional, structural, or evolutionary
relationships between the sequences. Aligned sequences of nucleotide or amino acid
residues are typically represented as rows within a matrix. If two sequences share a
common ancestor for the alignment, mismatches can be interpreted as point mutations
and gaps as indels (that is, insertion or deletion mutations). Thus, a letter or a stretch of
letters may be paired up with dashes in the other sequence to signify such an insertion
or deletion. Homologous sequences may have different length, which is generally
explained through insertions or deletions in sequences. Since an insertion in one
sequence can always be seen as a deletion in the other one frequently uses the term
"indel". In sequence alignments of proteins, the degree of similarity between amino
acids sequence can be interpreted as a rough measure of how conserved a particular
region or sequence motif is among lineages. The absence of substitutions, or the
presence of only very conservative substitutions (that is, the substitution of amino acids
whose side chains have similar biochemical properties) in a particular region of the
sequence, suggest that this region has structural or functional importance. Although
DNA and RNA nucleotide bases are more similar to each other than are amino acids,
the conservation of base pairs can indicate a similar functional or structural role.

Very short or very similar sequences can be aligned by hand. However, most interesting
problems require the alignment of lengthy, highly variable or extremely numerous

49



sequences that cannot be aligned solely by human effort. Computational methods need
to be developed for the alignment of a large pair of sequences. Computational
approaches are of two categories: global alignments and local alignments. Global
alignment is a form of global optimization that "forces" the alignment to span the entire
length of all query sequences. Global alignment will be applied when the sequences
are of similar lengths. Local alignments identify regions of similarity within long
sequences. Local alignments are often preferable, but it consumes more time to
calculate because of the additional challenge of identifying the regions of similarity in
the local regions. Number of algorithms is being applied for the sequence alignment,
including optimizing methods like dynamic programming, and heuristic algorithms or
probabilistic methods designed for large-scale database search.

ARBZ4887 TYHMCOFHCRYVEMHEGERLYECHERSEAF SCPEHLOCHERRQ I GEKTHEHNQ CGEAFPT R0
AABZ24BB1 0 -mmmmmmmmmmmmemeeee- YECHQCGEAFAQHSSLECHYRTHIGERPYECHQCGEAFEE 40
EREE D REET K KRR K EEEE X XKEEXEER
ARBZ24887 PEHLOYHERTHIGERPYECHOCGOAFKECSLLORHERTHT GEEPYE -CHOCGEAFAD- 116
AABZ24861 HSHLOQCHERTHTGEEPYECNQCGRAFSOHGLLORHERTHTGEEPYMNY INMVEPLHNE 98
HEEE X RXRXXRXLEXE XRX - HE 1 EXXRXERXRRXRERR roE o

Fig. 1 Sample of sequence Alignment text based representations

In sequence alignment of graphical representations, sequences are written in rows so
that aligned residues appear in successive columns. While in text formats, aligned
columns containing identical or similar characters are indicated with a system of
conservation symbols. An asterisk or pipe symbol is used to represent the similarity of
these two columns, a colon for conservative substitutions and a period for semi-
conservative substitutions.

Many sequence visualization techniques use a color coding scheme to display
information about the properties of the individual sequence elements. In DNA and RNA
sequences, each nucleotide is represented by a specific color. In protein alignments,
color is used to indicate amino acid properties in determining the conservation of a
given amino acid substitution.

2. Pair-wise Alignment

Pair-wise sequence alignment methods are used to find the best-matching pairs of two
sequences. The three primary methods of pair-wise alignments are dot-matrix, dynamic
programming and word methods. One way of quantifying the utility of a pair-wise
alignment is the 'maximum unique match', or the longest subsequence that occurs in
both query sequence.

a) Dot-Matrix Method: The two sequences are written along the top row and leftmost
column of a two-dimensional matrix and a dot is placed at any point where the
characters in the appropriate columns match. We try to draw lines diagonally. The dot
plots of very closely related sequences will appear as a single line along the matrix’s
main diagonal (Fig. 2). The dot-matrix approach produces a simple way of alignments
for small sequences with the similar regions but time-consuming to analyze large
sequences.
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Fig. 2: The dot matrix technique for sequence alignment

There are many problems with dot plots such as noise, lack of clarity, difficulty
extracting match summary statistics. Dot-plots are limited to two sequences only.

b) Dynamic Programming: Dynamic programming can be applied to produce global
and local alignments. This can be done by applying Needleman-Wunsch algorithm for
global alignment and Smith-Waterman algorithm for the local alignments. In general,
alignments use a substitution matrix to assign scores for matches or mismatches, and a
gap penalty for matching an in one sequence with a gap in the other.

DNA and RNA alignments may use a different scoring matrix, but in practice often
simply assign a positive match score, a negative mismatch score, and a negative gap
penalty. Dynamic programming can be useful in aligning nucleotide to protein
sequences. The framesearch method produces a series of global or local pair-wise
alignments between a query nucleotide sequence and a search set of protein sequences,
or vice versa. The BLAST and EMBOSS provide basic tools for creating alignments of
the sequences.

¢) Word Method: Word or k-tuple methods are heuristic methods but are not guaranteed
to find an optimal alignment solution. These methods are especially useful in large-
scale database searches Word methods are best known for their implementation in the
database search tools FASTA and BLAST family. Word methods identify a series of
short, non-overlapping subsequences ("words") that are matched to candidate database
sequences. The relative positions of the word in the two sequences being compared are
subtracted to obtain an offset; this will indicate a region of alignment if multiple distinct
words produce the same offset.

In the FASTA method, the user defines a value k to use as the word length with which
to search the database. The method is slower but more sensitive for lower values of k,
which are preferred for searching a very short query sequence. The BLAST family of
search methods provides a number of algorithms optimized for particular types of
queries. BLAST was developed to provide a faster alternative to FASTA without
sacrificing accuracy. BLAST uses a word search of length k, but evaluates only the
most significant word matches. Most BLAST implementations use a fixed default word
length that is optimized for the query and database. Web based implementations are
available such as EMBL FASTA and NCBI BLAST.
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3. Global and Local Alignment
Global Alignment

Global alignments, which attempt to align every residue of each sequence, when the
size of the sequences are similar or of equal size. A general global alignment technique
is based on dynamic programming i.e., Needleman-Wunsch algorithm. This can be
easily understood with the following two sequences aligned globally as follows

GAATTCAGTTA (sequence #1)
GGATCGA (sequence #2)

In simple dynamic programming principle, we construct a matrix. The matrix will be
filled by inserting 0 or 1 where ever there is a mismatch or match. We also penalize the
gaps with 0 as a simple case. Following steps are needed for construction of the matrix

i. Initialization

ii. Matrix fill (scoring)

iii. Traceback (alignment)
i. Initialization

The first step is to create a matrix with M + 1 columns and N + 1 rows where M and N
are the sizes of the sequences to be aligned.

With the given sequences, length of sequence #1 = 11 and length of sequence #2 is 7.
The size of the matrix will be 12*8 (11+1 * 7+1). The first row and first column of the
matrix can be initially filled with O because we assume assumes there is no gap opening
or gap extension penalty as shown in fig. 3.

G & & T T C A
O 0 (o {0 |0 (000

G T
o|na

[=

&
]

e Q1 - e 51O
(= = ) e e e

Fig. 3. Initial matrix with two sequences
ii. Matrix Fill

One possible way of filling the matrix is to find the maximum global alignment score
by starting from the upper left hand corner of the matrix and find the maximal score
M:;,; for each position in the matrix.

For each position, M;; is defined to be the maximum score at position i,j i.e.,
Mij = MAXIMUM[

Mi-1,j-1 + Sijj (match/mismatch in the diagonal),

Mij-1 + w (gap in sequence #1),

Mi-1j + w (gap in sequence #2)]
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In fig. 4, Mi.1j-1 will be red, Mjj.1 will be blue and Mi.1j will be green. The score at
position 1,1 in the matrix can be calculated. Since the first residue in both sequences is
a G i.e., a match, so score S11= 1. We assumed the gap penalty as 0.

Thus, M11 = MAX[Moo + 1, M1,0+ 0, Mo1+ 0] = MAX[1, 0, 0] = 1.
A value of 1 is then placed in position 1,1 of the scoring matrix.
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Fig. 4. Sample fill of the entry M1,1

Now the element M2, the value is the max of 0 (for a mismatch), O (for a vertical gap)
or 1 (horizontal gap). The rest of element of first row can be filled up similarly. At this
point, there is a G in both sequences (light blue). Thus, the value for the cell at row 1
column 8 is the maximum of 1 (for a match), O (for a vertical gap) or 1 (horizontal gap).
The value will again be 1 as in fig. 5
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Fig. 5. Sample fill of the entry whene there is a collosion of two cells for Mg

Now similarly at column 2. The location at row 2 will be assigned the value of the
maximum of 1(mismatch), 1(horizontal gap) or 1 (vertical gap). So its value is 1.
After filling in all of the values the score matrix is shown in fig. 6:
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Fig. 6. Final filled matrix
iii. Traceback Step

After the matrix fill step, find the the maximum alignment score for the two test
sequences. The traceback step determines the actual alignment(s) that result in the
maximum score. Note that with a simple scoring algorithm such as one that is used here,
there are likely to be multiple maximal alignments.

The traceback step begins in the matrix that leads to the maximal score. In this case,
there is a 6 in that location. Traceback takes the current cell and looks to the neighbor
cells that could be direct predecessors. This means that it looks to the neighbor to the
left (gap in sequence #2), the diagonal neighbor (match/mismatch), and the neighbor
above it (gap in sequence #1). The algorithm for traceback chooses as the next cell in
the sequence one of the possible predacessors. In this case, the neighbors are marked in
red. They are all also equal to 5 as in fig 7.

GAATTOCAGTT A
olofofolololo]olo]olo]o
aglofo oo ety
glofo et ]r]fz]z]z]z
slofifz]zlz]zlz]22]2]2]3
Tlofife]als]ss]s]s]3]5]3
clofi ]2z ]s|3(s [4]s |44
Glofi 2|2 ]s|s]sa]s]s]s5]5
slofi]zlslslsls]s]|s]s5]s€6

Fig. 7. Traceback process start where the score is maximum

Since the current cell has a value of 6 and the scores are 1 for a match and 0 for anything
else, the only possible predecessor is the diagonal match/mismatch neighbor. If more
than one possible predecessor exists, any can be chosen. The corresponding row and
column can be crossed out as in fig. 8. This gives us a current alignment of

(Seq#1) A

|

(Seq#2) A
GA ATTOCAG TT A
ololofolofolo]o|o]o]o
glo|if{it|rfr]|rfr]r]r]1]1
glo|r oo fe]rfz]2]z
slofife]zlzlzlz]z]z]2 |2
Tlo|ifz]z2]s]3]3]3]3]3]3
cloftf2{a]s]s]a]a]s]s]a
glo|ifz]z]s]s]a]s[s]|5€5

A

Fig. 8. Traceback steps and crossing of the row and column
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Now, look at the current cell and determine which cell is its direct predecessor. In this
case, it is the cell with the red 5 as in fig. 9. The alignment as described in the above
step adds a gap to sequence #2 , so the current alignment is

(Seq#l) TA
|

(Seq#2) _A

Once again, the direct predecessor produces a gap in sequence #2.
G A ATTOCAG TT A

b o I T R S % R

Fig. 9. Traceback steps and crossing of the row and column

After this step, the current alignment is
(Seq#1) TTA

|
A

Continuing on with the traceback step, we eventually get to a position in row 0 and
column 0, which tells us that traceback is completed as in fig. 10.

G A AT TCAG TT &

b o T T T o B o

Fig. 10. Final matrix with the traceback steps

One possible maximum alignment is
GAATTCAGTTA

[ R B |
GGA TC_ G__A
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Local Alignment

Local alignments are more useful for dissimilar sequences that may contains regions of
similarity or similar sequence motifs within their larger sequence context. The Smith-
Waterman algorithm is a general local alignment method based on dynamic
programming. A local alignment searches for regions of local similarity between two
sequences and need not include the entire length of the sequences. This can be done by
reading a scoring matrix that contains values for every possible residue or nucleotide
match or mismatch. The Smith-Waterman algorithm is a member of the class of
algorithms that can calculate the best score and local alignment in the order of m*n
steps, where 'm' and 'n' are the lengths of the two sequences. Local alignment methods
only report the best matching areas between two sequences while there may be a large
number of alternative local alignments which do not score as highly as the best
alignment done by this algorithm.

Consider the two DNA sequences to be globally aligned are:
ACACACT (x=7, length of sequence 1)
AGCACAC (y=7, length of sequence 2)

It also follows three steps

i. Initialization
ii. Matrix fill (scoring)
iii. Traceback (alignment)
Let us assume the simple scoring scheme as
e Sjj=2 if thereis a match
o Sjj=-1ifthere is a mismatch
e W =-1as gap penalty
i. Initialization

The first step in the global alignment dynamic programming approach is to create a
matrix with M + 1 columns and N + 1 rows where M and N correspond to the size of
the sequences to be aligned. In this example, we assume that there is no gap opening or
gap extension penalty. The first row and first column of the matrix can be initially filled
with 0 as in fig. 11.

IR0 Ie|(O|0 |0

O P00 P00 P>
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Fig. 11. Initial matrix with first row and first column element as 0

ii. Matrix Fill

One way to fill the matrix is to find the maximum global alignment score by starting
from the upper left hand corner in the matrix and get the maximal score M;; for each
position in the matrix. In order to find M;; for any i, it is minimal to know the score for
the matrix positions to the left, above and diagonal to i, j. In terms of matrix positions,
it is necessary to know Mi.1j, Mij1 and Mi.y, j-1.

For each position, M;; is defined to be the maximum score at position i,j; i.e.
Mij = MAXIMUM[

Mi-1, j1 + Sij (match/mismatch in the diagonal),

Mij-1 + w (gap in sequence #1),

Mi-1j + w (gap in sequence #2)]

Using this information, the score at position 1,1 in the matrix can be calculated. Since the
first residue in both sequences is A, Si1 = 2, and by the assumptions stated at the
beginning, w = 0. Thus, M11 = MAX[Mop + 2, M1,0 -1, Mo1-1] = MAX [2, -1, -1] = 2.

A value of 2 is then placed in position 1,1 of the scoring matrix as in fig. 12. And
subsequently the whole matrix is filled in the same way.

A €C A C A C T

0 |0 |0 |O 0 (0 |0 0

A |0 2 1 2 1 2 1 0

G |0 1 1 1 1 1 1 0

cC |0 |O |3 2 3 2 3 2

A |0 2 2 |5 4 (5 4 3

cC |0 1 (4 |4 7 6 7 6

A |0 2 |3 6 6 9 8 7
cC |0 1 (4 |5 8 8 11 | 10

Fig. 12. Final filled matrix

iii. Traceback

After the matrix fill step, the maximum alignment score for these two test sequences is
11. The traceback step determines the actual alignment(s) for the maximum score. It is
not mandatory that the last cell has the maximum alignment score.

The traceback step begins with the position that leads to the maximal score. In this case,
there is 11 in that location.

Trace back takes the current cell and looks to the neighbor cells that could be direct
predecessors. This means it looks to the neighbor to the left (gap in sequence #2), the
diagonal neighbor (match/mismatch), and the neighbor above it (gap in sequence #1)
as in fig. 13. The algorithm for trace back chooses as the next cell in the sequence one
of the possible predecessors. This continues till cell with value 0 is reached.
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Fig. 13. Traceback Step

The only possible predecessor is the diagonal match/mismatch neighbor. If more than
one possible predecessor exists, any can be chosen. This gives us a current alignment
of

(Seg#l) C
|
(Seq#2) C

So now we look at the current cell and determine which cell is its direct predecessor. In
this case, it is the cell with the red 9 as in fig. 14.

(Seg#1) CA
||
(Seq#2) CA
A C A £ B € T
o|o|of[o|o|]o]|o |O
Ao |24]1 [2]1 ]2 1 ]0
AN "ESENERERERL
clo |0 [3w]2 [3 ]2 |3 |2
Alo |2 |2 |5«J4a |5 |4 |3
clo |2 14 |76 ]|7 |6
Alo ]2 3|6 |6 [ovlar]|7
clof|1]a4 |5 |8 [8¢11]10

Fig. 14. Traceback step with the correct arrows

Continuing with the traceback step, we eventually get a position in column 0 or row 0
which tells us that traceback is completed as in fig. 15.
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Fig. 15. Final Traceback Matrix

The possible maximum alignment is:
AGCACAC

[ I
A _CACAC

There is a combination of these two methods which is called hybrid methods, also
known as semiglobal or "glocal" methods. This method attempts to find the best
possible alignment that includes the start and end of one or the other sequence. This can
be especially useful when the downstream part of one sequence overlaps with the
upstream part of the other sequence. In this case, neither global nor local alignment is
entirely appropriate.

4. Significance of Sequence Alignment

Sequence alignments are useful in bioinformatics for identifying sequence similarity,
producing phylogenetic trees, and developing homology models of protein structures.
However, the biological relevance of sequence alignments is not always clear.
Alignments are often assumed to reflect a degree of evolutionary change between
sequences descended from a common ancestor; however, it is formally possible that
convergent evolution can occur to produce apparent similarity between proteins that are
evolutionarily unrelated but perform similar functions and have similar structures.

In database searches such as BLAST, statistical methods can determine the likelihood
of a particular alignment between sequences or sequence regions arising by chance with
the given the size and composition of the database being searched. These values can
vary significantly depending on the search space. In particular, the likelihood of finding
a given alignment by chance increases, if the database consists only of sequences from
the same organism as the query sequence. Repetitive sequences in the database or query
can also distort both the search results and the assessment of statistical significance.
BLAST automatically filters such repetitive sequences in the query to avoid apparent
hits that are statistical artifacts.

The choice of a scoring function that reflects biological or statistical observations
about known sequences is important to producing good alignments. Protein sequences
are frequently aligned using substitution matrices that reflect the probabilities of given
character-to-character substitutions. A series of matrices called PAM matrices (Point
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Accepted Mutation matrices, originally defined by Margaret Dayhoff and sometimes
referred to as "Dayhoff matrices”) explicitly encode evolutionary approximations
regarding the rates and probabilities of particular amino acid mutations. Another
common series of scoring matrices, known as BLOSUM (Blocks Substitution Matrix),
encodes empirically derived substitution probabilities. Variants of both types of
matrices are used to detect sequences with differing levels of divergence, thus allowing
users of BLAST or FASTA to restrict searches to more closely related matches or
expand to detect more divergent sequences. Gap penalties account for the introduction
of a gap - on the evolutionary model, an insertion or deletion mutation - in both
nucleotide and protein sequences, and therefore the penalty values should be
proportional to the expected rate of such mutations. The quality of the alignments
produced therefore depends on the quality of the scoring function.

5. Sequence Databases
The repositories for the genomic sequences are

National Center for Biotechnology Information (NCBI) is part of the United States
National Library of Medicine (NLM), a branch of the National Institutes of Health. The
NCBI is located in Bethesda, Maryland and was founded in 1988 through legislation
sponsored by Senator Claude Pepper. The NCBI houses genome sequencing data in
GenBank and an index of biomedical research articles in PubMed Central and PubMed,
as well as other information relevant to biotechnology. All these databases are available
online through the Entrez search engine. The NCBI is directed by David Lipman, one
of the original authors of the BLAST sequence alignment program and a widely
respected figure in Bioinformatics. The NCBI has had responsibility for making
available the GenBank DNA sequence database since 1992 as shown in fig. 16.
GenBank coordinates with individual laboratories and other sequence databases such
as those of the European Molecular Biology Laboratory (EMBL) and the DNA Data
Bank of Japan (DDBJ). Since 1992, NCBI has grown to provide other databases in
addition to GenBank. NCBI provides Online Mendelian Inheritance in Man, the
Molecular Modeling Database (3D protein structures), dboSNP a database of single-
nucleotide polymorphisms, the Unique Human Gene Sequence Collection, a Gene Map
of the human genome, a Taxonomy Browser, and coordinates with the National Cancer
Institute to provide the Cancer Genome Anatomy Project.
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Fig. 16. NCBI portal

The NCBI assigns a unique identifier (Taxonomy ID number) to each species of
organism. The NCBI has software tools that are available by WWW browsing or by
FTP. For example, BLAST is a sequence similarity searching program. BLAST can do
sequence comparisons against the GenBank DNA database in less than 15 seconds. The
NCBI Bookshelf is a collection of freely available, downloadable, on-line versions of
selected biomedical books. The Bookshelf has various titles covering aspects of
molecular biology, biochemistry, cell biology, genetics, microbiology, a couple of
disease states from a molecular and cellular point of view, research methods, and
virology. Some of the books are online versions of previously published books, while
others, such as Coffee Break (book), are written and edited by NCBI staff. The
Bookshelf is a complement to the Entrez PubMed repository of peer-reviewed
publication abstracts in that Bookshelf contents provide established perspectives on
evolving areas of study and a context in which many disparate individual pieces of
reported research can be organized.

European Molecular Biology Laboratory (EMBL) is a molecular biology research
institution supported by 20 European countries and Australia as associate member state.
The EMBL was created in 1974 and is a non-profit organisation funded by public
research money from its member states. Research at EMBL is conducted by
approximately 85 independent groups covering the spectrum of molecular biology. The
Laboratory operates from five sites: the main Laboratory in Heidelberg, and Outstations
in Hinxton (the European Bioinformatics Institute (EBI)), Grenoble, Hamburg, and
Monterotondo near Rome as in fig. 17. Each of the sites has a research specific field.
At EBI, the research is oriented towards computational biology and bioinformatics. At
Grenoble and Hamburg the research is in the field of structural biology. At
Monterotondo the research is focused mainly on mouse models for clinical research. At
the headquarters in Heidelberg, there are big departments in Cell Biology and Gene
Expression as well as smaller complementing the aforementioned research fields.
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Fig. 17. EMBL portal

The cornerstones of EMBL's mission are: to perform basic research in molecular
biology and molecular medicine, to train scientists, students and visitors at all levels, to
offer vital services to scientists in the member states, to develop new instruments and
methods in the life sciences, and to actively engage in technology transfer. EMBL'S
international PhD Programme has a student body of about 170. The Laboratory also
sponsors an active Science and Society programme. Many scientific breakthroughs
have been made at EMBL, most notably the first systematic genetic analysis of
embryonic development in the fruit fly by Christiane Nusslein-Volhard and Eric
Wieschaus, for which they were awarded the Nobel Prize for Medicine in 1995.

DNA Data Bank of Japan (DDBJ) is a DNA data bank. It is located at the National
Institute of Genetics (NIG) in the Shizuoka prefecture of Japan. It is also a member of
the International Nucleotide Sequence Database Collaboration or INSDC. It exchanges
its data with European Molecular Biology Laboratory at the European Bioinformatics
Institute and with GenBank at the National Center for Biotechnology Information on a
daily basis. Thus these three databanks contents the same data at any given time. DDBJ
began data bank activities since 1986 at NIG and it boasts to be the only nucleotide
sequence data bank in Asia. Although DDBJ mainly receives its data from Japanese
researchers, however it can accept data from a contributor belonging to any other
country as in fig. 18.
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Fig. 18. DDBJ Portal

DDBJ is primarily funded by the Japanese Ministry of Education, Culture, Sports,
Science and Technology (MEXT). DDBJ has an international advisory committee
which consists of nine members, 3 members each from Europe, US, and Japan. This
committee advice DDBJ about its maintenance, management and future plans once a
year. Apart from this DDBJ also has an international collaborative committee which
advises on various technical issues related to international collaboration and consists of
working-level participants.

6. Softwares Used in Sequence Alignment

I\Slb. Name Function Website Link

1 ALIGN Sequence Analysis | http://www.ebi.ac.uk/Tools/emboss/align

2 CENSOR Sequence Analysis | http://www.ebi.ac.uk/Tools/censor/

3 CLUSTALW?2 Sequence Analysis | http://www.ebi.ac.uk/Tools/clustalw2/

4 CpG Plot/ Sequence Analysis | http://www.ebi.ac.uk/Tools/emboss/
CpGreport cpgplot/

5 Genewise Sequence Analysis | http://www.ebi.ac.uk/Tools/Wise2/

6 Kalign Sequence Analysis | http://www.ebi.ac.uk/Tools/kalign

7 MAFFT Sequence Analysis | http://www.ebi.ac.uk/Tools/mafft/

8 MUSCLE Sequence Analysis | http://www.ebi.ac.uk/Tools/muscle/
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http://www.ebi.ac.uk/Tools/censor/
http://www.ebi.ac.uk/Tools/clustalw2/
http://www.ebi.ac.uk/Tools/emboss/%20cpgplot/
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http://www.ebi.ac.uk/Tools/kalign
http://www.ebi.ac.uk/Tools/mafft/
http://www.ebi.ac.uk/Tools/muscle/

9 Pepstats/ Sequence Analysis | http://www.ebi.ac.uk/Tools/emboss/
Pepwindow/Pepinfo pepinfo/

10 | PromoterWise Sequence Analysis | http://www.ebi.ac.uk/Tools/Wise2/
promoterwise.html

11 | SAPS Sequence Analysis | http://www.ebi.ac.uk/Tools/saps/

12 | T-coffee Sequence Analysis | http://www.ebi.ac.uk/Tools/t-coffee/

13 | Transeq Sequence Analysis | http://www.ebi.ac.uk/Tools/emboss/transeq/

14 | COBALT Sequence Analysis | http://www.ncbi.nlm.nih.gov/tools/ cobalt/

15 | Genome Sequence Analysis | http://www.ncbi.nlm.nih.gov/projects/

Workbench gbench/

16 | ORF Finder Sequence Analysis | http://www.ncbi.nlm.nih.gov/gorf/gorf/
html

17 | Primer - BLAST Sequence Analysis | http://www.ncbi.nlm.nih.gov/tools/ primer-
blast

18 | ProSplign Sequence Analysis | http://www.ncbi.nlm.nih.gov/sutils/static/pr
osplin/prosplign.html

19 | Splign Sequence Analysis | http://www.ncbi.nlm.nih.gov/sutils/ splign/

20 | VecScreen Sequence Analysis | http://www.ncbi.nlm.nih.gov/VecScreen/Ve
cScreen.html

21 | Sequence Analysis | Sequence analysis | http://www.informagen.com/SA/

22 | SeWeR Sequence analysis | http://www.bioinformatics.org/sewer/

23 | Motif Search Sequence analysis | http://nbcl1.biologie.uni-
kl.de/framed/left/menu/auto/right/
motifsearch?/ index.pl

24 | DNA Translator Sequence analysis | http://nbcll.biologie.uni-
kl.de/framed/left/menu/auto/right/JDT/

25 [ Non coding RNA | Sequence analysis | http://nbc11.biologie.uni-

Gene Finder kl.de/framed/left/menu/auto/right/
ncRnaGeneFinder/index.pl

26 | TransTerm Sequence analysis | http://nbcll.biologie.uni-

kl.de/framed/left/menu/auto/right/
transterm/
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INTRODUCTION

Phylogenetics is the study of evolutionary relationships. Biological sequences (amino acids
and nucleotides) are the product of evolutionary history and phylogenies are graphical
summaries of this history. Phylogenetic analysis of a family of related nucleic acids and protein
sequences is the determination of how the family might have been derived during evolution.
Phylogenetic analysis is the means of inferring or estimating the relationships. The
evolutionary history from phylogenetic analysis is generally depicted as branching or treelike
diagrams. Traditionally morphological features were used to derive relationships but now a
days molecular information is used to derive relationships, which are more informative than
the traditional anatomic or morphological characters. Molecular phylogeny provides new,
powerful and independent tests of the theory of evolution. Evolution supported molecular
phylogeny to be consistent with classical phylogeny. It also predicted that all parts of the
genome should evolve in parallel and exhibit the same taxonomic pattern. The recent
development of techniques to analyze and sequence proteins and nucleic acids has allowed
biologists to determine relatedness of organisms and to construct phylogenetic sequences.
Molecular phylogenetics attempts to determine the rates and patterns of change occurring in
DNA and proteins and to construct the evolutionary history of genes and organisms.

WHY DO WE BUILD PHYLOGENETIC TREES

The main aim of phylogenetics is to discover rates of evolutionary change, find origin of
diseases, prediction of sequence function and population history. In addition to analyzing
changes that have occurred in the evolution of different organisms, the evolution of a family
of sequences may be studied. On the basis of analysis, sequences that are most closely related
can be identified by their occupying neighboring branches on a tree. When a gene family is
found in an organism and group of organisms, phylogenetic relationships among the genes
can help to predict which ones might have an equivalent function. These functional
predictions can be tested by genetic experiments.Phylogenetic analysis can be used to study
the changes occurring in the rapidly changing species like virus. Analysis of types of changes
within a population can reveal whether or not a particular gene is under selection.

TERMINOLOGIES

A phylogeny or evolutionary tree, represents evolutionary relationships among a set of
organisms or groups of organisms, called taxa (Fig. 1). Understanding phylogeny is like
reading a family tree. The root of tree represents the ancestral lineage and the tips of branches
represent the descendants of that ancestor. Moving from root to tip means moving forward in
time. When a lineage splits (speciation), it represents a branching on a phylogeny.Whenever
speciation occurs, a single ancestral lineage give rise to two or more daughter lineages.Two
descendants that split from the same node are called sister groups. Branches connect nodes

67



uniquely and define the relationship between the taxonomic units in terms of descent and
ancestry. Only one branch can connect any two adjacent nodes. The branching pattern of the
tree is called topology, and the branch length usually represents the number of changes that
have occurred in the branch. Branches on phylogenetic trees may be scaled representing the
amount of evolutionary change, time or both, under the assumption of molecular clock or they
may be unscaled with no correspondence with either time or amount of evolutionary change.
Phylogenies trace patterns of shared ancestry between lineages. Each lineage has a part of its
history that is unique to it alone and parts that are shared with other lineages. Similarly, each
lineage has ancestors that are unique to that lineage and ancestors that are with other lineages-
common ancestors (Fig. 2).Clade includes a common ancestor and all the descendants of that
ancestor. When clades are nested within one another, they form a nested hierarchy.

Phylogenetic trees may be rooted or un-rooted (Fig. 3). In rooted trees, a particular node is
called the root, representing a common ancestor from which a unique path leads to any other
node. In case of un-rooted trees, branching relationship between taxa are specified by the way
they are connected to each other but the position of common ancestor is not. For example, on
an unrooted tree with five species, there are five branches on which tree can be rooted. Rooting
on each of the five branches has different implications for evolutionary relationships.

Fly

Fig. 1: Parts of a phylogenetic tree

Fig. 2: Each box represents a clade
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Fig. 3. Rooted and rooted phylogenetic tress
ADVANTAGES OF PHYLOGENETIC CLASSIFICATION

Phylogenetic classification has two main advantages over the Linnaean system. First,
phylogenetic classification tells you something important about the organism: its evolutionary
history. Second, phylogenetic classification does not attempt to "rank” organisms. Linnaean
classification "ranks" groups of organisms artificially into kingdoms, phyla, orders, etc. This
can be misleading as it seems to suggest that different groupings with the same rank are
equivalent.

There is just no reason to think that any two identically ranked groups are comparable and by
suggesting that they are, the Linnaean system is misleading. So it seems that there are many
good reasons to switch to phylogenetic classification. However, organisms have been named
using the Linnaean system for many hundreds of years. How are biologists making the
transition to phylogenetic classification?

CONSTRUCTION OF PHYLOGENETIC TREE

Molecular phylogenetic tree construction can be divided into four steps (Felsenstein, 2004):
Choosing sequences

Multiple sequence alignment

Determining a tree building method and

Assessing tree reliability

COow>

A. CHOICE OF SEQUENCE

For constructing molecular phylogenetic trees, one can use either nucleotide or protein
sequence data. The choice of molecular markers is an important matter because it can make a
major difference in obtaining a correct tree. The decision to use nucleotide or protein sequences
depends on the properties of the sequences and the purpose of study. For studying very closely
related organisms nucleotide sequences can be used. For studying the evolution of more widely
divergent groups of organisms, one may choose either slowly evolving nucleotide sequences,
such as ribosomal RNA or protein sequences. If the phylogenetic relationships to be delineated
are at the deepest level, such as between bacteria and eukaryotes, using conserved protein
sequences makes more sense than using nucleotide sequences. DNA sequences are sometimes
more biased than protein sequences because of preferential codon usage in different organisms.
In this case, different codons for the same amino acid are used at different frequencies, leading
to sequence variations not attributable to evolution. In addition, the genetic code of
mitochondria varies from the standard genetic code. Therefore, for comparison of mitochondria
protein-coding genes, it is necessary to translate the DNA sequences into protein sequences.
Protein sequences allow more sensitive alignment than DNA sequences because the former has
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twenty characters versus four in the latter. For moderately divergent sequences, it is almost
impossible to use DNA sequences to obtain correct alignment. In addition, to align protein-
coding DNA sequences, when gaps are introduced to maximize alignment scores, they almost
always cause frame-shift errors, making the alignment biologically meaningless. Synonymous
substitutions are nucleotide changes in the coding sequence that do not result in amino acid
sequence changes for the encoded protein. Non synonymous substitutions are nucleotide
changes that result in alterations in the amino acid sequences. Comparing the two types of
substitution rates helps to understand an evolutionary process of a sequence. For example, if
the non-synonymous substitution rate is found to be significantly greater than the synonymous
substitution rate, this means that certain parts of the protein are undergoing active mutations
that may contribute to the evolution of new functions. This is described as positive selection or
adaptive evolution. On the other hand, if the synonymous substitution rate is greater than the
non-synonymous substitution rate, this causes only neutral changes at the amino acid level,
suggesting that the protein sequence is critical enough that changes at the amino acid sequence
level are not tolerated. In this case, the sequence is said to be under negative or purifying
selection.

B. MULTIPLE SEQUENCE ALIGNMENT

The second step in making phylogenetic tree is sequence alignment. This is the most critical
step in the procedure because it establishes positional correspondence in evolution. Only the
correct alignment produces correct phylogenetic inference because aligned positions are
assumed to be genealogically related. Incorrect alignment leads to systematic errors in the final
tree or even a completely wrong tree. Therefore it is essential that the sequences are correctly
aligned. Two approaches are used for aligning sequence: Global alignment (similarity across
the full stretch of sequences) and a Local alignment (similarity in parts of the sequences).
Although many programs exist that can generate a multiple alignment from unaligned
sequences, extreme care must be taken when interpreting the results. An alignment may show
perfect matching of a known active-site residue with an identical residue in a well characterized
protein family, but, if the alignment is incorrect, any inference about function will also be
incorrect. A clustal program such as ClustalX which aligns sequences according to an explicitly
phylogenetic criterion, is the most commonly used program for the multiple alignment of
biochemical sequences. The multiple alignment is inefficient with sequences if INDELs are
common and substitution rates are high, most studies restrict comparisons to regions in which
alignments are relatively obvious. The substitution model should be given the same emphasis
as alignment and tree building. The simplest nucleotide substitution model is the Jukes—Cantor
model, which assumes that all nucleotides are substituted with equal probability. A formula for
deriving evolutionary distances that include hidden changes is introduced by using a
logarithmic function.

dap = —(3/4)In[1 - (4/3)pas]
where d,p is the evolutionary distance between sequences A & B and p,p is the observed
sequence distance measured by the proportion of substitutions over the entire length of the
alignment. Another model is the Kimura two-parameter model. This is a more sophisticated
model in which mutation rates for transitions and transversion are assumed to be different,
which is more realistic. According to this model, transitions occur more frequently than
transversions, which, therefore, provides a more realistic estimate of evolutionary distances.

The Kimura model uses the following formula:
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dap = —(1/2) In(1 — py; — pew) — (1/4)In(1 — 2py,)
where dyg is the evolutionary distance between sequences A and B, p;; is the observed
frequency for transition, and p;, the frequency of transversion. The substitution model
influences both alignment and tree building. For protein sequences, the evolutionary distances
from an alignment can be corrected using a Protein Accepted Mutation (PAM) or Jones, Taylor,
Thornton (JTT) amino acid substitution matrix whose construction already takes into account
the multiple substitutions.

Alternatively, protein equivalents of Jukes—Cantor and Kimura models can be used to correct
evolutionary distances. For example, the Kimura model for correcting multiple substitutions in
protein distances is:

d=—-In(1-—p-0.2p?
where p is the observed pairwise distance between two sequences.

At the present time, two elements of the substitution model can be computationally assessed
for nucleotide data but not for amino acid or codon data. One element is the model of
substitution between particular bases; the other is the relative rate of overall substitution among
different sites in the sequence. Substitutions are more frequent between bases that are
biochemically more similar. In the case of DNA, the transitions between purine to purine and
pyrimidine to pyrimidine are usually more frequent than the transversion between purine to
pyrimidine and pyrimidine to purine. Such biases will affect the estimated divergence between
two sequences. Specification of the relative rates of substitution among particular residues
usually takes the form of a square matrix. The most widely used models of amino acid
substitution include distance based methods, which are based on matrixes such as PAM and
BLOSUM. Dayhoff’s PAM 001 matrix is an empirical model that scales probabilities of
change from one amino acid to another in terms of an expected 1% change between two amino
acid sequences. Phylogenetic distances are calculated with the assumption that the probabilities
in the matrix are correct. There are currently two main categories of tree-building methods.
Although any of the parameters in a substitution model might prove critical for a given data
set, the best model is not always the one with the most parameters. For a given DNA sequence
comparison, a two-parameter model will require that the summed base differences be sorted
into two categories and into six for a six parameter model. The number of sites sampled in each
of the six categories would be much smaller to give a reliable estimate. For protein sequences,
the model used is often dependent on the degree of sequence similarity. For more divergent
sequences, the BLOSUM matrices are often better, whereas the PAM matrix is suited for more
highly similar sequences.

C. TREE BUILDING METHOD

Tree building method is one of the steps of construction of phylogenetic trees. These may be
divided into Distance based method and character based method.

a) DISTANCE BASED METHODS
These methods employ the number of changes between each pair in a group of sequences to
produce a phylogenetic tree. These methods use the amount of dissimilarity (the distance)

between two aligned sequences to derive trees. The distance method was pioneered by Feng
and Doolittle. The algorithms for the distance based tree building method can be subdivided
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into either clustering based or optimality based. The clustering type algorithms compute a tree
based on a distance matrix starting from the most similar sequence pairs. These algorithms
include an unweighted pair group method using arithmetic average (UPGMA) and neighbour
joining (NJ). The optimality based algorithms compare many alternative tree topologies and
select one that has the best fit between estimated distances in the tree and the actual
evolutionary distances. This category includes the Fitch-Margoliash and minimum
evolutionary algorithms.

1. Unweighted Pair Group Method with Arithmetic Mean (UPGMA)

The UPGMA method is the simplest method of tree construction. It joins tree branches based
on the criterion of greatest similarity. It is not strictly an evolutionary distance method. It
employs a sequential clustering algorithm, in which local topological relationship are identified
in the order of similarity, and the phylogenetic tree is built in a stepwise manner. Firstly, two
nodes which are most similar to each other is identified among all nodes and treat these as new
single node. Such a node is referred to as a composite node. Subsequently, among the new
group of nodes, the pair with highest similarity is identified and so on. UPGMA often produces
erroneous tree topologies.

2. Neighbor-Joining (NJ)
The UPGMA method uses unweighted distances and assumes that all taxa have constant
evolutionary rates. Since the molecular clock assumption is often not met in biological
sequences, so NJ method can be used, which is somewhat similar to UPGMA in that it builds
a tree by using stepwise reduced distance matrices. It does not require that all lineages have
diverged by equal amounts. The method is especially suited for datasets comprising lineages
with largely varying rates of evolution (Saitou, 1987). The NJ method is a special case of the
star decomposition method. The fully resolved tree is decomposed from a fully unresolved star
tree by successively inserting branches between a pair of closest neighbours and the remaining
terminals in the tree. The raw data are provided as distance matrix and the initial tree is a star
tree. Then a modified distance matrix is constructed in which the separation between each pair
of nodes is adjusted on the basis of their divergence from all other nodes. The tree is constructed
by linking the least-distant pair of nodes in this modified matrix. When two nodes are linked,
their common ancestral node is added to the tree and the terminal nodes with their respective
branches are removed from the tree. This pruning process converts the newly added common
ancestor into a terminal node on a tree of reduced size. At each stage in the process two terminal
nodes are replaced by one new node. The process is complete when two nodes remain,
separated by a single branch. The NJ method produces an unrooted tree. It is fast and thus
suited for large datasets. Sequence information is reduced. The methods is comparatively very
fast. Algorithm for finding NJ tree is:

dygr =dgg —1/2x(ry +15)
whered 5+ is the converted distance between A and B and d, is the actual evolutionary
distance between A and B. The value of r, (or r) is the sum of distances of A (or B) to all
other taxa.

3. Fitch-Margoliash Least Square Method (FM)

Optimality based methods have a well-defined algorithm to compare all possible tree
topologies and select a tree that best fits the actual evolutionary distance matrix. Based on the
differences in optimality criteria, there are two types of algorithms, Fitch—Margoliash and
minimum evolution (Fitch, 1967). The Fitch—Margoliash (FM) method selects a best tree
among all possible trees based on minimal deviation between the distances calculated in the
overall branches in the tree and the distances in the original dataset. It starts by randomly
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clustering two taxa in a node and creating three equations to describe the distances, and then
solving the three algebraic equations for unknown branch lengths. The clustering of the two
taxa helps to create a newly reduced matrix. This process is repeated until a tree is completely
resolved. The method searches for all tree topologies and selects the one that has the lowest
squared deviation of actual distances and calculated tree branch lengths. The optimality
criterion is expressed in the following formula:

4. Minimum Evolution (ME)

In the ME method, distance measures that correct for multiple hits at the same sites are used.
The construction of a minimum evolution tree is time-consuming because, in principle, the
values for all topologies must be evaluated. The number of possible topologies (unrooted trees)
rapidly increases with the number of taxa so it becomes very difficult to examine all topologies.
While the NJ tree is usually the same as the ME tree, when the number of taxa is small the
difference between the NJ and ME trees can be substantial. If a long DNA or amino acid
sequence is used, the ME tree is preferable. When the number of nucleotides or amino acids
used is relatively small, the NJ method generates the correct topology more often than does the
ME method. It constructs a tree with a similar procedure, but uses a different optimality
criterion that finds a tree among all possible trees with a minimum overall branch length. The
optimality criterion relies on the formula:

S = z bi

where b; is the i branch length. Searching for the minimum total branch length is an indirect
approach to achieving the best fit of the branch lengths with the original dataset.

b) CHARACTER BASED METHODS

Character-based methods are based directly on the sequence characters rather than on pairwise
distances. A character is a heritable trait possessed by an organism. When amino acid are used
we have 20 possible states per position (character), when DNA is used there are 4 states. The
actual nucleotide or amino acid occupying a site is the character state. The character-based
approaches treat each substitution separately rather than reducing all of the individual variation
to a single divergence value. Ancestral sequence can also be inferred. The two most popular
character-based approaches are maximum parsimony (MP) and maximum likelihood (ML)
methods.

1. Maximum Parsimony (MP)

The parsimony method chooses a tree that has the fewest evolutionary changes or shortest
overall branch lengths. The MP approach is in principal similar to ME approach but the latter
is distance based instead of character based. Parsimony tree building works by searching for
all possible tree topologies and reconstructing ancestral sequences that require the minimum
number of changes to evolve to the current sequences. To save computing time, only a small
number of sites that have richest phylogenetic information are used in tree determination. These
sites are called informative sites, which are defined as sites that have at least two different kinds
of characters, each occurring at least twice. Informative sites are the ones that can often be
explained by a unique tree topology. Other sites are non-informative, which are constant sites
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or sites that have changes occurring only once. Constant sites have the same state in all taxa
and are obviously useless in evaluating the various topologies. The sites that have changes
occurring only once are not very useful either for constructing parsimony trees because they
can be explained by multiple tree topologies. The non-informative sites are thus discarded in
parsimony tree construction. Once the informative sites are identified and non-informative sites
are discarded, the minimum, number of substitutions at each informative site is computed for
a given tree topology. The total number of changes at all informative sites is summed up for
each possible tree topology. The tree that has smallest number of changes is chosen as the best
tree (Kitching, 1998). The key to counting a minimum number of substitutions for a particular
site is to determine the ancestral character states at internal nodes. Because these ancestral
character states are not known directly, multiple possible solutions may exist. In this case, the
parsimony principal applies to choose the character states that result in a minimum number of
substitutions. The inference of an ancestral sequence is made by first going from the leaves to
internal nodes and to the common root to determine all possible ancestral character states and
then going back from the common root to the leaves to assign sequences that require the
minimum number of substitutions.

2. Maximum Likelihood (ML)

Another character-based approach is ML, which uses probabilistic models to choose a best tree
that has the highest probability or likelihood of reproducing the observed data (Felsenstein,
1973). It finds a tree that most likely reflects the actual evolutionary process. ML is an
exhaustive method that searches every possible tree topology and considers every position in
an alignment, not just informative sites. It sometimes also incorporates parameters that account
for rate variations across sites. This method uses probability calculations to find a tree that best
accounts for the variation in a set of sequences. The likelihood becomes the sum of the
probabilities of each possible reconstruction of substitutions under a particular substitution
process. The likelihoods for all the sites are multiplied to give an overall “likelihood of the
tree” (i.e., the probability of the data given the tree and the substitution process). As one can
imagine, for one particular tree, the likelihood of the data is low at some sites and high at others.
For a “good” tree, many sites will have higher likelihood, so the product of likelihoods is high.
For a “poor” tree, the reverse will be true. The method is similar to the maximum parsimony
method in that the analysis is performed on each column of a multiple sequence alignment. All
possible trees are considered. Hence, the method is only feasible for a small number of
sequences. The number of sequence changes or mutations that may have occurred to give the
sequence variation is considered for each tree. Because the rate of appearance of new mutations
is very small, the more mutations needed to fit a tree to the data, the less likely that tree. Thus,
the method can be used to explore relationships among more diverse sequences, conditions that
are not well handled by maximum parsimony methods. The main disadvantage of maximum
likelihood methods is this method uses great amounts of computational time, it is usually
impractical to perform a complete search that simultaneously optimizes the substitution model
and the tree for a given data set. However, with faster computers, the maximum likelihood
method is seeing wider use and is being used for more complex models of evolution. ML works
by calculating the probability of a given evolutionary path for a particular extant sequence. The
probability values are determined by a substitution model (either for nucleotides or amino
acids). For example, for DNA sequences using the Jukes—Cantor model, the probability (P)
that a nucleotide remains the same after time t is:

P(t)=1/4+3/4e™*
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where « is the nucleotide substitution rate in the Jukes—Cantor model, which is either
empirically assigned or estimated from the raw datasets. The most commonly used heuristic
ML method is called quartet puzzling, which uses a divide-and-conquer approach.

PHYLOGENETIC ANALYSIS USING BIOINFORMATICS TOOLS

Bioinformatics has transformed the discipline of biology from a purely lab-based science to an
information science as well. Now it becomes easier to do phylogenetic analysis by using
different softwares. Some of the softwares are free (PHYLIP) and some are not free (PAUP).
To do phylogeny with the help of bioinformatics tools it is easier to get results.

PHYLIP (the PHYLogeny Inference Package)

PHYLIP is the most widely-distributed phylogeny package. It is a package of programs for
inferring phylogenies (evolutionary trees) freely available on web. Methods that are available
in the package include parsimony, distance matrix, and likelihood methods and bootstrapping.
Data types that can be handled include molecular sequences, gene frequencies, restriction sites
and fragments, distance matrices, and discrete characters. The data are read into the program
from a text file, which the user can prepare using any word processor.

Programs of the PHYLIP package that make distance matrix include the following programs
DNADIST computes distances among input nucleic acid sequences. PROTDIST computes a
distance measure for protein sequences, based on the Dayhoff PAM model. Distance analysis
programs in PHYLIP includes FITCH which estimates a phylogenetic tree assuming additivity
of branch lengths using the Fitch-Margoliash method and does not assume a molecular clock.
KITSCH estimates a phylogenetic tree using the Fitch-Margoliash method but under the
assumption of a molecular clock. NEIGHBOR estimates phylogenies using the neighbor-
joining or UPGMA method.

The main programs for maximum parsimony analysis in the PHYLIP package are DNAPARS
which treats gaps as a fifth nucleotide state. DNAPENNY which performs parsimonious
phylogenies by branch-and-bound search that can analyze more sequences. DNACOMP, which
performs phylogenetic analysis using the compatibility criterion. Rather than searching for
overall parsimony at all sites in the multiple sequence alignment, this method finds the tree that
supports the largest number of sites. This method is recommended when the rate of evolution
varies among sites. DNAMOVE which performs parsimony and compatibility analysis
interactively. For analysis of protein sequences, the program is: PROTPARS which counts the
minimum number of mutations to change a codon for the first amino acid into a codon for the
second amino acid, but only scores those mutations in the mutational path that actually change
the amino acid.

PHYLIP includes two programs for maximum likelihood analysis DNAML estimates
phylogenies from nucleotide sequences by the maximum likelihood method, allowing for
variable frequencies of the four nucleotides, for unequal rates of transitions and transversions.
DNAMLK estimates phylogenies from nucleotide sequences by the maximum likelihood
method in the same manner as DNAML, but assumes a molecular clock. One starts with an
evolutionary model of sequence change that provides estimates of rates of substitution of one
base for another in a set of nucleic acid sequences. Once the analysis have done then we have
to see the phylogenetic tree by choosing the program DRAWGRAM which made rooted tree
and DRAWTREE which made unrooted tree.
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D) TREE RELIABILITY

Although various methods have been developed for reconstructing phylogenetic trees, there
exist few methods for evaluating the statistical confidence of an inferred phylogeny or for
testing whether one phylogeny is significantly better than another. There are two questions that
need to be answered in assessing reliability. One is how reliable the tree or a portion of the tree
is; and the second is whether this tree is significantly better than another tree. To answer the
first question, we need to use analytical resampling strategies such as bootstrapping and
jackknifing, which repeatedly resample data from the original dataset. For the second question,
conventional statistical tests are needed. Bootstrapping is a statistical technique that tests the
sampling errors of a phylogenetic tree. It does so by repeatedly sampling trees through slightly
changed datasets. The robustness of the original tree can be assessed by this way. The rationale
for bootstrapping is that a newly constructed tree is possibly biased owing to incorrect
alignment or chance fluctuations of distance measurements. To determine the robustness or
reproducibility of the current tree, trees are repeatedly constructed with slightly disturbed
alignments that have some random fluctuations introduced. A truly robust phylogenetic
relationship should have enough characters to support the relationship even if the dataset is
disturbed in such a way. Otherwise, the noise introduced in the resampling process is sufficient
to generate different trees, indicating that the original topology may be derived from weak
phylogenetic signals. Thus, this type of analysis gives an idea of the statistical confidence of
the tree topology. Bootstrap resampling relies on redistribution of original sequence datasets.
There are two redistribution strategies. One way to produce disturbances by random
replacement of sites. This is referred to as Nonparametric bootstrapping. Another disturbance
is by making new datasets based on a particular sequence distribution, which is Parametric
bootstrapping. Both types of bootstrapping can be applied to the distance, parsimony, and
likelihood tree construction methods. A large number of bootstrap resampling steps are needed
to achieve meaningful results. It is generally recommended that a phylogenetic tree should be
bootstrapped 500 to 1,000 times. On the basis of simulation studies, it has been suggested that,
under favorable conditions bootstrap values greater than 70% correspond to a probability of
greater than 95% that the true phylogeny has been found. Under less favorable conditions,
bootstrap values greater than 50% will be overestimates of accuracy. Simply put under certain
conditions high bootstrap values can make the wrong phylogeny look good; therefore, the
conditions of the analysis must be considered. Bootstrapping can be used in experiments in
which trees are recomputed after internal branches are deleted one at a time. Bootstrapping
does not assess the accuracy of a tree, but only indicates consistency and stability of individual
clades of the tree. This means that, because of systematic errors, wrong trees can still be
obtained with high bootstrap values. Therefore, bootstrap results should be interpreted with
caution. Unusually high GC content in the original dataset, unusually accelerated evolutionary
rates and unrealistic evolutionary models are the potential causes for generating biased trees,
as well as biased bootstrap estimates, which come after the tree generation. In jackknifing, one
half of the sites in a dataset are randomly deleted, creating datasets half as long as the original.
Each new dataset is subjected to phylogenetic tree construction using the same method as the
original. The advantage of jackknifing is that sites are not duplicated relative to the original
dataset and that computing time is much shortened because of shorter sequences. One
disadvantage of this approach is that the size of datasets has been changed into one half and
that the datasets are no longer considered replicates. The statistical methodology for testing
phylogenies is in a primitive state. This is because of two reasons. First, phylogenetic
reconstruction has long been recognized as a problem in statistical inference few authors have
formulated the problem in a statistical framework. Most current methods give one or a few
trees and do not provide information concerning the confidence level of estimated phylogenies.
Second, the problem is complex, because the number of possible alternative trees is large even
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when only a moderate number of taxa are involved. For this reason, most current statistical
tests are heuristic when the number of taxa involved is five or larger. The Bayesian method is
probably the most efficient statistical tests; it does not require bootstrapping because the
Markov chain Monte Carlo (MCMC) procedure itself involves thousands or millions of steps
of resampling. As a result of Bayesian tree construction, posterior probabilities are assigned at
each node of a best Bayesian tree as statistical support. Because of fast computational speed of
MCMC tree searching, the Bayesian method offers a practical advantage over regular
maximum likelihood (ML) and makes the statistical evaluation of ML trees more feasible.
Unlike bootstrap values, Bayesian probabilities are normally higher because most trees are
sampled near a small number of optimal trees. Therefore, they have a different statistical
meaning from bootstrap. The Kishino—Hasegawa (KH) test The KH test sets out to test the null
hypothesis that the two competing tree topologies are not significantly different. A paired
student t-test is used to assess whether the null hypothesis can be rejected at a statistically
significant level. In this test, the difference of branch lengths at each informative site between
the two trees is calculated. The standard deviation of the difference values can then be
calculated. This in turn allows derivation of a t-value which is used for evaluation against the
t-distribution to see whether the value falls within the significant range to warrant the rejection
of the null hypothesis

_Da=D: .
- Sd/ n—-1
Vn

where n is the number of informative sites, t is the test statistic value, D, is the average site-to-
site difference between the two trees, Sd is the standard deviation, and D; is the total difference
of branch lengths of the two trees.

t
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1. Introduction

Molecular characterisation of genetic resources has been adding objectivity and rationality in
decision making for conservation. Plant, animal, fish and microbial genetic resources are being
characterised by various molecular markers, predominantly by microsatellite, AFLP and SNP
covering both nuclear genome as well as mitochondrial genome. These molecular markers have
inbuilt “molecular clock” entrained with evolutionary time scale having “pictures” or
“signatures” of speciation and differentiation of dynamic germplasm in evolutionary pace and
scale. Bioinformatics has not only revolutionised the germplasm characterisation, but had been
proven as indispensable tool for molecular identification of species. Bioinformatics has become
most powerful tool of taxonomy right from microbial meta-genome analysis of hitherto
uncultured microbes, plant, animal and fish species identification. Advances in genome
analysis technology are providing an unprecedented amount of information about animals,
bacterial and viral organisms, and hold great potential for pathogen detection and identification.
Here, a rational approach to the development and application of nucleic acid signatures is
described based on SNP and STR nucleotides. Other bioinformatics tools for classification and
prediction of such molecular data has also been discussed.

2. DNA barcoding of species and its origin

DNA barcoding is a taxonomic method that uses a short genetic marker in an organism's
mitochondrial DNA to identify it as belonging to a particular species. It is based on a relatively
simple concept: most eukaryote cells contain mitochondria and mitochondrial DNA (mtDNA)
has a relatively fast mutation rate, which results in significant variance in mtDNA sequences
between species and, in principle, a comparatively small variance within species. A 648-bp
region of the cytochrome c oxidase subunit I gene (COI) was initially proposed as a potential
‘barcode’'.

The use of nucleotide sequence variations to investigate evolutionary relationships is not a new
concept. Carl Woese used sequence differences in ribosomal RNA (rRNA) to discover archaea,
which in turn led to the redrawing of the evolutionary tree, and molecular markers (e.g.,
allozymes, rDNA, and mtDNAvage ). DNA barcoding provides a standardised method for this
process via the use of a short DNA sequence from a particular region of the genome to provide
a 'barcode’ for identifying species. In 2003, Paul D.N. Hebert from the University of Guelph,
Ontario, Canada, proposed the compilation of a public library of DNA barcodes that may be
linked to named specimens. This library would “provide a new master key for identifying
species, one whose power will rise with increased taxon coverage and with faster, cheaper
sequencing”.

2.1 Identification of birds by species bar code
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In an effort to find a correspondence between traditional species boundaries established by
taxonomy and those inferred by DNA barcoding, Hebert and co-workers sequenced DNA
barcodes of 260 of the 667 bird species that breed in North America (Hebert et al. 2004a). It
was found that every single one of the 260 species had a different COI sequence. 130 species
were represented by two or more specimens. In all of these species, COI sequences were either
identical or were most similar to sequences of the same species. COI variations between species
averaged 7.93%, whereas variation within species averaged 0.43%. In four cases, there were
deep intraspecific divergences, indicating possible new species. Three out of these four
polytypic species are already split into two by some taxonomists. Hebert et al.'s (2004a) results
reinforce these views and strengthen the case for DNA barcoding. They also proposed a
standard sequence threshold to define new species, this threshold, the so-called "barcoding
gap", was defined as 10 times the mean intraspecific variation for the group under study.

2.2 Delimiting cryptic species by DNA bar code

The next major study into the efficacy of DNA barcoding was focused on the neotropical
skipper butterfly, Astraptesfulgerator at the Area Conservacion de Guanacaste (ACG) in north-
western Costa Rica. This species was already known as a cryptic species complex, due to subtle
morphological differences, as well as an unusually large variety of caterpillar food plants.
However, several years would have been required for taxonomists to completely delimit
species. Hebert et al. (2004b) sequenced the COI gene of 484 specimens from the ACG. This
sample included “at least 20 individuals reared from each species of food plant, extremes and
intermediates of adult and caterpillar color variation, and representatives” from the three major
ecosystems where Astraptesfulgeratorwas found. Hebert et al. (2004b) concluded that
Astraptesfulgerator consists of 10 different species in north-western Costa Rica. This
highlights that the results of DNA barcoding analyses can be dependent upon the choice of
analytical methods used by the investigators, so the process of delimiting cryptic species using
DNA barcodes can be as subjective as any other form of taxonomy.

2.3 ldentifying flowering plants by species DNA bar code

Kress et al. (2005) suggest that the use of the COI sequence ““is not appropriate for most species
of plants because of a much slower rate of cytochrome c oxidase | gene evolution in higher
plants than in animals”. A series of experiments was then conducted to find a more suitable
region of the genome for use in the DNA barcoding of flowering plants.

Three criteria were set for the appropriate genetic loci:

i.  Significant species-level genetic variability and divergence
ii. An appropriately short sequence length so as to facilitate DNA extraction and
amplification, and
iii.  The presence of conserved flanking sites for developing universal primers.

At the conclusion of these experiments, Kress et al. (2005) proposed the nuclear internal
transcribed spacer region and the plastid trnH-psbAintergenic spacer as a potential DNA
barcode for flowering plants. These results suggest that DNA barcoding, rather than being a
'master key' may be a 'master keyring', with different kingdoms of life requiring different keys.

2.4 Strain identification of fungi
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Pucciniagraminis, the causal agent of stem rust, has caused serious disease of small cereal
grains (wheat, barley, oat, and rye) worldwide. P. graminis is the first sequenced representative
of the rust fungi (Uredinales), which are obligate plant pathogens. The rust fungi comprise
more than 7000 species and are one of the most destructive groups of plant pathogens. Stem
rust of wheat has been a serious problem wherever wheat is grown and has caused major
epidemics in North America. In 1999, a new highly virulent race TTKS (Ug99) of P. graminis
was identified in Uganda, and since then has spread, causing a widening epidemic in Kenya
and Ethiopia.

Bioinformatics can play very critical role in identification of species as well as strains and also
its dynamics across globe. The plethora of data both from host and parasite generated by using
latest molecular or biotechnological tools can easily be analysed by bioinformatics tools. The
talk will focus on Ug99 race of P. graminis. How the genome of it can be used to track the
movement of this fungal species and how the bioinformatics tools can be helpful in strain
identifcationP. graminis including Ug99 identification.

3. DNA based signature of domestic species and animal breeds

Mitochondrial DNA markers have been proved to be successful in many species of domestic
animals, being used especially for meat identification, poaching of wild animals, adulteration
of dairy milk, dairy products(like cheese) of various domestic animal species.

The prevalent markers used for the breeds are almost STR but very recently the SNP based
chip has proven its accuracy for breed signature along with details of admixture as well as very
powerful for parentage and pedigree.

3.1 STR based signatures of breeds

A question has generally been asked at various scientific fora with regard to molecular
characterization of breeds as to whether a livestock breed can be identified from a sample of
blood, semen, hair, blood spot, carcass etc. Various attempts have been made in the last couple
of years by the molecular geneticists of the world to answer this question. Some studies have
succeeded in developing a technology for breed certification and breed-specific genetic/DNA
signature in different breeds of cattle in Spain, Portugal and France; horses in Norway, sheep
in Spain, and camel in Kenya. The degree of accuracy of certification of a breed in these studies
was very high ranging between 95% to 99%.

Three methods viz (i) Frequency method (Paetkau et al., 1995), (ii) Bayesian method (Rannala
et al, 1997) and (iii) Distance methods (Goldstein et al 1995) have been used for developing
breed specific signatures. The Bayesian method has been reported to be more accurate with
microsatellite data to the extent of > 99% confidence limits (Corander et al., 2003, Bustamante
et al., 2003).

In the foreign countries, few attempts have been made to develop genetic signatures of some
breeds of livestock in the recent past. For cases of doubtful breed identity where it becomes
difficult to assign an individual to a particular breed due to individual being an admixture of
breeds, the studies have been made to develop breed hybrid index. The review of literature has
therefore been made under two headings: (i) Development of breed-specific signatures/profiles
and (ii) Development of breed hybrid index.
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3.2 SNP chip based DNA signature of breeds

In Japan, Japanese Black and Holstein cattle are appreciated as popular sources of meat, and
imported beef from Australia and the United States is also in demand in the meat industry.
Since the BSE outbreak, the problem of false sales has arisen: imported beef has sometimes
been mislabelled as domestic beef due to consumer concerns. A method is needed to correctly
discriminate between Japanese and imported cattle for food safety. The SNP 50K based chip
can discrimination markers between Japanese and US cattle. There is a report where five US-
specific markers (BISNP7, BISNP15, BISNP21, BISNP23, and BISNP26) has been developed
with allelic frequencies that ranged from 0.102 (BISNP15) to 0.250 (BISNP7) and averaged
0.184. The combined use of the five markers would permit discrimination between Japanese
and US cattle with a probability of identification of 0.858. This result indicates the potential of
the bovine 50K SNP array as a powerful tool for developing breed identification markers.
These markers would contribute to the prevention of falsified beef displays in Japan
(Suekawaet al 2010, Sasazakiet al 2011).

4. DNA based signature of plant variety, example-Basmati rice

Basmati rice has a typical pandan-like (Pandanusamaryllifolius leaf) flavour caused by the
aroma compound 2-acetyl-1-pyrroline.Difficulty in differentiating genuine traditional basmati
from pretenders and the significant price difference between them has led fraudulent traders to
adulterate traditional basmati. To protect the interests of consumers and trade, a PCR-based
assay similar to DNA fingerprinting in humans allows for the detection of adulterated and non-
basmati strains. Its detection limit for adulteration is from 1% upwards with an error rate of
+1.5%. Exporters of basmati rice use 'purity certificates' based on DNA tests for their basmati
rice consignments.It was developed at the Centre for DNA Fingerprinting and Diagnostics,
Labindia, an Indian company has released Kits to detect basmati adulteration. World's First
Single-tube, Multiplex(co-amplify eight microsatellite loci) Microsatellite Assay-based Kit for
Basmati Authentication.

The Basmati Verifiler™ Kit is the world's first product for establishing the authenticity of
Basmati rice samples via a molecular assay. The kit uses a PCR amplification technique based
on Simple Sequence Repeats (SSR) that provides the single most discriminating assay for
Basmati genotyping.

5. DNA based bar-coded signature of fishes

Ward et al (2005) described in a paper the potential of cox1 sequencing, or ‘barcoding’, in to
identification of fish species. In this study, two hundred and seven species of fish, mostly
Australian marine fish, were sequenced (bar coded) for a 655 bp region of the mitochondrial
cytochrome oxidase subunit | gene (cox1l). Most species were represented by multiple
specimens, and 754 sequences were generated. The GC content of the 143 species of teleosts
was higher than the 61 species of sharks and rays (47.1% versus 42.2%), largely due to a higher
GC content of codon position 3 in the former (41.1% versus 29.9%). Rays had higher GC than
sharks (44.7% versus 41.0%), again largely due to higher GC in the 3rd codon position in the
former (36.3% versus 26.8%). Average within-species, genus, family, order and class Kimura
two parameter (K2P) distances were 0.39%, 9.93%, 15.46%, 22.18% and 23.27%, respectively.
All species could be differentiated by their cox1 sequence, although single individuals of each
of two species had haplotypes characteristic of a congener. Although DNA barcoding aims to
develop species identification systems, some phylogenetic signal was apparent in the data. In
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the neighbour-joining tree for all 754 sequences, four major clusters were apparent: chimaerids,
rays, sharks and teleosts. Species within genera invariably clustered, and generally so did
genera within families. Three taxonomic groups—dogfishes of the genus Squalus, flatheads of
the family Platycephalidae, and tunas of the genus Thunnus—were examined more closely.
The clades revealed after bootstrapping generally corresponded well with expectations.
Individuals from operational taxonomic units designated as Squalus species B through F
formed individual clades, supporting morphological evidence for each of these being separate
species. This paper is still widely cited for DNA based fish signature.

6. Different bioinformatics tool for classification and prediction of molecular data

Advances in genome analysis technology are providing an unprecedented amount of
information about animals, bacterial and viral organisms, and hold great potential for pathogen
detection and identification. In this section, a rational approach to the development and
application of nucleic acid signatures is described based on SNP and STR nucleotides.

Regardless of the origin of the SNPs (e.g., sequencing and public databases), once SNPs from
a target organism and its nearest neighbours have been collected, it is necessary to identify
those SNPs that will be useful for species and strain identification. The approach that has been
taken is to use a database of SNP markers to enable phylogenetic analysis to identify
evolutionary clades and the SNPs that define them. The need for large data storage capability,
which facilitates data accessibility, automated SNP prediction (with reduction in manual
intervention), signature delineation and facilitated complex query capability, has been
recognized. Many databases exist as local resources, although some universal databases
housing eukaryotic SNP data have been established (e.g., doSNP). Such global databases have
not been developed for microbial SNP data. Each database created for SNP discovery and
phylogenetic analysis will have different content and different structure that are determined by
the uses of the data. There is no single correct way to design a database but essential content is
necessary not only to allow different polymorphism databases to communicate but to provide
essential information for analysis of the data. Four essential core elements have been defined
and include:

v A unique SNP identifier (allele)
v The data source (e.g., experimental or computational)
v The sequence flanking the allele and the allele(s)

Many databases have been created for the storage and analysis of eukaryotic SNP data, some
are comprehensive or genomewide, and others are specialized or locus-specific. Both types of
databases are essential. The comprehensive database will provide a genome-wide view of
polymorphism, ideal for strain typing and identification. The locus-specific database will
provide a more in-depth view of polymorphisms at a particular locus. A database should
incorporate accurate information that can be used for downstream analyses and have the ability
to integrate with other databases. Some additional information associated with SNPs should be
implemented in the databases. A database and its associated pipeline should be able to process
and store data from a variety of sources, not only from a sequencing machine but external
sequence databases (e.g., GenBank, dbEST). The database should track the organism and
project to which a SNP belongs along with genome-, gene- and exon-specific information
related to a SNP. A downstream analysis requires not just flanking sequences but also a
reference sequence. Other information useful for quality assurance purposes and general data
analysis include the algorithm by which a SNP was discovered and whether it was validated
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experimentally or not validated but computationally predicted and the method by which it was
validated (e.g., genotyping assay or sequencing). The type of SNP should also be included
(e.g., homozygous or heterozygous) along with the average allele frequency. Useful
information, such as the position of the SNP relative to its reference sequence, contig or
amplicon and whether the SNP is silent or pathogenic should be incorporated. To meet the
needs of signature development, a relational database has been created to store information
related to SNP discovery and downstream assay development. The information specific to SNP
discovery and assay design is stored logically in database tables or entities enabling complex
queries on SNPs and related data. Specifically, the SNP table includes, in addition to the SNP
site alleles, the 5" and 3" flanking sequences for assay design. Information related to the gene,
exon and project are stored to facilitate downstream analysis, such as population studies.
Algorithm-specific rank values and method are included, which enable the investigator to
assess the actual quality of each SNP. The SNP table is the central entity in the database.
Associated with each SNP is a name where each SNP can have more than one name. Each SNP
can also be associated with one or more reference sequences. Reference sequences have
multiple purposes including:

v" Serving as a template for PCR primer design
v" Providing flanking sequence around a SNP
v" Being included in a Phrap assembly to ensure an accurate assembly

Reference sequences also provide a starting point for functional annotation. The reference
sequence has associated with it a name, GenBank accession or GI number, description and
sequence. Amplicons are sequences used for SNP prediction. Associated with an amplicon is
information, such as the name and description of each amplicon, primers used for its
amplification and its expected size. Even though this database was designed for higher
eukaryotes and their viruses, the data relationships will remain the same for prokaryotic SNP
data. The SNP marker database serves as the repository of information required for downstream
signature development and assay design activities.

Protocols and basic information of Bioinformatics tools which are important to search SNP,
Sequence data analysis, STR data Analysis, and to develop SNP/STR based DNA signatures
are shown below:

6.1GeneClass 2.0

The effectiveness of Single Nucleotide Polymorphisms (SNPs) for the assignment of various
breeds of cattle and buffalo has already been investigated by analysing numerous SNPs. Breed
assignment has been performed by comparing the Bayesian and frequency methods
implemented in the STRUCTURE 2.2 and GENECLASS 2 software programs. The use of
SNPs for the reallocation of known individuals to their breeds of origin and the assignment of
unknown individuals has already been tested. Exampleisgiven with GeneClass2 in Buffalo
having reference and unknown data of buffalo breeds (Figure 1 and Figure 2). The steps are as
follows

Step 1: Download the GeneClass2 Software(Freely available at
http://www.montpellier.inra.fr/URL B/geneclass/geneclass.html).

Step 2. Preparation of data files for reference and unknown samples.

Step 3. Open the main window of the software (Figure 1) and import both files.
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Step 4.Choice of the parameters like Computational goal, Criteria for computation, Probability
computation and Selection Criteria.

Step 5. By clicking on the start button we can see the result (Figure 2) and finally interpretation
of the result can be drawn.
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Figure 1. Main window of GeneClass2.0 Software
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Figure 2. Identification of 5 unknown breeds of Buffalo with reference data.

6.2 BioEdit

BioEdit is a mouse-driven, easy-to-use sequence alignment editor and sequence analysis tool.
This tool can handle most simple sequence and alignment editing and manipulation functions
that researchers are likely to do on a daily basis, as well as a few basic sequences analyses. For
example alignment of different nucleotide sequence of various bacterial strains in Figure 1 and
Figure 2. The steps are as follows:
File—Newalignment— Import— AccessaryApplications—Clustal W Alignment—Multiple

Alignment (Figure 3) and to see the Alignment result View— ViewMode—Identity/similarity
(Figure 4).
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T.hansoni CCGCEUEAAGETAGCGCAATCACTIGTCTCTTALATGEEGACCTGTATGAATGGCATARCGAGGGEC TTAGCTGTCTCCTCOCCTALGTTAATGAARTTEA)
D.eleganoide CCGCEUGAAGETAGCGCAATCACTIGTCTCITAAATGEAGACCTETATGAATGGCATAACGAGGGCTTAGCTETCTCOTCOCCTAAGT TAATGALATTGA
COBCEUEAAGETAGCGCAATCATTTETCTCT TALATGEGEACCTGTATGAATGGCATAACGAGGGC TTAGCTETCTCOTCOCCTAAGTTAATGAALT TEA|

T.secottii

Figure 3. Nucleotide Sequence Data (16 Different Microbial strains)
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6.3 Cleaver

Cleaver is an application for identifying restriction endonuclease recognition sites that occur
in some taxa (Jarman, 2006). Differences in DNA fragment restriction patterns among taxa are
the basis for many diagnostic assays for taxonomic identification; and are used in some
procedures for removing the DNA of some taxa from pools of DNA from mixed sources.
Cleaver analyses restriction digestion of groups of orthologous DNA sequences simultaneously
to allow identification of differences in restriction pattern among the fragments derived from
different taxa. Cleaver is freely available without registration from its website
(http://cleaver.sourceforge.net/). The program can be run as a script for computers that have
Python 2.3 and necessary extra modules installed. This allows it to run on Gnu/Linux, Unix,
MacOSX and Windows platforms. Standalone executable versions for Windows and MacOSX
operating systems are also available. The protocol for using the software is shown in Figure 5
and Figure 6.
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http://cleaver.sourceforge.net/

B Cleaver

File Endonucleases Sequences Analyses Settings Information

Endonuclease | Recognition sequence | Site length | Cut overhang | |sozechizomers | Compatible cutters

O eyl g E EGEE g 3 205 BsaHl, BstACl, Hinll, Hapd2l Aeyl, Asull, Barlll, Bpuldl, Bsa2dl, |

O Adel g E?CNN Elg g 9 33 Dralll &del, AhaMl, Byll, Bscdl, Bsell, Bsiv

O afal g : E T -? E g : 4 0 [blunt] Cepbl, Rsal Al Blunt cutters

O afel g -? E E El g B 0 [blunt] AorTHI, Ecod7ll, Funl All blunt cutters

O e g ' GE1T TAA E g ] 48] Bf, BapT), Bst9@l, MzpCl, Whadbdl A1, BRI, BspTI, Bst38l, MspCl, Yha

O & g NT CRY Gl g 4 4(5) Aflll, BtDSI, Bral, AflI, Bep191, By

O agel g A{T CCG G'l g ' ] 4[5 AsiGl, BshTl, Cspal, Pindl Agel, Aorl3H1, AsiGl, BN, Bsaw!, B

O shd 5 GAENH_HNNGT c 3 1 1(3) AspEl, Diil, Eam1108], EcHKI Ahdl, AspEl, Bst4Cl, Drl, Eam1108],
3" CTGNMHNNCAG §5'

O ahl g -A{T CTA Gl 3 B 4[5 Beul, Spel Bhll, Aspd2, AsuNHI, Avill, Beul, BI

O &l g: CCwGE G g: 5 505 Bptl, BseBl, Bst2U1, BstMl, BetOl, .. Ajnl, EcoRll, Mabl, Psphl, PspGl, Se

1 alal R' TACHMMNGTE 3 1i| 1 kbt ikl Allbh ik o1 Hars

4

Figure 5. Main Window of Cleaver Software

0 GOGGTATTTTGACCECGCGAAGS

0 GACTATTAGTTTAACGGCCGE T GCGCARTCACTTGTCTCTTAAM

TGTGACTATTAGTTT. ATTTTGACCGOGEG GETAGERE

Figure 6.Restriction Map analysis of variable sequences of different Bacterial genomes
using Cleaver software.

6.4 FastPCR

The FastPCRis an integrated tool for PCR primers or probe design, in silicoPCR,
oligonucleotide assembly and analyses, alignment and repeat searching (Figure 7). The
software utilizes combinations of normal and degenerated primers for all tools and for the
melting temperature calculation are based on the nearest neighbour thermodynamic
parameters.The “in silico” (virtual) PCR primers or probe searching or in silico PCR against
whole genome(s) or a list of chromosome - prediction of probable PCR products and search of
potential mismatching location of the specified primers or probes. Comprehensive primer test,
the melting temperature calculation for standard and degenerate oligonucleotides, primer PCR
efficiency, primer's linguistic complexity, and dilution and resuspension calculator.
Primers (probes) are analyzed for all primer secondary structures including G-
quadruplexes detection, hairpins, self-dimers and cross-dimers in primer pairs.
FastPCR has the capacity to handle long sequences and sets of nucleic acid or protein sequences
and it allowed the individual task and parameters for each given sequences and joining several
different tasks for single run. It also allows sequence editing and databases analysis. Efficient
and complete detection of various types of repeats developed (for DNA based signature) and
applied to the program with a visualisation.
The program includes various bioinformatics tools for analysis of sequences with GC or AT
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skew, CG content and purine-pyrimidine skew, the linguistic sequence complexity; generation
random DNA sequence, restriction analysis and supports the clustering of sequences and
consensus sequence generation and sequences similarity and conservancy analysis.

File Edit Search Converting ‘Web Toolks PCR Options Database  Alignment Run Help

DEEEE xE2h CRIIA IHLERLT D

M=(A8IC) R=(A13) W=(AIT) S=(GIC) Y=(CIT) K=(GIT) W={AIGIC) H=(AJCIT) D=(AJGT) B=LCIGIT) N=(AGICIT), =T and | DA
POR Prirer Design | nsico PCR | Primer Test | Primers ListAnalysis | RAPD PCR. Restiction | ciustering | algnment | LTR Searen | WITE Searen | 88R Searen | Toals | aiigos

Parameters for PCR product analysis: PCR primer design options:
Bynchronizing T for primer pair (+*C) 4 [ The secondany (non-specific) binding test [~ Inverted PCR
Limitfor compatible combination of pair primers: ’T ¥ Linguistic complesty cortrol I™ Circular DNA
[~ Polymerase extension cloning (OE-PCR) [~ Overlapping primers
[ Multiplex PCR [~ C==Thisulphite conversion I Unigue PCR
’7 [™ Group-specific PCR

’— [” Molecular heacon design
’— [™ Microarray design

General ‘Adumunal ] o pre-desig "prlmers(pmbes)ust}Resunsrepon\

Figure 7.Main Window of FastPCR software.

For SSR search or any other analysis just we need to prepare data file in notepad file and import
in the main window. As per our need we can import the data and analyse by clicking on
Run/SSR search/Primer list analysis etc. option looking in main window.
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Sanger Sequencing

e DNA is fragmented

e Cloned to a plasmid vector

e Cyclic sequencing reaction

e Separation by electrophoresis

e Readout with fluorescent tags

a DMNA fragmentation
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Sanger Vs NGS
e ‘Sanger sequencing’ has been the only DNA sequencing method for 30 years but...

e .. .hunger for even greater sequencing throughput and more economical sequencing
technology...

e NGS has the ability to process millions of sequence reads in parallel rather than 96 at a time
(1/6 of the cost)

NGS Platforms: Different sequencing techniques used for next generation sequencing are:
« Roche/454 FLX: 2004

« Illumina Solexa Genome Analyzer: 2006

« Applied Biosystems SOLiD™ System: 2007

« Helicos Heliscope™ : 2009

« Pacific Biosciencies SMRT: 2010
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General Experimental Procedure

€) Library preparation . 1‘, 3% — DNA
0 Clonal amplification M~ -~ —xto fragmentation
) : WL | — and in vitro
© oyclic array sequencing ' = ——~ adaptor ligation
emulsion PCR . bridge PCR
O Luy —p® Ko | el M
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454 sequencing

Sequencing Technology at a Glance

SOLID platform

Solexa technology

Method Read Accuracy | Time per Cost per 1 Advantages Disadvantages
length run million bases
Chain 400 to 99.9% 20 minutes Rs 144000 Long More expensive
termination 900 bp to 3 hours individual and impractical
(Sanger reads. Useful | for larger
sequencing) for many | sequencing
applications. projects.
Pyrosequencing | 700 bp 99.9% 24 hours Rs 600 Long read size. | Runs are
(454) Fast expensive.
Homopolymer
errors.
Sequencing by | 50 to 300 | 98% 1to 10 days, | Rs3to9 Potential ~ for | Equipment can be
synthesis bp depending high sequence | very  expensive.
(IMlumina) upon yield, Requires high
sequencer depending concentrations of
and specified upon sequencer | DNA.
read length model and
desired
application.
Sequencing by | 50+350r | 99.9% 1to 2 weeks | Rs78 Low cost per | Slower than other
ligation 50+50 bp base. methods.  Have
(SOLID issue sequencing
sequencing) palindromic
sequence.
Single- 10,000 bp | 87% 30 minutes Rs 7.8-36 Longest read | Moderate
molecule real- | to 15,000 to 4 hours length. throughput.
time bp avg. Fast. Equipment can be
sequencing (14,000 very expensive.
(Pacific Bio) bp);
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Reads, Contigs and Scaffolds
¢ Reads are what you start with (35bp-800bp)
e Fragmented assemblies produce contigs that can be kilobases in length

e Putting contigs together into scaffolds is the next step

Scaffold

v

contig Contia 2

ol <G > <pomm
i 4=

W Fragment
o= Read (known sequence)
——  Roughly known length but not known sequence

FASTQ Format

I Tile | |
i

— R ke T Barcode
’ Read Record (FlowCelliD_| / ’ /,/ Tile ' {
— Header \ / V4 |_Coordinates j‘

\ V_ / L~ ‘w

AL
@DJIG84KN1:272:D17DBACXX:2:1101:12432:5554 1:N:0:AGTCAA
CAGGAGTCTTCGTACTGCTTCTCCGCCTCAGCCTGATCAGTCACACCGTT
bt N/

/ BCCFFFDFHHHHHIJJIJJJJJJJIJIIIIIIIIIIIIIIIIIIIITIT Read Bases

i Separafor "\ [@DJGB4RNL:272:D17DBACKX:2:1101:12 ‘*{61\0 l:N:O:AG;—'
(with optional AAAACTCTTACTACATCAGTATGGCTTTTAARACCTCT S

repeated + Read Quality

header) @@@DD?DDHFDFHEHIITHIIIIIBBGEBHIEDH=EEHT ... SC0res
@DJG84RN1:272:D17DBACXX:2:1101:12438:5704 1:N:0:AG
CCTCCTGCTTAAAACCCAAAAGGTCAGAAGGATCGTGAGGCCCCGCTTTC
+
CCCFFFFFHHGHHJIJJJJJJJI@HGIJJJJIIIJGIGIHIJJJIIIIJd
@DJGB84KN1:272:D17DBACXX:2:1101:12340:5711 1:N:0:AG
GAAGATTTATAGGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGG
+
CCCFFFFFHHHHHGGIJJJIJJJJJJIJJIIJJJIIGIJIIJHITIJIJIJId
NOTE: for paired-end runs, there is a second file

with one-to-one corresponding headers and reads.

(Passarelli, 2012)

Before Assembly

Fragment readout

e DNA characters in a fragment are determined from chromatogram
e Base call is a DNA character that is determined from chromatogram
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1040, 1120, 1200, 1280, 1360

, 1440, 1520, 180C

TTGGCGTAATCATGOGTCATAGC TGTTTCCTGTGTGAAATTOGTTATCC
98 186 118 128 138

J

Fragment readout

Phred Score- determine the quality value of a base

q = —10 x logo(p)
where p is the estimated error probability for the base

if Phred assigns a quality score of 30 to a base, the chances that this base is called
incorrectly are 1 in 1000

The most commonly used method is to count the bases with a quality score of 20 and
above

Phred Score

20— HHHHHH.._H.‘_._,_L}
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60 70 80
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o N\
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GC content acrozs all bases
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Introduction

Until the genome revolution, genes were identified by researchers with specific interests in a
particular protein or cellular process. Once identified, these genes were isolated, typically by
cloning and sequencing cDNAs, usually followed by targeted sequencing of the longer
genomics segments that code for the cDNAs. Once an organism’s entire genome sequence
becomes available, there is strong motivation for finding all the genes encoded by a genome at
once rather than in a piecemeal approach. Such catalogue is immensely valuable to researchers,
as they can learn much more from the whole picture than from a much more limited set of
genes. For example, genes of similar sequence can be identified, evolutionary and functional
relationships can be elucidated, and a global picture of how many and what types of genes are
present in a genome can be seen. A significant portion of the effort in genome sequencing is
devoted to the process of annotation, in which genes, regulatory elements, and other features
of the sequence are identifies as thoroughly as possible and catalogued in a standard format in
public databases so that researchers can easily use the information. Functional genomics
research has expanded enormously in the last decade and particularly the plant biology research
community. Functional annotation of novel DNA sequences is probably one of the top
requirements in functional genomics as this holds, to a great extent, the key to the biological
interpretation of experimental results.

Computational Gene Prediction

Computational gene prediction is becoming more and more essential for the automatic analysis
and annotation of large uncharacterized genomic sequences. In the past two decades, many
algorithms have been evolved to predict protein coding regions of the DNA sequences. They
all have in common, to varying degree, the ability to differentiate between gene features like
Exons, Introns, Splicing sites, Regulatory sites etc. Gene prediction methods predicts coding
region in the query sequences and then annotates the sequences databases.

Gene Structure and Expression

The gene structure and the gene expression mechanism in eukaryotes are far more complicated
than in prokaryotes. In typical eukaryotes, the region of the DNA coding for a protein is usually
not continuous. This region is composed of alternating stretches of exons and introns. During
transcription, both exons and introns are transcribed onto the RNA, in their linear order.
Thereafter, a process called splicing takes place, in which, the intron
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Fig. 1: Representative Diagram of Protein Coding Eukaryotic Gene

sequences are excised and discarded from the RNA sequence. The remaining RNA segments,
the ones corresponding to the exons are ligated to form the mature RNA strand. A typical multi-
exon gene has the following structure (as illustrated in Fig. 1). It starts with the promoter region,
which is followed by a transcribed but non-coding region called 5' untranslated region (5'
UTR). Then follows the initial exon which contains the start codon. Following the initial exon,
there is an alternating series of introns and internal exons, followed by the terminating exon,
which contains the stop codon. It is followed by another non-coding region called the 3' UTR.
Ending the eukaryotic gene, there is a polyadenylation (polyA) signal: the nucleotide Adenine
repeating several times. The exon-intron boundaries (i.e., the splice sites) are signalled by
specific short (2bp long) sequences. The 5'(3") end of an intron (exon) is called the donor site,
and the 3'(5") end of an intron (exon) is called the acceptor site. The problem of gene
identification is complicated in the case of eukaryotes by the vast variation that is found in gene
structure.

Gene Prediction Methods

There are mainly two classes of methods for computational gene prediction (Fig. 2). One is
based on sequence similarity searches, while the other is gene structure and signal-based
searches, which is also referred to as Ab initio gene finding.

Sequence Similarity Searches

Sequence similarity search is a conceptually simple approach that is based on finding similarity
in gene sequences between ESTs (expressed sequence tags), proteins, or other genomes to the
input genome. This approach is based on the assumption that functional regions (exons) are
more conserved evolutionarily than non-functional regions (intergenic or intronic regions).
Once there is similarity between a certain genomic region and an EST, DNA, or protein, the
similarity information can be used to infer gene structure or function of that region. EST-based
sequence similarity usually has drawbacks in that ESTs only correspond to small portions of
the gene sequence, which means that it is often difficult to predict the complete gene structure
of a given region. Local alignment and global alignment are two methods based on similarity
searches. The most common local alignment tool is the BLAST family of programs, which
detects sequence similarity to known genes, proteins, or ESTs. The biggest limitation to this
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type of approaches is that only about half of the genes being discovered have significant
homology to genes in the databases.

Ab initio Gene Prediction Methods

The second class of methods for the computational identification of genes is to use gene
structure as a template to detect genes, which is also called ab initio prediction. Ab initio gene
predictions rely on two types of sequence information: signal sensors and content sensors.
Signal sensors refer to short sequence motifs, such as splice sites, branch points, poly
pyrimidine tracts, start codons and stop codons. Exon detection must rely on the content
sensors, which refer to the patterns of codon usage that are unique to a species, and allow

coding sequences to be distinguished from the surrounding non-coding sequences by statistical
detection algorithms.

Many algorithms are applied for modeling gene structure, such as Dynamic Programming,
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Based on these models, a great number of ab initio gene prediction programs have been
developed.

Fig. 2: Diagrammatic Representation of Gene Prediction and Annotation
Gene Discovery in Prokaryotic Genomes

Discovery of genes in Prokaryote is relatively easy, due to the higher gene density typical of
prokaryotes and the absence of introns in their protein coding regions. DNA sequences that
encode proteins are transcribed into mMRNA, and the mRNA is usually translated into proteins
without significant modification. The longest ORFs (open reading frames) running from the
first available start codon on the mMRNA to the next stop codon in the same reading frame
generally provide a good, but not assured prediction of the protein coding regions. Several
methods have been devised that use different types of Markov models in order to capture the
compositional differences among coding regions, “shadow" coding regions (coding on the
opposite DNA strand), and noncoding DNA. Such methods, including ECOPARSE, the widely
used GENMARK, and Glimmer program, appear to be able to identify most protein coding
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genes with good performance (Fig. 3).

Fig. 3: Flow Diagram of Prokaryotic Gene Discovery

Gene Discovery in Eukaryotic Genome

It is a quite different problem from that encountered in prokaryotes. Transcription of protein
coding regions initiated at specific promoter sequences is followed by removal of noncoding
sequences (introns) from pre-mRNA by a splicing mechanism, leaving the protein encoding
exons. Once the introns have been removed and certain other modifications to the mature RNA
have been made, the resulting mature mRNA can be translated in the 5" to 3™ direction, usually
from the first start codon to the first stop codon. As a result of the presence of intron sequences

98



in the genomic DNA sequences of eukaryotes, the ORF corresponding to an encoded gene will
be interrupted by the presence of introns that usually generate stop codons (Fig.4).
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Fig. 4: Flow Diagram of Eukaryotic Gene Discovery
Gene Prediction Program

There are two basic problems in gene prediction: prediction of protein coding regions and
prediction of the functional sites of genes. Gene prediction program can be classified into four
generations. The first generation of programs was designed to identify approximate locations
of coding regions in genomic DNA. The most widely known programs were probably
TestCode and GRAIL. But they could not accurately predict precise exon locations. The second
generation, such as SORFIND and Xpound, combined splice signal and coding region
identification to predict potential exons, but did not attempt to assemble predicted exons into
complete genes. The next generation of programs attempted the more difficult task of
predicting complete gene structures. A variety of programs have been developed, including
GenelD, GeneParser, GenLang, and FGENEH. However, the performance of those programs
remained rather poor. Moreover, those programs were all based on the assumption that the
input sequence contains exactly one complete gene, which is not often the case. To solve this
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problem and improve accuracy and applicability further, GENSCAN and AUGUSTUS were
developed, which could be classified into the fourth generation.

GeneMark

GeneMark uses a Markov Chain model to represent the statistics of the coding and noncoding
frames. The method uses the dicodon statistics to identify coding regions. Consider the analysis
of a sequence x whose base at the ith position is called xi. The Markov chains used are fifth
order, and consist of a terms such as P(a/x1X2xsX4Xs), Which represent the probability of the
sixth base of the sequence x being given a given that the previous five bases in the sequence x
where X1X2X3XaXs, resulting in the first dicodon of the sequence being X1x2xsxaxsa. These terms
must be defined for all possible pentamers with the general sequence bib2bsbabs. The values of
these terms can be obtained of analysis of data, consisting of nucleotide sequence in which the
coding regions have been actually identified. When there are sufficient data, they are given by

a Mp1p,bsbabsa

P =
bibyb3b,bs Ya=ACGT "p1p,pybabsa

where, My, b, babsa is the number of times the sequence b1bzbsbsbsa occurs in the training data.
This is the maximum likelihood estimators of the probability from the training data.

Glimmer

The core of Glimmer is Interpolated Markov Model (IMM), which can be described as a
generalized Markov chain with variable order. After GeneMark introduces the fixed-order
Markov chains, Glimmer attempts to find a better approach for modeling the genome content.
The motivational fact is that the bigger the order of the Markov chain, the more non-
randomness can be described. However, as we move to higher order models, the number of
probabilities that we must estimate from the data increases exponentially. The major limitation
of the fixed-order Markov chain is that models from higher order require exponentially more
training data, which are limited and usually not available for new sequences. However, there
are some oligomers from higher order that occur often enough to be extremely useful
predictors. For the purpose of using these higher-order statistics, whenever sufficient data is
available, Glimmer IMMs.

Glimmer calculates the probabilities for all Markov chains from 0™ order to 8. If there are
longer sequences (e.g. 8-mers) occurring frequently, IMM makes use of them even when there
is insufficient data to train an 8-th order model. Similarly, when the statistics from the 8-th
order model do not provide significant information, Glimmer refers to the lower-order models
to predict genes.

Opposed to the supervised GeneMark, Glimmer uses the input sequence for training. The ORFs
longer than a certain threshold are detected and used for training, because there is high
probability that they are genes in prokaryotes. Another training option is to use the sequences
with homology to known genes from other organisms, available in public databases. Moreover,
the user can decide whether to use long ORFs for training purposes or choose any set of genes
to train and build the IMM.

GeneMark.hmm
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GeneMark.hmm is designed to improve GeneMark in finding exact gene starts. Therefore, the
properties of GeneMark.hmm are complementary to GeneMark. GeneMark.hmm uses
GeneMark models of coding and non-coding regions and incorporates them into hidden
Markov model framework. In short terms, Hidden Markov Models (HMM) are used to describe
the transitions from non-coding to coding regions and vice versa. GeneMark.hmm predicts the
most likely structure of the genome using the Viterbi algorithm, a dynamic programming
algorithm for finding the most likely sequence of hidden states. To further improve the
prediction of translation start position, GeneMark.nmm derives a model of the ribosome
binding site (6-7 nucleotides preceding the start codon, which are bound by the ribosome when
initiating protein translation). This model is used for refinement of the results.

Both GeneMark and GeneMark.nmm detect prokaryotic genes in terms of identifying open
reading frames that contain real genes. Moreover, they both use pre-computed species-specific
gene models as training data, in order to determine the parameters of the protein-coding and
non-coding regions.

Orpheus

The ORPHEUS program uses homology, codon statistics and ribosome binding sites to
improve the methods presented so far by using information that those programs ignored. One
of the key differences is that it uses database searches to help determine putative genes, and is
thus an extrinsic method. This initial set of genes is used to define the coding statistics for the
organism, in this case working at the level of codon, not dicodons. These statistics are then
used to define a larger set of candidate ORFs. From this set, those ORFs with an unambiguous
start codon end are used to define a scoring matrix for the ribosome-binding site, which is then
used to determine the 5° end of those ORFs where alternative start are present.

EcoParse

EcoParse is one of the first HMM model based gene finder, was developed for gene finding in
E.coli. It focuses on the uses the codon structure of genes. With EcoParse a flora of HMM
based gene finder, usuing dynamic programming and the viterbi algorithm to parse a sequence,
emerged.

Evaluation of Gene Prediction Programs

In the field of gene prediction accuracy can be measured at three levels

a. Coding nucleotides (base level)
b. Exon structure (exon level)
C. Protein product (protein level)

At base level gene predictions can be evaluated in terms of true positives (TP) (predicted
features that are real), true negatives (TN) (non-predicted features that are not real), false
positives (FP) (predicted features that are not real), and false negatives (FN) (real features that
were not predicted) Fig. 5. Usually the base assignment is to be in a coding or non coding
segment, but this analysis can be extended to include non coding parts of genes, or any
functional parts of the sequences.

‘TN’FN‘TP‘FP’TN ‘FP‘TP‘FN‘TN‘

Real - -
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Fig. 5: Four Possible Comparisons of Real and Predicted Genes

Sensitivity (Sn): The fraction of bases in real genes that are correctly predicted to be in genes
is the sensitivity and interpreted as the probability of correctly predicting a nucleotide to be in

a given gene that it actually is.
TP

Sn=
TP+ FN

Specificity (Sp): The fraction of those bases which are predicted to be in genes that actually
are is called the specificity and interpreted as the probability of a nucleotide actually being in
a gene given that it ?gs been predicted to be.

Sp

T TP+FP

Care has to be taken in using these two values to assess a gene prediction program because, as
with the normal definition of specificity, extreme results can make them misleading.

Approximate correlation coefficient (AC) has been proposed as a single measure to circumvent
these difficulties. This defined as AC=2(ACP-0.5), where

1( P P ™ ™ j

ACP = + + +
TP+FN TP+FP TN +FP TN +FN

n

At the exon level, determination of prediction accuracy depends on the exact prediction of exon
start and end points. There are two measures of sensitivity and specificity used in the field,
each of which measures a different but useful property.

The sensitivity measures used are

Sn1 = CE/AE and Sn2 = ME/AE

The specificity measures used are
Sp1=CE/PE and Sp>=WE/PE

Where,

AE = No of actual exons in the data

PE = No of predicted exons in the data
CE = No of correct predicted exons

ME = No of missing exons (rarely occurs)

WE = No of wrongly predicted exons (Figure-5)
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Gene Ontology

The gene ontology (GO, http:www.geneontology.org) is probably the most extensive scheme
today for the description of gene product functions but other systems such as enzyme codes,
KEGG pathways, FunCat, or COG are also widely used. Here, we describe the Blast2GO (B2G,
www.blast2go.org) application for the functional annotation, management, and data mining of
novel sequence data through the use of common controlled vocabulary schemas. The main
application domain of the tool is the functional genomics of nonmodel organisms and it is
primarily intended to support research in experimental labs. Blast2GO strives to be the
application of choice for the annotation of novel sequences in functional genomics projects
where thousands of fragments need to be characterized. Functional annotation in Blast2GO is
based on homology transfer. Within this framework, the actual annotation procedure is
configurable and permits the design of different annotation strategies. Blast2GO annotation
parameters include the choice of search database, the strength and number of blast results, the
extension of the query-hit match, the quality of the transferred annotations, and the inclusion
of motif annotation. Vocabularies supported by B2G are gene ontology terms, enzyme codes
(EC), InterPro 1Ds, and KEGG pathways.

Fig.7 shows the basic components of the Blast2GO suite. Functional assignments proceed
through an elaborate annotation procedure that comprises a central strategy plus refinement
functions. Next, visualization and data mining engines permit exploiting the annotation results
to gain functional knowledge. GO annotations are generated through a 3-step process: blast,
mapping, annotation. InterPro terms are obtained from InterProScan at EBI, converted and
merged to GOs. GO annotation can be modulated from Annex, GOSIlim web services and
manual editing. EC and KEGG annotations are generated from GO. Visual tools include
sequence color code, KEGG pathways, and GO graphs with node highlighting and filtering
options. Additional annotation data-mining tools include statistical charts and gene set
enrichment analysis functions.
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Fig. 7: Schematic Representation of Blast2GO Application.

The Blast2GO annotation procedure consists of three main steps: blast to find homologous
sequences, mapping to collect GO terms associated to blast hits, and annotation to assign
trustworthy information to query sequences.

Blast Step

The first step in B2G is to find sequences similar to a query set by blast. B2G accepts nucleotide
and protein sequences in FASTA format and supports the four basic blast programs (blastx,
blastp, blastn, and tblastx). Homology searches can be launched against public databases such
as (the) NCBI nr using a query-friendly version of blast (QBlast). This is the default option and
in this case, no additional installations are needed. Alternatively, blast can be run locally against
a proprietary FASTA-formatted database, which requires a working wwwe-blast installation.
The Make Filtered Blast-GO-BD function in the Tools menu allows the creation of customized
databases containing only GO annotated entries, which can be used in combination with the
local blast option. Other configurable parameters at the blast step are the expectation value (e-
value) threshold, the number of retrieved hits, and the minimal alignment length (hsp length)
which permits the exclusion of hits with short, low e-value matches from the sources of
functional terms. Annotation, however, will ultimately be based on sequence similarity levels
as similarity percentages are independent of database size and more intuitive than e-values.
Blast2GO parses blast results and presents the information for each sequence in table format.
Query sequence descriptions are obtained by applying a language processing algorithm to hit
descriptions, which extracts informative names and avoids low content terms such as
“hypothetical protein” or “expressed protein”.

Mapping Step
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Mapping is the process of retrieving GO terms associated to the hits obtained after a blast
search. B2G performs three different mappings as follows.

a. Blast result accessions are used to retrieve gene names (symbols) making use of two
mapping files provided by NCBI (geneinfo, gene2accession). Identified gene names are
searched in the species-specific entries of the gene product table of the GO database.

b. Blast result Gl identifiers are used to retrieve UniProt IDs making use of a mapping file
from PIR (Non-redundant Reference Protein database) including PSD, UniProt, Swiss-Prot,
TrEMBL, RefSeq, GenPept, and PDB.

c. Blast result accessions are searched directly in the DBXRef Table of the GO database.
Annotation Step

This is the process of assigning functional terms to query sequences from the pool of GO terms
gathered in the mapping step. Function assignment is based on the gene ontology vocabulary.
Mapping from GO terms to enzyme codes permits the subsequent recovery of enzyme codes
and KEGG pathway annotations. The B2G annotation algorithm takes into consideration the
similarity between query and hit sequences, the quality of the source of GO assignments, and
the structure of the GO DAG. For each query sequence and each candidate GO term, an
annotation score (AS) is computed (see Figure 8). The AS is composed of two terms. The first,
direct term (DT), represents the highest similarity value among the hit sequences bearing this
GO term, weighted by a factor corresponding to its evidence code (EC). A GO term EC is
present for every annotation in the GO database to indicate the procedure of functional
assignment.

DT = max [similarity > BCyeigh )

AT = (GO — 13 X GOuaight

AR lowestnode(AS(DT + AT) = threshold)

Fig. 8: Blast2GO Annotation Rule

ECs vary from experimental evidence, such as inferred by direct assay (IDA) to unsupervised
assignments such as inferred by electronic annotation (IEA). The second term (AT) of the
annotation rule introduces the possibility of abstraction into the annotation algorithm.
Abstraction is defined as the annotation to a parent node when several child nodes are present
in the GO candidate pool. This term multiplies the number of total GOs unified at the node by
a user defined factor or GO weight (GOw) that controls the possibility and strength of
abstraction. When all ECw’s are set to 1 (no EC control) and the GOw is set to 0 (no abstraction
is possible), the annotation score of a given GO term equals the highest similarity value among
the blast hits annotated with that term. If the ECw is smaller than one, the DT decreases and
higher query-hit similarities are required to surpass the annotation threshold. If the GOw is not
equal to zero, the AT becomes contributing and the annotation of a parent node is possible if
multiple child nodes coexist that do not reach the annotation cutoff. Default values of B2G
annotation parameters were chosen to optimize the ratio between annotation coverage and
annotation accuracy. Finally, the AR selects the lowest terms per branch that exceed a user-
defined threshold.
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Blast2GO includes different functionalities to complete and modify the annotations obtained
through the above-defined procedure. Enzyme codes and KEGG pathway annotations are
generated from the direct mapping of GO terms to their enzyme code equivalents. Additionally,
Blast2GO offers InterPro searches directly from the B2G interface. B2G launches sequence
queries in batch, and recovers, parses, and uploads InterPro results. Furthermore, InterPro IDs
can be mapped to GO terms and merged with blast-derived GO annotations to provide one
integrated annotation result. In this process, B2G ensures that only the lowest term per branch
remains in the final annotation set, removing possible parent-child relationships originating
from the merging action.
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Hands-on Session for Genome Annotation
Sneha Murmu

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Introduction

Genome annotation is the process of identifying functional elements within a genome, such as
genes, regulatory regions, and repeat elements. The goal of genome annotation is to create an
accurate and comprehensive description of the genome's structure and function. This can be a time-
consuming process, but it is essential for understanding how genes and other functional elements

work together to control an organism's biology.

One powerful tool for genome annotation is Blast2GO (Conesa et al., 2005). Blast2GO is a
commercial bioinformatics software suite that provides comprehensive functional annotation of
nucleotide and protein sequences. It combines powerful sequence similarity search algorithms,
such as BLAST (Altschul et al., 1997) and HMMER (Finn et al., 2011), with functional annotation
tools, such as InterProScan (Zdobnov et al., 2001) and Gene Ontology (GO) mapping, to provide
a detailed functional analysis of genomic and transcriptomic data.

Blast2GO works by first performing a sequence similarity search, typically using BLAST, to
identify sequences with homology to known sequences in public databases. The resulting hits are
then annotated using a variety of functional annotation tools, including InterProScan, which
identifies conserved protein domains and functional motifs, and GO mapping, which assigns GO
terms based on the functional categories of annotated genes.

Blast2GO also includes tools for statistical analysis and data visualization, allowing users to
explore functional trends and patterns in their data. It can be used to analyze a wide range of
genomic and transcriptomic data sets. One of the strengths of Blast2GO is its user-friendly
interface, which allows even non-experts to perform complex functional annotation analyses.
Blast2GO is also highly customizable, allowing users to tailor the annotation process to their

specific needs and research questions.
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Here are the four broad steps involved in genome annotation using Blast2GO:

+ Sequence quality control and assembly: Before annotating a genome, it is important to ensure
that the quality of the sequencing data is high and that the genome has been properly
assembled. This may involve trimming low-quality sequences, filtering out contaminants, and
performing de novo assembly or mapping to a reference genome.

+ Sequence similarity search: The first step in genome annotation is to identify sequences with
homology to known sequences in public databases. This is typically done using BLAST or a
similar tool. The resulting hits can provide clues about the function and evolutionary
relationships of the sequences in question.

+ Functional annotation: Once sequences have been identified using a sequence similarity
search, functional annotation tools can be used to identify functional domains and motifs,
assign Gene Ontology terms, and perform other types of functional analysis. Blast2GO
includes a number of annotation tools, including InterProScan, which searches for conserved
domains and motifs in protein sequences, and GO mapping, which assigns Gene Ontology
terms based on the functional categories of annotated genes.

+ Data analysis and visualization: Once the sequences have been annotated with functional
information, the data can be analyzed and visualized in a variety of ways. Blast2GO includes
tools for statistical analysis and data visualization. The results of the analysis can be exported

in a variety of formats for further analysis.

Installation of Blast2GO:

Following are the general steps to install Blast2GO:

System requirements: Check that your computer meets the system requirements for Blast2GO.
Blast2GO is compatible with Windows, macOS, and Linux operating systems, and requires at least
8 GB of RAM.

Download Blast2GO: Visit the Blast2GO website (https://www.blast2go.com/) and download the

appropriate installation file for your operating system. You may need to create an account and
purchase a license, depending on your intended use of the software.

Install Blast2GO: Double-click the downloaded installation file and follow the on-screen
instructions to install Blast2GO (as depicted in Figure 1). You may need to provide administrator

permissions, depending on your operating system and security settings.
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4. Configure Blast2GO: Once Blast2GO is installed, you will need to configure it to work with your
specific computing environment. This may include setting preferences for sequence databases,
annotation tools, and other settings.

5. Activate license: If you have purchased a license for Blast2GO, you will need to activate it before
you can use the software. This typically involves entering a license key or activating the license
through an online portal.

Once Blast2GO is installed and configured, you can begin using it to analyze and annotate your

genomic or transcriptomic data.
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Figure 1: Installation steps of Blast2GO in Windows system.

Stepwise guide to perform annotation using Blast2GO

1. Open Blast2GO: Launch Blast2GO on your computer.

2. Load sequences: Load your sequence file(s) into Blast2GO. This can be done by clicking on
"Load data" in the main menu and selecting the appropriate file type (e.g., FASTA).

3. Run BLAST search: In the main menu, click on "Run BLAST" and select the appropriate
database for your search (e.g., NCBI non-redundant protein database) as shown in Figure 2.

You can choose to run a BLASTP (protein query against protein database) or a BLASTX
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(nucleotide query against protein database) search. You can also set various search parameters,
such as the e-value threshold and the maximum number of hits to return.

View BLAST results: Once the BLAST search is complete, you can view the results in the
BLAST results table (as shown in Figure 3). The table will show the sequence 1D, the best hit,
the e-value, the bit score, and other relevant information. You can sort the table by various
columns to help you identify the best hits.

Import BLAST results: To import the BLAST results into the Blast2GO annotation pipeline,
select the sequences you want to annotate and click on "Import selected hits". This will import

the BLAST results and link them to the appropriate sequences in the annotation pipeline.
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Run InterProScan: In the main menu, click on "Run InterProScan™ and select the appropriate

database for your search (e.g., InterPro database). You can choose to run the search on protein
or nucleotide sequences (Figure 4a).

Set search parameters: You can set various search parameters, such as the e-value threshold,
the maximum number of sequences to align, and the type of analysis to perform (e.g., Pfam,
Prosite, SMART, etc.) (Figure 4b).
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Figure 4: InterProScan search.

View InterProScan results: Once the InterProScan search is complete, you can view the results
in the InterProScan results table. The table will show the sequence 1D, the best match, the e-
value, the score, and other relevant information (Figure 5). You can sort the table by various

columns to help you identify the best matches.
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Figure 5: InterProScan result.
Import InterProScan results: To import the InterProScan results into the Blast2GO annotation
pipeline, select the sequences you want to annotate and click on "Import selected hits". This
will import the InterProScan results and link them to the appropriate sequences in the
annotation pipeline.

. Perform mapping: Once the BLAST results have been imported, you can use the Blast2GO
mapping tools to map your sequences to Gene Ontology (GO) terms (Figure 6). This involves
using the BLAST results to transfer functional annotations from similar sequences to your own

sequences.
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Figure 6: Mapping.

. Edit mappings: You can edit the mappings manually, by adding or removing GO terms, or by
changing the evidence codes. You can also remove or filter out low-confidence mappings,
based on various criteria such as the e-value, the similarity score, or the GO term specificity.

. Export mapping results: Once your sequences have been mapped, you can export the results in
a variety of formats, such as tab-delimited text files or FASTA files (Figure 7). These results

can be used for further analysis.
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Figure 7: Mapping result.
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13. Annotate sequences: Once the InterProScan results have been imported, you can use the
Blast2GO annotation tools to assign functional information to your sequences (Figure 8). This
may include mapping Gene Ontology (GO) terms, performing enrichment analysis, and
performing other types of functional analysis.
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Figure 8: Annotate.

14. Export annotation results: Once your sequences have been annotated, you can export the results
in a variety of formats, such as tab-delimited text files or FASTA files. These results can be

used for further analysis, visualization, or sharing with collaborators.
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Figure 9: Annotate result.
15. Generate Gene Ontology (GO) graph: To create a GO graph in Blast2GO, click on "Graphs"
in the main menu and select "GO Graph" (Figure 10). This will generate a graphical

representation of the GO terms assigned to your sequences, based on the hierarchical structure
of the Gene Ontology.
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Figure 10. Generate GO graph.
16. Customize GO graph: You can customize the appearance of the GO graph by changing the
colors, font sizes, or layout. You can also filter the GO terms based on various criteria such as
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the level in the hierarchy, the number of sequences assigned to the term, or the statistical
significance of the enrichment.

17. Analyze GO graph: Once you have generated a GO graph, you can use it to analyze the
functional annotations of your sequences. This can include identifying overrepresented or
underrepresented GO terms, comparing the GO profiles of different datasets or treatments, or
visualizing the relationships between different biological processes, molecular functions, or

cellular components (Figure 11).
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Figure 11: GO graph.

18. Export GO graph: Once you have customized and analyzed your GO graph, you can export it
in a variety of formats, such as PNG, PDF, or SVG. These graphs can be used for presentations,
publications, or further analysis with other tools or software.

19. Perform pathway analysis: To perform pathway analysis in Blast2GO, you need to use the
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database. In the main menu,
click on "Annotation™ and select "Pathway annotation™. This will open the pathway annotation
dialog box (Figure 12).
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Figure 12. Run Pathway Analysis.

Select pathway database: In the pathway annotation dialog box, select the "KEGG" database
and click on "Start". Blast2GO will download and install the latest version of the KEGG
database on your computer.

Run pathway analysis: Once the KEGG database is installed, you can use the Blast2GO
pathway analysis tools to identify the KEGG pathways that are enriched in your sequences.
This involves comparing the frequency of KEGG pathway terms in your sequences to the
frequency of these terms in a reference dataset, such as the entire KEGG database.

Filter and visualize pathways: Once the pathway analysis is complete, you can use the
Blast2GO pathway analysis tools to filter and visualize the enriched pathways. This can
involve setting statistical thresholds, such as the false discovery rate (FDR) or the p-value, or
selecting specific pathways based on their relevance to your research question.

Analyze pathways: Once you have identified the enriched pathways, you can use the Blast2GO
pathway analysis tools to analyze the functional annotations and gene products associated with
these pathways. This can include identifying the key enzymes or regulators, comparing the
pathway profiles of different datasets or treatments, or visualizing the relationships between

different metabolic or signaling pathways (Figure 13).
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Figure 13. Pathway graph.

24. Export pathway data: Once you have customized and analyzed your pathway data, you can
export it in a variety of formats, such as Excel, CSV, or XML. These data can be used for
further analysis with other tools or software, or for visualizing and communicating the results

of your pathway analysis.
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Introduction to R for Bioinformatics
Sudhir Srivastava, D. C. Mishra and Deepa Bhatt
ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Introduction

R is a programming language that allows for advanced statistical computing and
graphics. It was created by the statisticians Ross Ihaka and Robert Gentleman. It is
supported by the R Core Team and the R Foundation for Statistical Computing. The
language is very powerful for writing programs. Output may be limited based on
the function, but even small code can generate wonderful graphics. It is very
sensitive to syntax, case, punctuation used, even spacing. R is open source and free
on the Internet. R is used among statisticians, computer scientists and
bioinformaticians for data analysis and developing statistical software. The official
R software environment is an open-source free software environment within
the GNU package, available under the GNU General Public License. It is written
primarily in C, Fortran, and R itself (partially self-hosting).
Precompiled executables are provided for various operating systems. R has
acommand line interface as well as multiple third-party graphical user
interfaces such as RStudio (an integrated development environment) and Jupyter
(a notebook interface).

Working in R and RStudio

R can be installed in Linux, Unix, Windows and Mac platforms from www.r-
project.org. For downloading R, please visit https://cloud.r-project.org/.
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¥ File Edit View Misc Packages Windows Help

[=]el=] [w)m)<] (] (@)

v
5
]

202 10-10) Bunny 3 u
Copwright (C) 2020 The R Foundaction f£o3I cacimscical AT ARG
PLACTOEZME X006 _64-wod—mingwiz/ xe6d

Lo Cree software and Comes WALH ABSOLUTELY MO WARMRANTY

The R GUI

119


https://en.wikipedia.org/wiki/Robert_Gentleman_(statistician)
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Statistical_software
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/List_of_GNU_packages
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Self-hosting_(compilers)
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Command_line_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/RStudio
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Jupyter
https://en.wikipedia.org/wiki/Notebook_interface
http://www/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/

RStudio is a free, open-source IDE (integrated development environment) for R. It
can be downloaded from https://www.rstudio.com/products/rstudio/download/.
One must install R before installing RStudio. The interface is organized so that the
user can clearly view graphs, data tables, R code, and output all at the same time.

Workspace

Code Editor

asts et

Ilizc. Tabs

Console

R Studio Interface

There are various ways for working in R:

*  Work directly from the R editor to type in your script and execute the script
completely (batch) or line-by-line (highlight and execute)

*  Write script in an external editor (Notepad or software that interfaces with R)
and execute in R by copy/paste or highlighting

* Beyond the native R GUI, external GUI can work with R to help in writing
scripts, selecting functions, procedures, statistical tests, or graphics
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Getting started: R
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Getting started: RStudio

R is an expression language with a very simple syntax. It is case sensitive as are
most UNIX based packages. For example, A and a are different symbols and refer
to different variables. The set of symbols which can be used in R names depends
on the operating system and country within which R is being run (technically on
the locale in use). Normally all alphanumeric symbols are allowed (and in some
countries this includes accented letters) plus ©.” and “ ’, with the restriction that a
name must start with ‘.” or a letter, and if it starts with ‘.’ the second character must
not be a digit. Elementary commands consist of either expressions or assignments.
If an expression is given as a command, it is evaluated, printed (unless specifically
made invisible), and the value is lost. An assignment evaluates an expression and
passes the value to a variable but the result is not automatically printed. Commands
are separated either by a semi-colon (‘;’), or by a newline. Elementary commands
can be grouped together into one compound expression by braces (‘{” and ‘}’).
Comments can be put almost anywhere, starting with a hashmark (‘#’), everything
to the end of the line is a comment. If a command is not complete at the end of a
line, R will give a different prompt, by default + on second and subsequent lines
and continue to read input until the command is syntactically complete.
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R Workspace

R workspace is temporary space on your CPU’s RAM that “disappears” at the end
of R session. It includes any user-defined objects (vectors, matrices, data frames,
lists, functions). All data, analyses, output are stored as objects in the R workspace.
This workspace is not saved on disk unless you tell R to do so. This means that your
objects are lost when you close R and not save the objects, or worse when R or your
system crashes on you during a session. When you close the RGui or the R console
window, the system will ask if you want to save the workspace image. If you select
to save the workspace image then all the objects in your current R session are saved
in a file “.RData”. “.RData” is a binary file located in the working directory of R,
which is by default the installation directory of R. During your R session, you can
also explicitly save the workspace image.

Go to the ‘Session’ menu and then select ‘Save Workspace as’
> save.image(“‘examplel.Rdata”)

If you have saved a workspace image and you start R the next time, it will restore
the workspace. So all your previously saved objects are available again.

Go to the ‘Session” menu and then select ‘Load Workspace’.

> load.image(“examplel.Rdata”)

* Windows uses a \ (left slash) to delineate locations in CPU:
C:\Users\np\Documents

* R uses/ (right slash) to delineate locations in CPU:
C:/Users/hp/Documents

® An alternative to R’s / (single right) is \\ (two left) slashes:
C:\\Users\\np\\Documents

® There is no issue in the MAC OS/Linux as they have retained the / (right slash)
as the basis for directory delineation

* Print the current working directory

> getwd()
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List the objects in the current workspace

> 1s()

Change to my directory

> setwd(mydirectory)

Display last 25 commands

> history()

Display all previous commands

> history(max.show=Inf)

Saving R workspace

> X <- 5 # object x; x is assigned value 5

>y <-10 # object y; y is assigned value 10

>z <- x+y # object z (addition of numbers x and y); z is assigned the value x+y
> save(X, v, file = "examplel xy.RData") # save two specified objects x and y
> save.image(file = "examplel.RData") # save entire workspace

Removing objects R workspace: Use rm()

> Is()
[ "xyn
> rm(X, y) # removes objects x and y
> 1s()
[1] 2"

Use load() to add previously saved objects or workspaces to your current R
session.

> |load(file = "examplel.RData")
> 1s()
[2] """y
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Getting help with functions and features

To get more information on any specific named function, use help() function or ?
help operator.
> help(Im) or > help(“Im”)
> ?Im
For a feature specified by special characters, the argument must be enclosed in
double or single quotes, making it a “character string”. This is also necessary for a
few words with syntactic meaning including if, for and function.
> help("[[")
The convention is to use double quote marks for preference.
On most R installations help is available in HTML format by running help.start()
which will launch a Web browser that allows the help pages to be browsed with
hyperlinks. The help.search command (alternatively ??) allows searching for help
in various ways.
> help.search("Im™)
> ??Im
The examples on a help topic can normally be run by
> example(Im)
Windows versions of R have other optional help systems: Use ?help for further
details.

R Datasets

R comes with a number of sample datasets that you can experiment with. One has
to type data( ) to see the available datasets. The results will depend on which
packages you have loaded. For getting details on a sample dataset, type
help(datasetname). Example: > help("AirPassengers")

R Packages

One of the strengths of R is that the system can easily be extended. The system
allows you to write new functions and package those functions in a so called 'R
package' (or 'R library’). The R package may also contain other R objects, for
example data sets or documentation. There is a lively R user community and many
R packages have been written and made available on CRAN for other users. For
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example, there are packages for statistics, bioinformatics and many more. To attach

package to the system you can use the menu or the library function.

* Viathe menu in RGui: Select the ‘Packages’ menu and select ‘load package...’,
a list of available packages on your system will be displayed. Select one and
click ‘OK”.

* Viathe library function: > library()

Data Management

Everything in R is an object. An object is simply a data structure that has some
methods and attributes. The data elements in any R object has attributes. These
attributes describe the nature of the elements. Object attributes are modes, class and
types.

®* Modes: logical (TRUE, FALSE), numeric, character (string), complex

(complex number)
* Type (e.g. vectors can be character, numeric, logical or complex)
* Class: Describes object type and mode of object or element that is specified.

Objects in R:
® Scalar: a single number (1x1 vector)
* Vector: all elements of the same type (Type: logical, character, numeric or
complex)
* List: can contain objects of different types
* Matrix: table of vectors, where all elements are numeric (or complex)
* Data frame: table of number and/or character vectors. Can contain lists, too.

Data objects in R can exist in many different modes, classes, and types. mode( )
function returns the mode of an object. Some object classes like arrays and matrices
require all elements to be of the same mode. A vector can have only mode type of
elements. It can have only numeric, character, logical or complex elements. Other
objects (data frames, lists) allow for different modes to exist, i.e. objects within data
frames and lists can be of different modes. Class describes object type and mode of
object or element that is specified. class( ) function returns class of an object.
Examples: “vector”, “data.frame”, “numeric”, “factor”

>z7<-0:9

>z

[1]0123456789
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> digits <- as.character (z)
> digits

[1] "O™ "1™ 2t M3 4t Mht e M7t gt MO
> d <- as.integer (digits)
>d

[1]0123456789

> class (2)

[1] "integer"

> class (digits)

[1] "character™

> class (d)

[1] "integer"

Vector Arithmetic

<- the arrow is the assignment symbol, used to assign a value or function to a
symbol or object. The ‘=" operator can be used as an alternative.
>5+10
[1] 15
> X <- 5 # object x; x is assigned value 5
>y <-10 # object y; y is assigned value 10
> 7 <- x+y # object z; z is assigned the value x+y
>z # Display z
[1] 15
> sqrt(z)
[1] 3.872983
> Is() # List objects
[1] "x" "y 'z
Here, X, y and z are scalar objects, each having a single value.

Assignment statement using c() function
> x <-¢(9.5,10.8, 2.5, 3.9, 19.6)

> X

[1] 9.510.8 2.5 3.919.6

> assign(*'x", ¢(9.5, 10.8, 2.5, 3.9, 19.6))
> X
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[1] 9.510.8 2.5 3.919.6
>¢(9.5,10.8, 2.5, 3.9, 19.6) -> x

> X

[1] 9.510.8 25 3.919.6

> 1/x

[1] 0.10526316 0.09259259 0.40000000 0.25641026 0.05102041
>y<-¢(x1,0,1,%)

>y

[1] 9.510.8 25 3.919.6 1.0 0.0 1.0 9510.8 2.5 3.919.6

The elementary arithmetic operators:

+, -, % land ?

log, exp, sin, cos, tan, sqrt

max and min select the largest and smallest elements of a vector respectively.
range is a function whose value is a vector of length two, namely c(min(x),
max(x)).

length(x) is the number of elements in Xx.

sum(x) gives the total of the elements in x.

prod(x) gives the product.

> X <- ¢(1:10)

> X

[1]1 2345678910
> X [x>6]

[1] 7 8 910

> X [(x>6) | (x<4)]

[111 2378910

> x <-seq (1,10)

> X
[1]12345678910
> rev (x) # reverse order
[1]10987654321
> X <- (1:4)"2

> X

[111 4 916
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Missing values

Arithmetic functions on missing values yield missing values.
>x<-c¢(1,5, 4, NA, 6)

> X

[11]154NAG6

> mean(x)

[1] NA

> mean(x, na.rm = TRUE)

[1] 4

The function is.na(x) gives a logical vector of the same size as x with value TRUE
if and only if the corresponding element in x is NA.

> is.na(x)

[1] FALSE FALSE FALSE TRUE FALSE

Impossible values (e.g., dividing by zero) are represented by the symbol NaN (Not
a Number).

>5/0

[1] Inf

> 0/0

[1] NaN

> Inf - Inf

[1] NaN

is.na(xx) is TRUE both for NA and NaN values.

is.nan(xx) is only TRUE for NaNs.

> color <-c("red", "green™, "blue™)

> color # the values of character variable color are red, green and blue
[1] "red" "green" "blue"

> cat(color) # remove quotation marks

red green blue

> cat(color[1])

red

Assign names to the Elements
> x <- ¢(Delhi="red", Mumbai="green", Kolkata="blue")
> X

Delhi Mumbai Kolkata

"red"” "green” "blue”
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> names(x)

[1] "Delhi" "Mumbai" "Kolkata"

> fruit <- ¢(2, 3, 6)

> names(fruit) <- c("orange", "apple", "banana™)

> fruit
orange apple banana
2 3 6

> fruit[c("apple”,"orange™)]
apple orange
3 2
> Fruit <- c(orange=2, apple=3, banana=6)
> Fruit
orange apple banana
2 3 6
All elements of a vector must have the same type. If you concatenate vectors of
different types, they will be converted to the least "restrictive" type.
> (2, "car")
[1]"2" “car”
Logical values are converted to 0/ 1 OR "TRUE"/ "FALSE".
> c(FALSE, 5)
[1]05
> c(FALSE, "red")
[1] "FALSE" "red"

Background in Vector Arithmetic: Vector addition required the vectors to be the
same length (dimension).

x <-¢(9, 2)
> X

[1]92
>y<-¢(5,1)
>y

[1]151
>X+5
[1]114 7
>X+y
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[1] 14 3
>X - y
[1]141

> x*y

[1]1 45 2

> 2*X+y+5
[1] 28 10
> xly
[1]1.82.0

Concatenate — c()
c(x, y)
>z<-¢(6,4,1,0)
>z

[116410

> X <- ¢(6, 4)

> X

[1]164
>y<-¢(1,0)

>y

[1]10

>z <-¢(X,y)

>z

[116410

Generating regular sequences — seq()
>x1<-1:10

>x1
[1112345678910
> x2 <-seq(1, 10)

> X2
[1112345678910
> x3 <-seq(1, 10, by = 2)

> x3

[1]13579

> x4 <-seq(10, 22, length = 5)
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> x4

[1] 101316 19 22

> x5 <- seq(length = 31, from = -5, by = 3)

> x5

[1]-5-2 1 4 7101316 19 22 2528 31 34 37 40 43 46 49 52 55 58 61 64 67 70
73

[28] 76 79 82 85

Generating regular sequences — rep()
Replicate or repeat
> X6 <- rep(3, 5)
> X6
[1133333
>Xx7<-1:3
> X7
[1]1123
> X8 <- rep(x7, times = 5) # put five copies of X7 end-to-end in x8
> x8
[1]123123123123123
> X9 <- rep(x7, each = 5) # repeats each element of x7 five times before moving
on to the next
> X9
[1]111112222233333

Summaries and Subscripting
>x<-c¢(1,3,4,7,11, 32)
> x[1:3]

[1]1134

> x[c(1:3, 6)]

[1] 1 3 432

> x[-(1:4)]

[1]11 32

> mean(x) # Mean

[1] 9.666667

> m1 <- sum(x)/length(x)
>ml
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[1] 9.666667

> var(x) # Variance

[1] 131.8667

> sum((x-m21)*2)/(length(x)-1)

[1] 131.8667

> sd(x) # Standard deviation

[1] 11.48332

> sgrt(sum((x-m21)*2)/(length(x)-1))

[1] 11.48332

> summary(x) # Summary
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 3.250 5.500 9.667 10.000 32.000

> summary(x[1:4]) # Summary
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 250 350 3.75 4.75 7.00

Matrices

Matrices or more generally arrays are multi-dimensional generalizations of vectors.
In fact, they are vectors that can be indexed by two or more indices.

> X <- matrix(1:12, nrow = 3, ncol = 4)
> X
[11 2] [31 [4]
[1] 1 4 7 10
[2] 2 5 8 11
[3] 3 6 9 12
> dim(X)
[1]134

> Y <- matrix(1:12, nrow = 3, ncol = 4, byrow = TRUE)

>Y
[11[.21 [.3] [4]
[1] 1 2 3 4
[2] 5 6 7 8
[3] 9 10 11 12
Assigning names to rows and columns
> rownames(X) <- c("A", "B", "C")
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> X

L1 2] [.3]1 [A4]
A 1 4 7 10
B 2 5 811
C 3 6 9 12
> colnames(X) <- ¢("X1", "X2", "X3", "X4")
> X

X1 X2 X3 X4
A14710
B25811
C360912
Accessing elements of a matrix
> X

X1 X2 X3 X4
A14710
B25811
C360912
> X[,1]
ABC
123
> X[1,]
X1 X2 X3 X4

14710
> X[2, 3]
[1]8
Adding additional rows or binding matrices — rbind()
Adding additional columns or binding matrices — cbind()
> X <- matrix(1:12, nrow = 3, ncol = 4)
> X

[ L2] [.31 [4]
1] 1 4 7 10
[2] 2 5 8 11
[3] 3 6 9 12
> rbind(X, c(5, 1, 2, 6))
[11[21 [.31 [4]

1] 1 4 7 10
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[2] 2 5 8 11
[3] 3 6 9 12
4] 5 1 2 6
> chind(X, c(3, 4, 9))
[11 [.2] [31 [.4] [.3]
[1] 1 4 7 10 3
[2] 2 5 8 11 4
[3] 3 6 9 12 9

Transpose — t(); Determinant — det(); Inverse — solve()
> X <- matrix(c(1, 3, 8, 12), nrow = 2, byrow = TRUE)
> X

[1][.2]
1] 1 3
[2] 8 12
> t(X) # Transpose of matrix

[11[.2]
[1] 1 8
[2] 3 12
> det(X) # Determinant of matrix
[1]-12
> solve(X) # Inverse of matrix

L1 [2]

[1,] -1.0000000 0.25000000
[2,] 0.6666667 -0.08333333

List and Data Frame

An R list is an object consisting of an ordered collection of objects known as its
components.

> Lst <- list(name="Fred", wife="Mary", no.children=3, child.ages=c(4,7,9))

> Lst

$name

[1] "Fred"

$wife

[1] "Mary"

$no.children
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[1]3

$child.ages

[1]1479

> length(Lst) # Length
[1] 4

> names(Lst) # Names
[1] "name" "wife" "no.children
> Lst$no.children

[1] 3

> Lst[[3]]

[1] 3

nn

child.ages*

A data frame object in R has similar dimensional properties to a matrix but it may
contain categorical data, as well as numeric (mixed modes). The standard layout is
to put data for one observation across a row and variables as columns. Columns can
be thought of as vectors, being either numeric or character. Columns can have
column names, similar to variable names. Column names can be of any length,
consisting of letters, numbers and a period (.) if desired. Underscores are not
allowed. Column names must start with a letter. Columns (vectors) in a data.frame
must be of the same length. On one level, as the notation will reflect, a data frame
is a list. Each component corresponds to a variable, i.e., the vector of values of a
given variable for each sample. Therefore, a data frame is like a list with
components as columns of table. Lists have columns of the same lengths.
A list can be made into a data.frame:

v/ Components must be vectors (numeric, character, logical) or factors.

v" All vectors and factors must have the same lengths.
Matrices and even other data frames can be combined with vectors to form a data
frame if the dimensions match up.
> students <- data.frame(gender = c("F", "M","F"), ht = ¢(170, 188.5, 168.3), wt =
c(91.8,90, 82.6))
> students

gender ht wt

1 F170.091.8
2 M188.590.0
3 F168.382.6
> students[1, 2] # ldentify the row 1, col 2 element in object Students
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[1] 170
> names(students) # ldentify the column names in object Students
[1] "gender" "ht"  "wt"
> rownames(students) <- ¢("S1", "S2", "S3") # Apply row names to object Students
> students
gender ht wt
S1 F170.091.8
S2 M 188.590.0
S3 F168.382.6

Lists

Lists combine a collection of objects into a larger composite object.
> intake.pre <- ¢(23,35,34,13,46, 45,34)

> intake.post <- ¢(56,57,36,58,36,67,32)

> mylist <- list(before=intake.pre, after=intake.post)
> mylist

$hefore

[1] 23 3534 13 46 45 34

$after

[1] 56 57 36 58 36 67 32

> mylist[1]

$before

[1] 23 3534 13 46 45 34

> mylist[[1]]

[1]1233534 1346 45 34

> dat <- data.frame(intake.pre, intake.post)

> dat
intake.pre intake.post

1 23 56

2 35 57

3 34 36

4 13 58

5 46 36

6 45 67

7 34 32

> dat$intake.pre
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[1] 23 3534 13 46 45 34
> dat$intake.pre[3]

[1] 34

> datSintake.pre[c(1,3)]
[1] 23 34

> dat$intake.pre[-3]

[1] 23 3513 46 45 34

Factor

Factors are the data objects which are used to categorize the data and store it as
levels. They can store both strings and integers. They are useful in the columns
which have a limited number of unique values such as gender (Male, Female), etc.
factor(x = character(), levels, labels = levels, ordered = is.ordered(x))

> gender <- c("male","male","female","female","male","female","male")

> gender

[1] "male” "male
> class(gender)
[1] "character*

> gender <- factor(gender)

> gender

[1] male male female female male female male
Levels: female male

> class(gender)

[1] "factor”

female" "female" "male" "female" "male"

Two-way Layout

Consider our two-way layout problem, where we produced the indicator variables
using rep(). A better way to do this is using the function gl, which will generate
factors.

> clevels <- gl(3,8)

> clevels

[1]11111111222222223333333

+3

Levels: 123

> rlevels <- gl(4,2,length=24)

> rlevels
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[1111223344112233441122334
+4

Levels: 1234

Use the function expand.grid to produce a data frame with the desired factors.
> reps

[1]112

> colLevels <- 1:3

> colLevels

[1]1123

> rowLevels <- 1:4

> rowLevels

[1]11234

> height = seq(60, 80, 10)

> height

[1] 60 70 80

> weight = seq(100, 200, 50)
> weight

[1] 100 150 200

> sex = ¢("Male","Female™)
> sex

[1] "Male" "Female"

Generating Random Numbers

As a language for statistical analysis, R has a comprehensive library of functions
for generating random numbers from various statistical distributions.
Example: Generate 5 random integers between 1 and 10

> set.seed (100) # function in R used to reproduce results

> sample (1:10, 5) # sampling without

replacement is the default

[1]10 76 3 1

> sample (1:10, 5, replace = TRUE)

[1]10 7 6 6 4

> sample (c("H","T"),5, replace = TRUE)

[1] "H" T T H H

> runif (5, 0, 1) # generating between 0 and 1, excluding 0 and 1

[1] 0.6902905 0.5358112 0.7108038 0.5383487 0.7489722
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> rnorm (5, 1, 3) # generating random numbers from normal dist with (1,3)
[1] 0.3950981 3.2195215 1.3701385 0.9120499 -0.1665627

Importing Data

> mydata <- read.table ("mydata.txt", header=TRUE) # From Text file

> head(mydata)

Height Weight Sex
1 60 100 Male
2 70 100 Male
3 80 100 Male
4 60 150 Male
5 70 150 Male
6 80 150 Male

> mydata <- read.table ("mydata.csv", header=TRUE) # From CSV file
> mydata <- read.delim ("mydata.csv") # Importing file with a separator character
> mydata <- read.delim2("mydata.csv")

Importing from Excel: Importing from 1st worksheet
We will require a package named ‘xIsx’.

> library(xlsx)

Warning message:

package ‘xlsx’ was built under R version 4.0.5

> mydata <- read.xlsx("mydata.xlsx", 1)

Importing SPSS

library(foreign)

mydata <- read.spss(“mydata.sav”, to.data.frame=TRUE,
use.value.labels=FALSE)

Importing SAS files

library(sas7bdat)

mydata <- read.sas7bdat(‘“mydata.sas7bdat”)
Importing Minitab files

library(foreign)

mydata <- read.mtp(“mydata.mtp”)
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Descriptive Statistics

Descriptive statistics investigates the variables separately. Various descriptive
statistics can be computed by using in-built R functions as given below.

Name of function Use of function

mean calculates the mean of an input

median calculates the median of an input

var calculates the variance of an input

sd calculates the standard deviation of an input

IQR calculates the interquartile range of an input

min calculates the minimum value of an input

max calculates the maximum of an input

range returns a vector containing the minimum and
maximum of all given arguments

summary returns a vector containing a mixture of the above
functions (minimum, first quartile, median, mean,
third quartile, maximum)

> data(trees)

> head(trees)

Girth Height VVolume
1 83 70 10.3

2 86 65 10.3

3 88 63 10.2

4 105 72 164
5107 81 1838

6 108 83 19.7

> summary(trees)
Girth Height
Min. :8.30 Min.

63 Min.

Volume
:10.20

1st Qu.:11.05 1stQu.:72 1st Qu.:19.40
Median :12.90 Median :76 Median :24.20

Mean :13.25 Mean

176 Mean :30.17

3rd Qu.:15.25 3rd Qu.:80 3rd Qu.:37.30

Max.

:20.60 Max. :87 Max.

:77.00
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> mean(trees$Height)
[1] 76

> sd(trees$Height)
[1] 6.371813

> range(trees$Height)
[1] 63 87

Graphics

Histogram plots the frequencies that data appears within certain ranges.

> data(trees)

Add a title: The “main” statement will give the plot an overall heading.

Add axis labels: Use “xlab” and “ylab” to label the X and Y axes, respectively.
Changing colors: Use the col statement

hist(trees$Height, main="Height of Cherry Tree", xlab="Height",
ylab="Frequency", col="red")

Height of Cherry Tree

A boxplot provides a graphical view of the median, quartiles, maximum, and
minimum of a data set.
> boxplot(trees$Volume,main="Volume of Timber', ylab="VVolume (cubic ft)")

Volume of Timber

60

Volume [cubic ft)

a0

20
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Partitioning the Graphics Window

A useful facility before beginning is to divide a page into smaller pieces so that
more than one figure can be displayed graphically.

par: used to set or query graphics parameters

par(mfrow=c(2,2))

# This will create a window of graphics with 2 rows and 2 columns.

# The windows are filled up row-wise.

# Use mfcol instead of mfrow to fill up column-wise.

> data(trees)

> par(mfrow=c(2,2))

> hist(trees$Height)

> boxplot(trees$Height)
> hist(trees$VVolume)

> boxplot(trees$VVolume)
> par(mfrow=c(1,1))

Histogram of treesSHeight

Fre
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65 70 75 80 85

treesSHeight

Histogram of trees$Volume
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10 20 30 40 S50 60 70
H:| |

- Use layout()
Example: layout(matrix(1:4,2,2)) will partition the window into 4 equal parts
One can view the layout with layout show (n = 4)
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A scatter plot provides a graphical view of the relationship between two sets of
numbers.

> plot(trees$Height, trees$Volume, xlab="Height", ylab="Volume",
main="Scatter Plot", pch=20)

Scatter Plot

Volume
0

parameter pch stands for ‘plotting character’.
> pairs(trees)

A matrix of scatterplots is produced.
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Density plot is a representation of the distribution of a numeric variable that uses
a kernel density estimate to show the probability density function of the variable.
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In R Language we use the density() function which helps to compute kernel density
estimates.

> plot(density(gtemp), ylim=c(0, 2), col = "green",main = "Density plot™)

> lines(density(gtemp2), col="red")

> legend(0.5,1.5, cex=0.8, c("gtemp", "gtemp2"), col=c("green", "red"), Ity=1:1)

Density plot

05 0.0 05

N =130 Bandwidth = 007992

Writing functions

A function is a set of statements organized together to perform a specific task. R
has a large number of in-built functions such as seq(), mean(), max(), sum(), etc.
The user can create their own functions.

General form of the function:

func_name <- function(argl, arg2, ...) {

Function body

}

func_name is the name of actual name of function.

The argument can be any type of object (like a scalar, a matrix, a data frame, a
vector, a logical, etc)

Local vs global environment
It’s not necessarily to use return() at the end of your function. The reason you return
an object is if you’ve saved the value of your statements into an object inside the
function. In this case, the objects in the function are in a local environment and
won’t appear in your global environment.
funl <- function(x){

2*X+3

¥
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> funl(4)
[1] 11

fun2 <- function(x){
y <- 2*x+3
}
> fun2(4)
> print(y)
Error in print(y) : object 'y' not found
We can return the value of y using return(y) at the end of the function.

fun2_1 <- function(x){
y <- 2*x+3
return(y)

}

> fun2_1(4)

[1] 11

fun3 <- function(x, y){
71 <- 2*x+y
72 <- X+2*y
23 <- 2*x+2*y
74 <- xly
return(c(zl, z2, z3, z4))
}
> fun3(1, 2)
[1]14.05.06.00.5

If we need to return multiple objects from a function, we can use list() to list them
together. To extract objects from output, use [[ ]] operator.
fun4 <- function(x, y){

m1 <- mean(x)

m2 <- mean(y)

sdl <- sd(x)

sd2 <- sd(y)

cor.xy <- cor(x, y)
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Xy <- cbind(x, y)
list(m1, m2, sd1, sd2, cor.xy, Xy)
}

>x<-c(1, 4,8, 11, 20, 23)
>y<-¢(2,6,3,8,21, 29)
> fun4d(x, y)

[[11]

[1] 11.16667

[[21]

[1] 11.5

[[31]

[1] 8.750238

[[41]
[1] 10.96814

[[5]]

[1] 0.9471335
[[61]

Xy

[1] 12

[2] 4 6

[3] 83
[4]11 8

[5,] 20 21

[6,] 23 29

for loops

-The for loop is used when iterating through a list.
-The basic structure of the for loop:

for(index in list){

commands

¥

cars <- c("Toyota", "Ford", "Chevy")
for(l'in cars) {
print(i)
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}

[1] "Toyota™
[1] "Ford"
[1] "Chevy"

while loop
The while loop is used when you want to keep iterating as long as a specific
condition is satisfied. The basic structure of the while loop:
while(condition) {
commands
}
i<-3
while(i <=6) {
i<-i+l
print(i)
}
[1]14
[115
[116
[117

Ifelse function

The ifelse function is very handy because it allows the user to specify the action
taken for the test condition being true or false. Like the if statement the ifelse
function can be included in any function or loop.

The basic structure of the ifelse function:

Ifelse(test, action.if.true, action.if.false)

> X <-seq(1:10)
> ifelse(x <6, "T", "F")
[1] IITII IITII IITII IITII IITII IIFII IIFII IIFII IIFII IIFII

R Packages for Bioinformatics

R packages are extensions to the R statistical programming language. R packages
contain code, data, and documentation in a standardised collection format that can
be installed by users of R. A large number of R packages are freely through CRAN
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(the Comprehensive R Archive Network; https://cran.r-project.org/) and
Bioconductor set of R packages (www.bioconductor.org). Some well-known
bioinformatics R packages are the Bioconductor set of R packages
(www.bioconductor.org). Bioconductor is a free, open source and open
development software project for the analysis and comprehension of genomic data.

R Packages for analysis of biological sequence analysis and retrieval of
genomic data

= seqinr

= tidysq

= biomartr

" rentrez

R packages for sequence alignment
= Biostrings

" msa

= msaR

» ggmsa

= AlignStat

R Packages for differential gene expression analysis of microarray data
= amda

= maGUI

= maEndToEnd

= limma

= GEOlimma

R packages for differential gene expression analysis of RNA-Seq data
= edgeR

= DESeq?2

= jdeal

= DEvis

R Packages for protein structure analysis

= Bio3D
= Rpdb
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= XLmap

R packages for protein-protein interaction graphs
= graph

RBGL

Rgraphviz

crosstalkr

igraph

R Packages for proteomics data analysis
= RforProteomcs

= protti

= Proteus

= DanteR

= MSstats

= MSqgRob

= DAPAR

R Packages for metagenomics data analysis
= MicrobiomeExplorer

= matR

= MegaR

R Packages for GWAS and genomic selection
statgenGWAS

GWASTools

BlueSNP

rrBLUP

Ime4GS

BWGS

GSelection

learnMET

GAPIT
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Demonstration of an R package “GAPIT: Genomic Association and Prediction
Integrated Tool”
GAPIT implemented a series of methods for Genome Wide Association (GWAS)
and Genomic Selection (GS). The GWAS models include
= General Linear Model (GLM)
= Mixed Linear Model (MLM or Q+K)
= Compressed MLM (CMLM)
= Enriched CMLM
= SUPPER
= Multiple Loci Mixed Model (MLMM)
= FarmCPU
= BLINK
The GS models include
= gBLUP
= Compressed BLUP
= SUPER BLUP
GAPIT is an R package which can be freely downloaded from http://www.r-
project.org or http://www.rstudio.com.
There are two sources to install GAPIT package.
Zhiwu Zhang Lab website
source("http://zzlab.net/GAPIT/GAPIT library.R")
source("http://zzlab.net/GAPIT/gapit_functions.txt™)
GitHub
install.packages(*'devtools")
devtools::install_github(*'jiabowang/GAPIT3",force=TRUE)
library(GAPIT3)
Help manual: https://zzlab.net/ GAPIT/gapit_help_document.pdf
# Import data from Zhiwu Zhang Lab
myY <- read.table("http://zzlab.net/ GAPIT/data/mdp_traits.txt", head = TRUE)
myGD=read.table(file="http://zzlab.net/GAPIT/data/mdp_numeric.txt",head=T)
myGM=read.table(file="http://zzlab.net/GAPIT/data/mdp_SNP_information.txt",
head=T)
# GWAS
myGAPIT=GAPIT(
Y=myY][,c(1,2,3)], #fist column is ID
GD=myGD,
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GM=myGM,

PCA.total=3,
model=c("FarmCPU", "Blink"),
Multiple_analysis=TRUE)
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Genome-wide association study (GWAS) is a research strategy to find genetic variations that
are statistically linked to a disease or a particular trait. The approach involves scanning the
genomes of a large number of individuals in search of genetic variants that are more prevalent
in persons with a particular disease or trait than in people without the disease or trait. These
genomic variants are often utilised to look for neighbouring variants that are directly
responsible for the disease or trait once they have been found.

Linkage disequilibrium (LD) between the markers being studied and the functional
polymorphisms of the causal genes is the basis for GWAS. On the chromosome, loci that are
physically close to one another are separated by recombination less frequently than loci that
are farther apart. Gametic-phase disequilibrium, often known as LD, is the nonrandom
connection of alleles at two loci. The SNPs close to the causal locus may have strong LD with
the functional polymorphisms and hence be linked to the desired trait. These relationships are
discovered through genome-wide association studies, which also highlight the genomic areas
that contain the significant SNPs and the relevant genes.

Genome-wide association study (GWAS) attempts to predict association of specific traits
(phenotype) with genetic variants (genotype) by statistical analysis at population level.
Phenotypic information can be obtained by systematically measuring the phenotype (physical
and physiological traits) that can be influenced by various genetic and environmental factors.
Individual genotyping is usually done with microarrays for common variations or next-
generation sequencing technologies like WES or WGS for rare variants. Due to the current
expense of next-generation sequencing, microarray-based genotyping is the most frequently
used approach for retrieving genotypes for GWAS. However resequencing the entire genome
has the ability to uncover almost all genetic variations. This genotypic information along with
phenotypic data can be analysed to identify the genetic markers (SNPs, SSRs etc.), QTLs or
candidate genes associated with a specific trait.

The input files for GWA studies usually include the genotype file i.e., marker information and
the phenotype file i.e., trait information and also coded family relations between individuals.

Following the data input, producing reliable GWAS results requires meticulous quality control.
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Testing for associations.

The biometrical model underpins the genetic association theory. Depending on whether the
phenotype is continuous (such as plant height, grain yield etc.) or binary (such as the presence
or absence of disease), linear or logistic regression models are typically employed in GWAS
to test for associations. To account for stratification and eliminate confounding effects from
demographic characteristics, covariates such as age, sex, and ancestry are added, with the
caveat that this may impair statistical power for binary traits in ascertained samples. Adding an
additional individual-specific random effect term to linear or logistic mixed models to account
for genetic relatedness among individuals might improve statistical power for genome
discovery and boost control for stratification at the expense of increased complexity. Adding
an additional individual-specific random effect term to linear or logistic mixed models to
account for genetic relatedness between people might boost statistical power for genome
discovery and increase control for stratification at the cost of more processing resources. When
doing a GWAS, it's important to remember that genotypes of genetic variants that are
physically close together aren't independent because they are in linkage disequilibrium; this

test dependency should be taken into account as well.

The following equation depicts the linear regression model for testing the association between

a marker and a trait:

Y~Xa + Z.B, +e
e~N(0,021)

where, for each individual, Y is a vector of phenotype values, X is a matrix assigning records
to phenotypes fixed effect, a is a corresponding vector of fixed effects sizes (e.g., the mean,
population structure effects, and age), Z, is a vector of genotype values for all individuals at
genetic variations, f3, is the corresponding fixed effect size of genetic variants, 62 measures
residual variance and I is an identity matrix.

The underlying assumption is that if the marker will have effect on trait only if it is in linkage
disequilibrium with an unseen QTL. The null hypothesis for the study asserts that marker has
no effect on the trait, while the alternative hypothesis states that it does have an effect on the
trait (as itis in LD with a QTL). If F > F,. 4.,, where F is the F statistic obtained from the data
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and F,.,,.,, is the value from a F distribution at o level of significance and v1, v2 degrees of
freedom, the null hypothesis is rejected.

There are numerous statistical models to find associations between marker loci and a variety
of traits, ranging from simple to highly complex. Accurate decoding of complex traits in
diverse population requires more comprehensive statistical models which takes care of false
positives arising from family relatedness and population structure, at the same time also keeps
in check the number of false negatives due to over correction. Confounding effects due to
population structure and Kinship among individuals is taken into account by using these
covariates in the statistical model. STRUCTURE (Pritchard et al., 2000), PCA (Price et al.,
2006), and a discriminant analysis of principal components (DAPC) (Jombart et al., 2010) are
methods for determining population organisation by using genetic markers. False positives
arising due to common ancestry and family relatedness can be addressed by incorporating
kinship matrix into the statistical model. One of the most often used methods for estimating
family relatedness among individuals in a diverse population is identity-by-state (Loiselle et
al., 1995).

Inclusion of population structure and a kinship matrix as covariates in mixed linear models
(MLM) to reduce false positives is a widely used approach. Many MLM-based approaches
have been presented since Yu et al. (2006) published the first MLM of association mapping
(Zhang et al., 2010; Wang et al., 2014). All of these models are called single-locus models as
they do a unidimensional genome scan by examining one marker at a time and then iterate the
process for each marker in the dataset. But the true genetic model of complex traits that are
governed by multiple loci at the same time cannot be explained by single locus models.
Multilocus association mapping models have been suggested as a solution to this problem since
they consider the input from all loci at the same time (Wang et al., 2016). One more constraint
of MLM based models is increase in number of false negatives due to overfitting which may
lead to omission of certain potentially valuable association (Liu et al., 2016). False negatives
may arise during multiple comparison adjustments for evaluating statistical significance.
Bonferroni correction (Holm, 1979) and false discovery rate (FDR) (Benjamini and Hochberg,
1995) are two commonly used multiple comparison approaches in association mapping for
determining the significant threshold. Highly conservative standards can result in a high rate
of false negatives. As a result, selection of a proper model and threshold are critical steps in
detecting true trait associated markers that may be located inside or in high LD with genes that

govern trait variation, while minimizing both false-positive and false-negative associations.
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Statistical models for GWAS

Some popular models for GWAS include:

(1) analysis of variance (ANOVA)

(2) general linear model with principle component analysis (GLM + PCA) (Price et al., 2006),
(3) MLM with principle component analysis and Kinship matrix for family relatedness
estimates (GLM+PCA+K) (Yu et al., 2006)

(4) compressed MLM (Zhang et al., 2010)

(5) enriched compressed MLM (Li et al., 2014)

(6) settlement of MLM under progressively exclusive relationship (SUPER) (Wang et al.,
2014)

(7) multiple loci MLM (MLMM) (Segura et al., 2012)

(8) fixed and random model circulating probability unification (FarmCPU) (Liu et al., 2016).

Models from (1) to (6) are single locus models, while (7) and (8) are multilocus models.

Among these popular models of GWAS, the GLM and MLM are said to have a better control
of false positives than ANOVA (Price et al., 2006; Yu et al., 2006). The GLM with PCA model
is supposed to lower the number of false positives caused by population structure alone (Price
et al., 2006). The kinship matrix is included in the MLM with PCA and K model, which is
intended to reduce false positives caused by family relatedness (Yu et al., 2006). By controlling
false positives, the MLM model is said to perform better than the GLM model alone (Yu et al.,
2006). The benefit of MLM maodel in controlling false positives disappears when complex
qualities are connected with population structure with considerable genetic divergence, The
MLM approach does a good job of controlling P-value inflation, but it also produces false
negatives, making it difficult to identify actual correlations (Zhang et al., 2010). The
compressed MLM model (CMLM), which clusters individuals into groups and fits genetic
values of groups as random effects in the model, was created to address this challenge (Zhang
et al., 2010). When compared to traditional MLM methods, the CMLM method boosts
statistical power (Zhang et al., 2010). Another option for dealing with P-value deflation caused
by MLM is to adopt a SUPER model, in which just the linked genetic markers are utilised as
pseudo—Quantitative Trait Nucleotides (QTNSs) to determine Kkinship, rather than all of the
markers (Wang et al., 2014). When a pseudo QTN is associated with the testing marker, it is
not included in the kinship analysis. Between the pseudo QTNs and the testing marker, the

SUPER model applies an LD threshold. When compared to using total kinship from all
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markers, this strategy improves statistical power. FarmCPU is a multilocus model that was
created to reduce false positives while keeping false negatives to a minimum (Liu et al.,2016).
To partially minimise the confusion between testing markers and kinship, the FarmCPU model
use a modified MLM method called multiple loci linear mixed model (MLMM), which
combines many markers simultaneously as covariates in a stepwise MLM. When compared to
other models, this model is said to improve statistical power, computing efficiency, and the

capacity to control false positives and false negatives (Liu et al., 2016).

Single-locus models, such as the general linear model (GLM) and the mixed linear model
(MLM) require multiple tests that undergo a Bonferroni correction (Bradbury et al., 2007) for
multiple comparison adjustments. The typical Bonferroni correction is often too conservative,
which results in many important loci associated with the target traits being eliminated because
they do not satisfy the stringent criterion of the significance test. The multi-locus models are
better alternatives for GWASSs because they do not require the Bonferroni correction, and thus
more marker-trait associations may be identified. Recently, several new multi-locus GWAS
models, such as multi-locus RMLM (mrMLM, Wang et al., 2016), fast multi-locus random-
SNP-effect EMMA (FASTmrEMMA, Wen et al.,, 2017), and Iterative modified-Sure
Independence Screening EM-Bayesian LASSO (ISIS EM-BLASSO, Tamba et al., 2017), have

been developed.

Representation of GWAS Results

GWAS results are typically represented as two types of p-value plots: genome-wide association
plots (Manhattan plots) and quantile-quantile (QQ) plots. In Manhattan plot marker loci are
represented as chromosomes and position on the chromosome in genomic order on Xx-axis and
negative logarithm of their p values (-log:oP) on y-axis (Figl). The Manhattan plot resembles
the Manhattan skyline because clusters of significant P values tend to ascend to the top due to
local correlation of the genetic variants brought on by linkage.
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Fig 1: An illustration of a Manhattan plot depicting several strongly associated loci to the trait

Quantile-quantile plots (QQ plots) are widely used to display the proportion of significant
results in relation to the projected number of significant results at a specific P value (Fig 2).
The figure unambiguously demonstrated that, at levels more than P 0.001, more significant

SNP were discovered in their analysis than would have been expected by chance.

Observed —logyp(p)

Expected —logy(p)

Fig 2: Quantile-quantile (QQ) plot. Comparison of GWAS P-values (black dotted line) to those

expected for a null distribution (red line).
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Hands-on Session for GWAS
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TASSEL also known as Trait Analysis by aSSociation, Evolution and Linkage is a powerful
statistical software to conduct association mapping such as General Linear Model (GLM) and
Mixed Linear Model (MLM). The GUI (graphical user interface) version of TASSEL is very well
built for anyone who does not have a background or experience in working in command line. The
following section demonstrates how to prepare input files and run association analysis in TASSEL
in stepwise manner.

1. Download and install TASSEL software

Download and install the latest version of the TASSEL software at this link:
https://www.maizegenetics.net/tassel

TASSEL Version 5.0  Started!
(Build: January 10, 2023 Requires: Java 1.8)

,,,,, Alignment Viewer

Tassel 3 Mac OS i
S Window
assel 5 Windows 32 Bit
Tassel 5 UNIX

TASSEL Version 5.0 Standalone

Using Git - Recommenged!
Download ("Togs" are Versions)

X Y SSE . ’ 1T .
Archived Versions of TASSEL Linkage Disequilibrium Display

Sl

TASSEL Documentation -:\li

iide e
R front-end for TASSEL (massel) =
Tassel 3.0 Youtube Tutona
Tassel Tutonial Data

GBSv2 Test Data 1ar zip

GBS Test Data

Visit Tassel User Group ,
Tassel 50 Chapge History = el
Tassel 5.0 Wiki

GNU Lesser Genezal Public Licesise

Manhattan Plot

2. Preparing the Input files
Phenotype file

Phenotype file can be prepared as shown below in the figure below
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Tag

- <phenotype>
attribute s e
types Taxa PH
1902-2 190.56
1902-4 169.58
1902-6 188.33
1902-7 192.92
1902-8 245.42
1902-11 197.92
395-16 192.08
1902-15 202.92
1902-18 183.33
1902-19 200
1903-1 171.67
1903-2 187.08
1903-6 192.22
1903-7 227.78

Please remember if your data has covariates such as sex, age or treatment, then, please categories
them with header name factor.

Genotype file

TASSEL supports various genotype file formats such as VCF (variant call format), .hmp.txt, and
plink. We are using the hmp.txt version of the genotype file for this demonstration. The below
screenshot of the hmp.txt genotype file.

B ot s y S B %
Fle Gt Sewch Ven Exodiy Lngape Satngs Bk Muco hun Puges Wndow 7

o e 1| e o 3| B ot i 1| Yo 3] Y ot 3| it s 1| W ot 3| ot sk A 3 Hocogmamermesa @] o0
p assembly$# center protLSID assayLSID panel QCcode 33-16 38-11 4226 4722

PZB00859.1 A/C 1 157104 + AGPvl Panzea NA NA maize282 NA CC CC CC CC AA CC AR AR CC CC CC AA CC
PZA01271.1 C/G 1 1947984 + AGPvl NA NA maize282 NA CC GG CC GG CC CC CC CC €C GG CC CC GG

i PZA03613.2 G/T 1 2914066 + AGPvl NA NA maize282 NA GG GG GG GG GG TT TT GG TT GG TT GG
PZA03613.1 A/T 1 2914171 + AGPv1 NA NA maize282 NA TT TT TT TT TT o ol
PZA03614.2 A/G 1 2915078 + AGPvl NA NA maize282 NA GG GG GG GG GG AA AA GG AA GG AA GC
PZA0O3614.1 A/T 1 2915242 + AGPvV1 NA NA i NA TT TT TT TT TT AA AA TT TT TT AA TI
PZA00258.3 C/G 1 2973508 + AGPvl NA NA NA GG CC CC CG CC CC GG CC CC NN CC CC

+ PZA02962.13 A/T 1 3205252 + AGPvl NA NA NA TT TT TT TT TT T Fr/ TE/ NN TE| AR
PZA02962.14 C/G 1 3205262 + AGPvl NA NA NA CC CC CC CC CC CC CC CC CC NN CC GG
PZA00599.25 C/T 1 3206090 + AGPvl NA NA NA CC TT CcC TT TT TR TR TE TT TE TE I
PZA02129.1 C/T 1 3706018 + AGPv1 NA NA NA TT CC CC CC CC CC CC TT TT CC TT CC

3 PZA00393.1 C/T 1 4175293 + AGPv1 Panzea NA NA NA TT TT TT CC TT T EFEEEC €€ EREE CG
i PZA02869.8 C/T 1 4429897 + AGPv1 Panzea NA NA maize2B2 NA CC TT CC NN CC CC cC CC CcC cC cC cCC
PZA02869.4 C/G 1 4429927 + AGPvV1 Panzea NA NA maize282 NA CC CC CC NN GG CC CC GG CC CcC cC cCC

6 PZA02869.2 C/T 1 4430055 + AGPvV1 Panzea NA NA maize282 NA NN TT TT CC TT i s T
PZA02032.1 A/T 1 4490461 + AGPvV1 Panzea NA NA maize282 NA AA TT AA AA AA AA RAA AA AR
zagll.5 A/T 1 4835434 + AGPv1 Panzea NA NA maize282 NA AA NN AA AA AA AA AA RA AA AR

i zagll.2 A/C 1 4835558 + AGPv1 Panzea NA NA maize282 NA CC CC CC CC CC cCC CC cCc cc cC
zagll.6 C/T 1 4835658 + AGPv1 Panzea NA NA maize282 NA TT TT TT TT TT TT TT TIT TT TT
PZD00081.2 C/T 1 4836542 + AGPv1 Panzea NA NA maize282 NA CC CC CC CcC cCC CC CC cC cC
zagll.1l A/C 1 4912526 + AGPvV1 Panzea NA NA maize282 NA AA AA AA AR AR AA AA RA AA AR

2 PZB00919.1 A/C 1 5353319 + AGPv1 Panzea NA NA maize282 NA CC CC CC CC AA CC AA CC AR
4 PZB00919.2 G/T 1 5353655 + AGPv1 Pa: a NA NA maize282 NA GG GG GG GG GG GG GG GG GG
PHM2244.142 C/G 1 5562502 + AGPv1 Panzea NA NA maize282 NA NN GG GG GG GG GG GG GG GC

6 PZA03093.10 C/G 1 8075572 + AGPvl Panzea NA NA maize282 NA CC GG GG GG GG GG GG GG GC
PZA00181.5 A/G 1 8366368 + AGPvl Panzea NA NA maize282 NA AG GG AA GG GG GG GG GG GC

28 PZA00181.2 G/T 1 8366411 + AGPvl Panzea NA NA maize282 NA GG TT GG TT TT T TT TT T1
) PZA00528.1 A/C 1 8367944 + AGPvl Panzea NA NA maize282 NA AR CC AA CC NN NN CC cC cc
PZA00175.2 A/T 1 8510027 + AGPvl Panzea NA NA maize282 NA AR AA AA NN AA AR AR TT AP,
Normattettie oot LTI e 155 L7 Co peroh [ 3

P Type here to searcn

3. Importing phenotype and genotype files

Import the files by following the steps shown below.
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Start Tassel -> go to “file” menu -> select “open” -> specify the “folder” where files are located -
> choose the “files” to open holding CTRL button -> click on “open”

Updater - TASSEL 5

File Data Impute Fiter Analysis Resuits GBSv2 GBS Workflow PHG

Data =
[ Result

Open x
Lookn: [ TASSELTutorialData5 <]
[ 282_GBS2.7_Depth7Mask.ns [} mdp_kinship.txt
[ de_sequence.pny [) mdp_phenotype.txt
[") mdp_genotype.nmp.txt [*) mdp_population_structure.txt
[ map_genotype.pik.map [) mdp_traits.txt
[ map_genotype.pik.ped [} NAM_RILs1-5_GBS2.7_Depth7Mask.n
[ mdp_genotype.ver
1] I ID

File Name:  [mp.r “mdp_kinship bt “mdp_population_structure. - “mdp_traits.bt|

Files of Type: ‘AH Files |v‘

|

Open selectedfile

4. Phenotype distribution plot
It is always a wise idea to look at the phenotype distribution by plotting to check for any outliers.

Select the “phenotype” file -> go to “Results” -> go to “Charts” -> select graph type as
“Histogram” -> select the trait under “Series 1”

I Updater - TASSEL 5
IFHe Data Impute Fiter Analysis Results GBSv2 GBS Worklow PHG
[ Data EarHT | dpoll EaDia
9 [=] Numerical 9.5 @/
[} mdp_taits g ;: :g ©
¢ = Seauence o 9
[ mdp_genotype EEEE] e
) Resuit 75 62
65 69l 22
4788 61
35.63)
535 675
S I
28 65| ] - o X
0 805
rapn Type: | Histogram [~][ save | Propertes |
series 1 [EarHT | = |series 2[none [~loms s |
= EarHT Distribution
Table Title: map_traits 3 0
Number of columns: 4 48 585 = 3 |
INumber of rows: 301 51 . ‘ 1
IMatrix size (excludes row headers): 903 g ‘
o 655 25
4 57.5] .
735 78 2
74 i‘ 15
7 575
56.25) 645 o
67.5) 68 5
67 64 o
68 655 10 20 30 40 S0 60 70 80 90 100 110 120 130 140
5 “5:‘:3 g
3 70
72 55
4
72
1
74 685
6 715

5. Genotype summary analysis
Next crucial step is to look at the genotype data by simply following the steps shown.

Select genotype data -> go to “Data” menu -> click “Geno Summary”
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The output will be as shown in the figure below. The arrow depicts missing genotypic data to see

if it requires to be imputed.

& Updater - TASSEL 5

]

File Data Impute Filter Analysis Results GBSv2 GBS Workflow PHG
[ Data = Stat Type Value
¢ [ Numerical Number of Taxa 281
D mdp_traits Number of Sites| 3093
Sites x Taxa 869133
S
= D?q”e”“ Number Not Missing 837722
mdp_genotype ; Proportion Mot Missing 0.06386
1 Result i Number Missing 31411
¢ 3 Genotype Summary — Proportion Missing 0.03614|
D |mdpjenolype_(Neral\Summar}f ; Mumber Gametes 1.7383ER
D mdp_genotype_AlleleSummary i Gametes Mot M!sa!ng 1.6754ER
Proportion Gametes Mot Missing 0.96386
[} map_genotype_SiteSummary Gametes Missing 52822
[ mdp_genotype_TaxaSummary Proportion Gametes Missing| 0.03614|
Number Heterozygous 9622
Proportion Heterozygous 0.01107
Average Minor Allele Freguency| 0.21914

Table Title: Overall Summary
Mumber of columns: 2
Mumber of rows: 15

Iatrix size (excludes row headers): 15
Overall Summary of mdp_genotype

Minor allele frequency distribution

Select genotype _SiteSummary -> go to “Results” -> click on “Charts” -> select “Minor Allele

Frequency” under “Series 1”

[ Updater - TASSEL 5
File Data Impute Fiiter Analysis Resuts GBSv2 GBS Workflow PHG

7 Data [+] | site Number_Site Name | Chromoso...[Physical Po.| Number of Ref At | Major Allele |ajor Alele..| Major Allele..|Major Allele..] Minar Allele | Minor Allsle..Minor Allee..
¢ I Numerical PZE00850. 157104 21| 074911 078545 A 120 5
[ mdp_traits P: 7 147984 76) 04911 051111 264 7
- PZAD361 14066 94] 70107 0.71377 158, 1
° ﬂsD?““Z"EE . PZA0361 4171 20 74733 075 A 140 1
mdp_genotype P: 1. 15078] 280 49822 53232 A 46| 7
I Result P, 14. 15242 78] 49461 53257 A 44| 41
# (3 Genotype Summary FZAD0258. 173508 80) 761 73359 33 0 24555
[ map_genotype_overalisummary 2402962 205252 Tl 77 487 89662 A 55| 009786
[ mdp_genotype_AlleleSummary PZA02062 32052 C aa] 612 9 20 53
PZA00599 32060 i 97 543, 9 55 97
[y mdp_genotype_SiteSummary PZA02129, 7060 C 288 ) 5124 5 T 73
[ mdp_genotype_TaxaSummary PZA00393 1752 7| 408| 250: i 22064
PZAN2859 14295 C 454 5078 8 T 77
PZA02850 420927 C 421 7491 8 179
PZA)2859. 4430055 i 405 7206 7 1832
PZA2032 1490461 A 460 5185 83032 T 16726
=] a1 835434 A 506, 9003 1 N
] ~ o x 0.0071
[Table Title: Site Summary | 0.0071
Number of columns: 37 raph Type:  [Histopram [+][ save | Pproperties | 0.0106
NumDer of rows: 3003 . 5
atrix size (excludes row headers): 111348 7“"‘*“‘-""‘*""'“" "‘se"e”‘m"e "lﬁ'"’ 25|
Site Summary of mdp_oenotype 1 Minor Allele Frequency Distribution
L 300
[ | 250
200
{150
100
— so
I )
| oo 005 0.10 015 020 035 030 035 040 045 050
1 8 inor Allele Frequency
PZA35T9. 26, Tl 7402 75362
FZA)3520 544 G 68327 60565
FZAN3E20. 604] T 85053 86594]
PZA03520 745 A 95797 97143
PZA)3520. 852 A 92883 93885
14 PZAD3521 10068726 80605 8089
FZA0106. 100600 53803 8532
ZA00 106 100681 76868 7826
PZA03551.1 1220841 52313 5269
8] PZA03551.2 122085 64769 7615

Proportion of heterozygous in the samples to check for selfed samples.
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Select genotype TaxaSummary -> go to “Results” -> click on “Charts” -> select “Proportion
Heterozygous” under “Series 1”

Updater - TASSEL 5

File Data Impute Fiter Analysis Results GBSv2 GBS Workflow PHG

[ Data = Taxa Taxa Name |Number of .| Gamees M.. Proportion .. |[Number He..| Proportion .. Inbreeding ..|Inbresding
¢ 3 Numerical o EESE 19 02071 0.0110 } Bl
[y map_traits i 3811 7 01261 7 CSEM
2 4228 7t 02845 CSBl
# B3 Seauence 3 4722 79 2771 5448]Inbreeding CSBl
[ map_genotype 0 A18 15 02854 0.00829|Inbreeding CSBl
] Result 5 A2141 1 01908| ICSBM
¢ (3 Genotype Summary 5 AZ3! 7 01229 l]‘@pn reeding CSBI
[ mdp_genctype_OverallSummary 7 A27: EX 05335 0.01 ICSBM
B Ad41 852|Inbreeding CSBI
[ mdo_genotype_AlleleSummary 5 e i e conl
[y mdp_genotype_SiteSummary A6 554 3] f coBl
[0y mdp_genolype_Taxasummary 48| ﬁﬁn reeding ICSBM
2619 12! )2005| | ICSBM|
AB32, 9 01584 51 CSBU
AB34) 1 01843 87| CSBU
AR35| 180) 02425 __j‘jn reeding .. 5Bl
= AB41 142 02296 0 5Bl
hr | - o x
ITable Title: Taxa Summary i

Number of columns: 9 22 Graph Type: Histogram [+][ save | Pproperties |
INumber of 281
e o B e B -

M atrix size (excludes row headers): 2248

Taxa Summary of mdp_genotype 55 Proportion Heterozygous Distribution
24
25 | 200
26
27
g | 150
{og
0| 100
1|
2|
3 50
34|
T —
g_ 000 001 002 003 0.04 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020
T B Preportion Heterozygous
39 373 B 00905 23] 075]nbreeding
B73HTRHM 48 02392 37| 0.01226]Inbreeding
75 02005| 22 726 Inbreeding
76| 01875| 31 0.
77| 02683 35 163]
14 79| 02102] 31 |

6. Imputation of missing values

Select genotype file -> go to “impute” -> click on “LD KNNi imputation” -> set parameters -
>click “okay”

B Updater - TASSEL'S

Fle Daia mpuie Flier Anolysis Resuiis GBSv2 GBS Worklow PHG
=) oata =l ® Site Numbers ) Locus O Site Name () Alieles | MajorMinorAllele - o
£ Numerical
[ map_traits 4
¢ ] sequence 0
[ mep_genotype
[\ . gt s
) Resut
3316
3811
4228
4722
188
214N
A230
= A272
415
fraumper ot tara: za1 B e
piumber o sites: 3083 4556
A5
Cheomosomes . 2619
AB32
1: 54050 4534
(157104)- 538 (289170077) tH #535
541
2 393 sias: 4554
40 (736367) - 932 (234574991 550
ARG
5 355 sites: 4579
933 (1240310) - 1287 (229544508) ABBO
2582
f+ 319 sitas: 8204
1288 (139753) - 1606 (24513101) 10
8103
s 357 sies: L 8104
= B105
8108
‘ B1s
o

7. Filter Markers based on Minor allele frequency (MAF)
Steps to filter markers based on Minor allele frequency (MAF) are shown below:

0.05 Minor allele Frequency (set filter thresholds for rare alleles)
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Select genotype file -> go to “filter” -> click on “Filter Genotype Table Sites” -> set parameters -

> click “OK”

H Updater - TASSEL 5

Irile Data Impute Fiiter Analysis Results GBSvZ 6BS Workflow PHG

] Data
¢ T Filters
[y Filter
% (3 Numerical
[y mdp_traits
¢ (=3 Sequence
[y mdp_genotype
[} mdp_genotype_KNNimp
[ Resutt

@ Site Numbers () Locus ) Site Name ( Alleles

MajorMinorAllele -

Conduct GWAS analysis

8. Principal component analysis (PCA)

Filter Name \F\\ter

===
E' FSESEYEY

MAF filter

FYFSEYEY

38-11 Site Min Count [0 |
4226
4722 Site Min Allele Freq [005 < ¢
: A188
: A214N Site Max Allele Freq [1.0 |
: A239 ) §
I 2272 Min Heterozygous Proportion ‘D 0 \
........................................... =1 215 ) :
Number of o 251 = = Max Heterozygous Proportion [0.2
Mumber of sites: 3093 : A556
| [] Remove Minor SNP States T
Chromosomes... = AG19 13
: AB32 [] Remove Sites With Indels T
[1: 540 sites: AB34 T
0 (157104) - 538 (299170077) = 2635 Site Range Filter Type T
AB41 T
0 303 sites 654 Start Site
540 (736367) - 932 (234574991) 7659 T
ABB1 End Site ir
3: 355 sites: i ABTY 1
933 (1240310) - 1287 (229544509) ] 2680 Start Chr =
: ABB2
l4: 319 sites: AB28A Start Pos -
1288 (130753) - 1606 (245131801) : B10 End Chr 3
] B103 T
5: 357 sites: =k 104 End Pos T
e 105
109 Include Sites T
Filter Genotype Tabl [ | X | Bl T
B1os ot [ mowe ] |
s1eh Posidon st
B2 T
B46 T
e Nl -
B57 T
B68
B73 T
B73HTRHM T
B75 T | cancel H Defauits H User Manual ‘ T
B76 T T
Cal T AlniclalnlriAcEl s T AlTEE al~ alnlAlalrlalT AlnlnlT

FESESEY

FSESEY - PNEuES

===

rlzlzlzlzlzlz

Heterozygosity
filter

PCA output can be used as the covariate in the GLM or MLM to correct for population structure.
Please follow the steps shown below:

Select genotype file -> go to “Analysis” -> go to “Relatedness” -> click on “PCA”-> set parameters

-> click “ok”
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File Data

& Updater - TASSEL 5

Impute Filter Analysis Results GBSv2 GBS Workflow PHG

1 Data

] Result

¢ I Numerical
D mdp_traits
0
[ Eigenvalues_mdp_genotype
D Eigenvectors_mdp_genotype
¢ [ Sequence
[ mdp_genotype

¢ Genotype Summary
[ mdp_genotype_OveraliSummary
[ mdp_genotype_AlleleSummary
D mdp_genotype_SiteSummary
[ mdp_genotype_TaxaSummary

9.

Intersect the genotype, phenotype and PCA files by following the steps below:

Select genotype, phenotype and PCA files simultaneously by holding ‘CTRL’ button ->
-> click on “Intersect join”

“Data”

Table Title: Phenotype
Mumber of columns: 6

Number of rows: 281

Watrix size (excludes row headers). 1408

PrincipalComponents stored as covariates.
calculated from mdp_genotype

Intersecting the files

PC1 PC2 PC3 PC4 PC5
0.916 2481 0.491 -0 164 0.165
-0.813 2467 -0.301 2.238] -0.41
-0.299 3.159 1.262 1.229 -1.203
1.321 2934 2.052] 0.688 7.643
0.41 2.56 0.335 0.89 1.343
-6.801 0417 10722 -0.789 0831
-0.333 2.956 0.281 2522 -1.103
2119 -1.274) 1.114] 0.563 217
2892 0.046 0.639 1107 0332
-0.417 2735 0.65 2.804 -1.732
0.316 3.316 0.929 1.122 -1.772
5.142 -5.242 0.325 -0.321 -0.082
-0.053 7729 2811 2.862) -3.569)
-9.786] 0.135 13 8] -1.543 1.801
-8.944 -0.082 -12.504| -1.567] 0.682
-9.213 0.444) -12.682 -1.017] 0.389
-5.587) 1978 -8.88) -0.978 0433
-0.103 2.968 -0.172 3.794 -2.635
-0.678 2.561 0.838 1.657 -0.761
0.094] 2414 1.299 1.273 0974
-15.169] -6.517 5.993 -1.806] 0.499
-18.03 -8 068 6.125 -1.863 0.061
0.435 4233 0.19 -5.146 -2.083
0.455 1.268 0.695 0.585 -1.255
-7 864 0781 -3521 2 168] -1.983
-1.572 2559 -1.392 -0.514) -0.83]
-10.773] -2.314] 0.682 -0.091 -0.446
-4 200 N 2R0 N RIA 1 048] nno4l

go to

Updater - TASSEL 5
File Data Impute Fiter Analysis Results GBSv2 GBS Workflow PHG
[ Data =] Taxa EaHT | dpoll EarDia PC1 Pcz PC4. PC5 Genotype
¢ 3 Numerical 3316 64.75 645 © 0.016) 2481 ~0.164) 0165 C.C,GTC.
[ mdp_traits 38-11 @' 68.5 37.897 -0.613 2.467 2.238 -0.41 CEETG:
[ PC_mdo_cenotype 4226 65.5 595 32219 -0.299 3159 122 -1.203) CCGT.G.
— f4722 2113 715 32421 1321 2934 0568 7.643] C,E.GT.G,
[ Eigenvalues_map_genotype |a 275 62| 31.419 0 256 0.89| 1343ACCTCT
[ Eigenvectors_mdp_genotype [rz1an 65 E 32,006 & 417 0789 0831[C.CTAGA
[} fmap_traits + PC_mdp_genotype + mdp_genotype) [r2 4738 & 36.064] -0 2.956 zgl 1103 ACTTAA
9 Sequence |p272 356 7 © 2 274 63 2AT[ACTTAA
44415 53 67. .008 2,592 045 [ 332 COGTG,
[ map_genotype 4554 28 & 418 muﬂ 73% 04 E 7341:“377,;\;
[ Result :|a556 2 65 31.929 0.316] 318] H_I 2[ C.CGT
¢ [CJ Genotype Summary A6 109 5] 805 517 5.142| 242 -0.321 .C; X
[} mdp_genotype_OverallSummary A 6) 61| 406 -0.05 7.729 1 62) LGGT,
Dmdo,genutyoe,Alle\eSummary 622 0 & 2595 978 135 - - 3 CCTAGA
4634 4 59) 3560 -8.944 082 1.567 2[C.CTAGA
D mdp_genotype_SiteSummary A 7 54 35 521 144 017 CCTAGA
[ mdp_genotype_TaxaSummary = 54.5 66) 33727 5,587 976 0.978 3ACTTAT.
4654 39) 64 © -0.103 2.968 3.794] 2,635 NG T.TAT.
ITable THle Phenotype_wiih_genolypes 4659 46.5] 58.5 38.846 -0.678 2561 1.657) 0761 AGTTAT.
Number of columns. 10 4651 515 5| 39.323 0.004] 2414 1273 0974[C.GT.TAN
Number of rows: 278 1679 65 66| 12,471 -15.169| 6517 ~1.806 499 CCTAAT
Matrix size (excludes fow headers): 2511 4680 68 | 152, ’”ﬁ 50 -1863 061 C.CTAAT
Intersect Join |re82 a7 575 35.928, 0.435] 42 E
|#B28A 735 7 2.504) 0.455| 2
{510 74 & 561 -7.664 7
|5102 27, 57 © 1572 5 E
|B104 56.25) 64 44773 1077 23 E
|B105 67.5 39.857 -4.29 2
{B108 7] 38.951 15.084 6.6 -
{8115 8 65. 7.06) 0.34 544
[B14A 7 835 38067 12552 0.4 E
[B164 6 58 35,562 4%‘ 6 7
B2 395 70/ © -2.066] 20M1 1.73)
 EETd 725 65.5] 36.447 -7.335 0.18 2726

10. Running General Linear Model (GLM)

Run the GLM analysis by selecting the intersected files following the steps below:

Select the intersect joined file “mdp traits + PC mdp genotype + mdp genotype” -> go to
“Analysis” -> go to “association” -> click on “GLM” -> set parameters -> click “ok”
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[ Updater - TASSEL 5

File Data Impute Filter Analysis Resulits GBSv2 GBS Workflow PHG
9 Data [~ Trait Marker Chr Pos marker_F 1] marker_Rsq|  add_F add_p dom_F dom_p n
¢ 3 Numerical EarHT| PZ500859.1 1 157104 3.00717| _ 0.05112] 001857  6.67218]  0.01794] 035588 055131
[ map_tats EarHT| PZAD1271.1 | 1947984] 298601  0.08517| 000939 298601  0.08517 NaN| Nal|
[ Fe_mdp_genotype EarHT| PZA3613.2 1| 2914068 14569 022849  0.00451 1.4560)  0.22849 NaN| Nal|
—mop EarHT| FZA03613.1 1| 2914171] 027488 075988  000169) 053576 0456483 001594  0.89954]
[ Eigemvalues_mdo_genotype EarHT| FZAD3614.2 1| 2915078]  308795| 004689 001207  3.08705|  0.04680 Nal| Nal
D Eigenvectors_mdp_genotype EarHT| PZA03614.1 2915242 1.71686 019 0.00564]| 716 El Nal
[ mdp_traits + PC_mdp_genotype + mdp_genotype L PZA0D258.3 297350 09815] 037 0.00647 954 19433 016454
PZADZ952 3205252]  387754] 002 0.02484] 74 589843 0.00915
# [ Sequence PZAD2962... 3205262] 050082 044 0.00197 082 44 B al
[ mdp_genotyps PZAD0599.... 320809 0.9541 038644 000588 18404 5662 172383 019033
] Resutt PZA02129.1 1| 3708018 00492  0.82464| 15234E-4) 0.0492)  0.82464 NaN| Nal|
= PZA00303.1 1| 4175203] 122609 02692 000388 122600 02692 Na| Nan|
[6LM_Stats_mdp_traits + PC_mdp_genatype + mdp_genotyps| PZA02860.8 1| 4429807] 165408 019930 000504 165400  0.19930 Nal| Nal
[ GLM_ Genotypes_mdp_trat. L PZA02869.4 | 4420027] 204174 0.0546]  001853|  582138]  0.01655  008328]  0.77314)
- - PZA0Z869.2 4430055 161877|  0.20025)  0.01078] 200463  0.15608] 123104  0.26829
¥ 3 Genatype Summary FZA02032 4490451 420443 00 91:9| 001315| 429443 003819 a all
[} mdp_genotype_Overalisummary = zagl. 4835434 al an| 0 an NaN al an
= zagi.2 4835558 079791  0.37258)  0.00272] 079791  0.37258 a aN
ITable Tile. GLM Stalistics - map_tralls - PC_mdp_genalype + mdp_genatype zagl.§, 1| 4835658] 0068847 040742 000212  0.68847|  0.40742 NaN| Nal|
Number of columns: 18 PZD00021.2 1| 4836542]  065636] 041856 000201  0.65636]  0.41856 Na| Nan|
Number of rows: 9278 zagl1.1 1| 4912526 Nal Naly 0 Nal| Na| Nal| Nal
Matrix size (excludes row headersy 157743 PZB00919.1 1| 5353313] 2383907 0093z 000895 283007 0.0032 Nal| Nal
GLM Output PZB00919.2 5353655 8.7707] 000333 002622 7707, 0333 Na aN
Statistical Tests for individual variants. EarHT| PHM2244 5562502 114242 037065 DO0TS| 185772 7407 04311 051199
Input data mdp_rails + PG, mdp._genolype + mdp_genotype EarHT| PZA03093.... 8075572 025378 0.77607| 000157  0.01505 190244 04925 048343
EarHT| PZA00181.5 8366368 014176 086789  933E4] 021714 64162 0.0671 0.7957
EarHT| PZAD0181.2 1| 8366411]  2.99618]  0.05164) 0.0179| 553652  0.01934] 048674  0.49508
EarHT| PZA00528.1 1| 8367944] 030053 057847 9842164 030053 057847 Nan| Nan|
EarHT| FZADD175.2 1| 8510027] 531663 002188 001595 531663  0.02188 NaN| Nal
EarHT| FZAD0447.6 1| 0023947| 368626 002642 002285  6.80063| 000010 049553 048211
EarHT| PZADD447 8 1| 9024005] 1275358 42762E-4]  004174] 1275358 4.2762E-4 Nal| Nal

The output of the GLM analysis is produced under the Result node. The GLM association test can
be evaluated by plotting Q-Q plot and the Manhattan plot as shown below.

Select the association analysis output file -> go to “Results” -> click on “Manhattan plot”-> select

the trait

Updater - TASSEL 5

File Data Impute Fifter Analysis Resuits GBSv2 6BS Workflow PHG

= Data [<] Trait Warker chr Pos | markerF | add_p marker_of | marker_MS | error_af | eror_uS | model_ar
¢ ] Numerical arHT| PZB00850. 57104]  3.00717 01794| 1025.85799)|
[ map_traits arHT| PZAO127 47984 298601 08517) 1047.10302]
1 Pe_man._genotipe arHT| PZAO36T 14086 14560 22849 26735148867
—mep- arHT| PZA361 14171027488 270] 36221478,
[ Eigenvalues_mdp_genotype arHT| PZA0361: 15078 3.08795 1406.27006)
[ Eigenvectors_mdp_genatype arHT| PZA0361 15242171686
N N _| arHT| PZADD258. )73508] 0.9815| 33469204  249] 341.00175|
IS SSD;QT:::’:NS PC_mdp_geneljee + mdp_genatype B arH 02962 3205252 3.87754] 132072499 256 34060892
arHT| PZAD2962 3205262 0.59082] [ nan|
[0 map_genotipe arHT| PZAD0599 3206090 0.95418)
I3 Result oirl P7an2120 1 A20801 0.0490] a8
¢ (=3 Association | | B Manhattan Plot X
GLM_Stats_madp_traits +PC_mdp_genotype + mdp_genotype |
[ GLM_Genotypes_map._trat L P-Values by Chromosome for EarHT
¢ 7 Genotype Summary H
[} mdp_genotype_Overallsummary [ o
o = w

[Table Tille: GLM Statistics - mdp_traits + PC_mdp_genolype + mdp_genotype
Number of columns: 18

Number of rows: 9270

Matrix size (excludes row headers): 157743

GLI Output

Statistical Tests for individual variants.

input data: mdp_traits + PC_mdp_genotype + mdp_genatype

32917613

314.62843|

342.71276)
325.70255]
3348757

-Logt 0(P-Value)
e O O
B53888488888888888

344.9107
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Select the association analysis output file -> go to “Results”

trait -> click “okay”
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11. Mixed Linear Model (MLM)
Calculating Kinship matrix
Follow the below steps to calcuate the kinship matrix:

Select genotype file -> go to “Analysis” ->go to “Relatedness” -> click on “kinship” -> set
parameters -> click “ok”

Updater - TASSEL 5
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Running Mixed Linear Model (MLM)
MLM model includes the PCA and the kinship matrix i.e. MLM (PCA+K).
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Therefore, once the Kinship matrix has been calculated, MLM can be now be conducted by
following below steps:

Select the intersect joined file “mdp _traits + PC_mdp genotype + mdp_genotype” and kinship file
simultaneously by holding ‘CTRL’ button -> go to “Analysis” -> go to “Association” -> click on
“MLM” -> set parameters -> click “okay”

& Updater - TASSEL 5
File Data |mpute Filter Analysis Resuls GBSv2 GBS Workflow PHG
¢ [ Sequence = Trait Warker Chr Pos df | dom_efect| dom_F
[ mdp_genotype arH o E MaN|
I Result arHT| PZB008S: 710 4288 0.1592
¢ [ Assodiation :;’ = i 7 : S : E
[ GLM_Stats_mdp_traits + PC_mdp_genotype + mdp_genotype Tl PZA e R T
[} GLM_Genotypes_mdp_trait L arHT| PZA 507 al al
[ Residuals for EarHT. arHT| PZA 524: NaN| NaN| a E an|
[ Residuals for dpoll. arHT| PZAD025! 73508 171967 2.0080
[ Residuals for EarDia. AT} PZA029 05252 29.0209, £.1180
arHT| PZAD29 205262 a 3
() MLM_statistics_for_mdp_traits + PC_mdp_genotype + mdp_genotype| | _ artiT| PZAD05 3206000 T05E 55550
[0 MLM_effects_for_mdp_traits + PC_mdp_genotype + mdp_genotype arHT| PZAD21 706078 1 a a
¢ [ Genolype Summary arHT| PZA003 175293 E a
arHT| PZAD28! 420897 E al
[ mdp_genotype_OveraliSummary Tl PoAvoE el o i v
[y mdp_genatype_AlleleSummary Ll arHT| PZAD286 130055/ 5 TR oo
[ map_genotype_sitesummary = arHT| PZAD203: 61] a a
arH zagl 34] al B
[Table Title: Marker Statistics - mdp_traits + PC_mdp_genolype + mdp_genotype ard zagl 58] al al
INumber of columns: 18 arH zagl 58] 3 a
Number of rows: 9262 arHT| PZD0008 365 E a
atrix size (excludes row headers): 157794 arH zagl 125! al a
LM statistics for compres sed MLM arHT| PZB0091 533 a a
Datas et mdp_iraits + PG_mdp_genotype + mdp_genotype arHiT| PZB0DA1 536 E E
Use compression = false arHiT| PHM224: 62502 -10175E 14641
Use P3D = true arHT| PZAO30Y! 7557: | 056886 0 AES‘
= arHT| PZA00181 66 356875 82367|
:’ﬂ};[;ker‘;ue Variance components were estimated only for the model without any arriT| PzA00181 a6 o563t Sos3t]
uodel: rait = mean + FC5 + PC1 + PC2 + PC3 + PC4 + marker arHT| PZA00528 367 3 B 3
arHT| PZAQ0175. 5101 a a a
arHT| PZADD44T. 023947 19] 18746 1918
arHiT| PZADD4AT 024 a a a
arHT| PZ8 029, a E an
arHT| PZA B4 41| 6.1656E- 0.001
arHT| PZA( 34! al Nal Nal
arHT| PZAD22: 7329! 45 -1.305€ 14771
arHT| PZADOT! 02| -2 8957EQ 0.0263!
arHT| PZADOT. 04 -1.6109E0 0.0081
arHT| PzAD35 1 a a
arHT| PZAD35 il a a E
arHT| PzAD35 1 2 a a a
arHT| PZAD3520. 10067 H‘ a A a
e et

Plot the output (MLM stats file in the Results branch following the steps shown for GLM).
12. Exporting results
One may export the results in .txt format by the following the below steps:

Select the file -> go to “File” -> click on ““ Save As” ->browse the folder to save the file -> name
the file ->click “okay”
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13. Plotting GWAS results in R using gqgman package

The R code to plot GWAS result using QQMAN package is below:
library(ggman)

library(dplyr)

# import TASSEL results

# note

TASSEL_MLM_Out <- read.table("mIm_out.txt", header = T, sep = "\t")
# Number of traits

head(unique(TASSEL_MLM_Out$Trait))

# note: for each plot trait name must be specificed

# first trait as example (i.e., EarHT)

Traitl <- TASSEL_MLM_Out %>% filter(.$Trait == "EarHT")

# Bonferroni correction threshold

nmrk <- nrow(Traitl)

(GWAS_Bonn_corr_threshold <- -10g10(0.05 / nmrk))

# Manhattan plot

(Mann_plot <- manhattan(
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TASSEL_MLM_Out,

chr ="Chr",

bp = "Pos",

snp = "Marker",
p="p%

col =c("red", "blue™),
annotateTop =T,
genomewideline = GWAS_Bonn_corr_threshold,
suggestiveline = F
)
)

# QQ plot
QQ _plot <- gq(TASSEL_MLM_Out$p)

# Manhattan and Q-Q plot arranged in 1 rows and 2 columns
old_par <- par()

par(mfrow=c(1,2))

(Mann_plot <- manhattan(

TASSEL_MLM_Out,

chr ="Chr",

bp = "Pos",

snp = "Marker",
p="p"

col = c("red", "blue™),

annotateTop =T,

genomewideline = GWAS_Bonn_corr_threshold,
suggestiveline = F,

main = "EarHT" # trait name
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)
(QQ_plot <- qq(TASSEL_MLM_Out$p, main = "EarHT"))

The output plot will be as shown below:

EarHT EarHT
? ] - M~ — -
6 ] ¢ o — -
5 % o s
o~ ()]
2 4 S
=] |
ik}
2 § N
1 =]
C’J —
0 I I 1 I
1 3 5 79 0 1 2 3 4
Chromosome Expected —log,(p)
Reference:

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S.
(2007). TASSEL.: software for association mapping of complex traits in diverse
samples. Bioinformatics, 23(19), 2633-2635.
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An Introduction to Quantitative Trait Loci (QTL) Mapping
Neeraj Budhlakoti, D. C. Mishra and G. K. Jha
ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India

Background

Quantitative traits exhibit continuous variation due to a combination of polygenic inheritance
and environmental influences. Polygenes contribute individually with small effects on the
phenotype of the trait, but the cumulative impact of all polygenes affecting a particular trait is
significant. Initially postulated to have only additive effects, polygenes are now known to

demonstrate dominance and epistatic effects.

This approach aims to identify genomic regions linked to the expression of quantitative traits,
referred to as quantitative trait loci (QTL). A QTL can encompass one or more genes
influencing the relevant quantitative trait. To conduct QTL analysis, it is crucial to assess the
phenotypes of the mapping population at multiple locations. Relying on a single location for
evaluation may lead to an underestimation of the total number of QTLs governing the traits in
question. Main effect QTLs directly impact the expression of the traits, while epistatic QTLs
interact with main effect QTLs, influencing the overall trait phenotype. A major QTL is
characterized by explaining 10% or more of the phenotypic variance for the trait, while a QTL
with a smaller effect size is termed a minor QTL. The phenotypic effect of a stable QTL
remains relatively consistent across environments, making it detectable across different

conditions. In contrast, an unstable QTL exhibits variable behavior in different environments.

Typically, major QTLs demonstrate stable expression across various environments, whereas
minor QTLs are more susceptible to environmental variations. Metabolic QTLs (mQTLSs)
govern metabolic traits, such as the rates of diverse metabolic reactions and the levels of
metabolites. mQTLs typically exhibit epistatic interactions and possess moderate phenotypic
effects. Generally, metabolic traits display lower heritability compared to gene expression
levels, and it's noteworthy that eQTLs and mQTLs for a specific trait do not co-
localize.Quantitative variation in the cellular content of specific proteins is orchestrated by
Protein Quantity QTLs (pQTLs), which have been mapped in various plant species, including
maize and wheat. In the case of wheat, pQTLs are distributed throughout the genome, with
some affecting proteins associated with membranes. Studies aimed at identifying and mapping

eQTLs, mQTLs, and pQTLs that control molecular traits collectively form the field of genetical
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genomics. This interdisciplinary field contributes to our understanding of the intricate

relationships between genetic variations and the regulation of molecular processes in diverse

biological systems.

General Procedure for QTL Mapping:

The general procedure for Quantitative Trait Loci (QTL) mapping involves a series of

methodical steps, each integral to the process. There are four fundamental prerequisites for

successful QTL mapping:

v

Creation of a Suitable Mapping Population: This involves selecting two
homozygous lines with contrasting phenotypes for the trait of interest and crossing them
to generate an appropriate mapping population. Preferably, this population should be a
doubled haploid (DH) or recombinant inbred line (RIL) population.

Construction of a Dense Marker Linkage Map: The next step is phenotyping, where
the mapping population is assessed for the target trait through replicated trials, ideally
over various locations and years.

Reliable Phenotypic Evaluation: Both parent lines of the mapping population are
screened with a large number of genetic markers covering the entire genome to identify
polymorphic markers.

Utilization of Appropriate Software for QTL Detection and Mapping: The entire
mapping population is then genotyped using these polymorphic markers.

Subsequent steps include:

Linkage Map Construction: The marker genotype data are utilized to construct a
framework linkage map for the population. This map displays the sequence of the
markers and the genetic distances between them, measured in centimorgans (cM).
Association Analysis between Marker Genotypes and Trait Phenotypes: The final
step involves analyzing the marker genotype data alongside the trait phenotype data to

detect correlations between marker genotypes and the trait phenotype.

This methodology is primarily based on bi-parental populations and is essential for identifying

the genetic basis of various traits in species, paving the way for advanced genetic research and

breeding programs.
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Methods for QTL Detection and Mapping:

Quantitative Trait Loci (QTL) mapping methods must navigate three critical challenges to

ensure accuracy and reliability in their findings:

1.

Inference of QTL Genotypes: Unlike observable physical traits, the QTL genotypes
of different individuals in a population are not directly observable. Hence, these
genotypes must be deduced or inferred, often through indirect means such as the
analysis of genetic markers.

Selection of an Appropriate Genetic Model: Given the potential for thousands of
loci across the whole genome, selecting an appropriate genetic model for QTL
analysis is a complex task. This selection is crucial because the model influences how
the data is interpreted and the accuracy of the mapping results. The challenge lies in
choosing from a vast array of possible models, each with its own assumptions and
implications.

Correlation of Loci on the Same Chromosome: Loci that are located on the same
chromosome tend to be correlated due to linkage. This correlation makes it
challenging to separate and individually analyze the effect of each locus, as their
effects on the trait may be intertwined.

To address these issues, QTL analysis methodologies have been developed and can be
broadly categorized into two main groups:

a) Single QTL Mapping

b) Multiple QTL Mapping

Single QTL Mapping

Single QTL mapping methods focus on detecting one Quantitative Trait Locus (QTL) at a time.

These approaches do not account for the potential presence of other QTLs in the genome that

may also influence the target trait. The two primary methods in this category are:

v Single-Marker Analysis (SMA): Single-marker analysis, also known as single-point

analysis, represents the simplest and earliest method used in QTL detection. In this
approach, each marker is individually tested for its association with the target trait. A
significant difference in the trait between different genotypes at the marker locus
suggests that the marker is linked to a QTL influencing the trait. This process is repeated

for every marker locus evaluated in the mapping population. The extent of the
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phenotypic difference between the genotype classes of the marker gives an estimate of
the effect caused by substituting a single allele at the QTL locus. A commonly used
statistical package for SMA is R/qtl.

v" Simple Interval Mapping (SIM): Simple Interval Mapping, initially proposed by
Lander and Botstein in 1989, leverages the information from a linkage map. This
method assesses the association between trait values and the genotype of a hypothetical
QTL (target QTL) at various points between pairs of adjacent marker loci (the target
interval). The presence of a putative QTL is inferred if the log of odds (LOD) score
exceeds a predetermined critical threshold. Lander and Botstein developed formulas for
calculating significance levels appropriate for interval mapping, taking into account
factors like genome size, number of chromosomes, number of marker intervals, and the
desired overall false positive rate. SIM has become a widely used approach due to its
accessibility through statistical packages such as MAPMAKER/QTL.

Multiple QTL Mapping

Multiple QTL mapping (MQM) combines multiple regression analysis with SIM to include all

the significant QTLs in the genetic model used for mapping (Jansen 1994).

MQM offers the following advantages:

(1) Consideration of other QTLs affecting the trait tends to reduce residual variation

(2) Increase the QTL detection power,

(3) Linked QTLs can be detected as separate QTLs,

(4) The estimates of QTL effects are more reliable than those with single QTL methods

(5) QTL- QTL interaction can be detected. But when too many markers are included as

cofactors in the model, the QTL detection power tends to decline in comparison to SIM.

The main multiple QTL mapping methods include

(1) Composite interval mapping

(2) Multiple interval mapping

(3) Bayesian multiple QTL mapping

v' Composite Interval Mapping (CIM)

CIM merges the techniques of interval mapping and multiple regression analysis, as
established by Jansen in 1994 and Zeng in 1994. It effectively manages the influence
of QTLs found in different marker intervals, both within the same chromosome and
across others, enhancing the accuracy of QTL identification. The process begins with

an analysis of individual markers, followed by the development of a multi-QTL model
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using either stepwise or forward regression methods. The model initially incorporates
the marker with the highest LOD score, followed by the addition and reevaluation of
the marker with the next highest score for its significance.

Multiple Interval Mapping (MIM)

Developed by Kao et al. in 1999, MIM facilitates the simultaneous mapping of QTLs
across various marker intervals. This method, considered simpler than CIM, maps
multiple QTLs at the same time. The genetic model in MIM encompasses the quantity,
positions, and interactions (epistasis) of the QTLSs.

Bayesian Multiple QTL Mapping

This method, designed for identifying multiple QTLs, regards the number of QTLs as
a variable subject to random change. It employs a reversible-jump Markov Chain Monte
Carlo (MCMC) method for precise modeling, as proposed by Satgopan et al. in 1996
and Banerjee et al. in 2008. Bayesian QTL mapping starts with a chosen prior
distribution, from which a posterior distribution is derived to make inferences. Both the
CIM and Bayesian methods use maximum likelihood functions for analysis. These
methods have been integrated into various software tools, including QTL Cartographer,
FlexQTL, INTERQTL, and R/QTLBIM.

LOD Score and LOD Score Threshold

The Logarithm of the Odds (LOD) score is a crucial metric in identifying the most probable

location of a Quantitative Trait Locus (QTL) in relation to the linkage map. An empirical

threshold for the LOD score can be determined using a permutation test, as outlined by

Churchill and Doerge in 1994. In this approach, while the marker genotypes of the sample

population remain constant, their corresponding trait phenotype values are randomly

rearranged. This method helps in assessing the significance of the LOD score by comparing it

against a distribution generated from these random shuffles, providing a robust means to

discern the true association of a QTL with a specific trait.

Test of Significance

LOD > 3 is the significance threshold — 1 in 1,000 the loci are not linked
Probability of Sucess _ D

Odds = — , =
Probability of Failure 1-p

Odds = 1 - Equal chance of success and failure
Odds < 1 - Lower chance of success
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Odds > 1 - Higher chance of success

QTL Confidence/Support Interval

The location of a Quantitative Trait Locus (QTL) on a linkage map is typically represented by
a bar adjacent to the map. When QTLs associated with different traits are found in the same
region, they are indicated by placing additional bars next to each other. The length of these bars
symbolizes a range known as the confidence interval or support interval. This interval signifies
the probable area where the QTL is situated. It stretches on both sides of the point where the
peak of the Logarithm of the Odds (LOD) score is observed, encapsulating the region within
which the QTL is most likely to be found.

Advantages of QTL Mapping

1. QTL mapping detects and map each QTL to short genomic region and identify
markers flanking the QTL regions, which can subsequently be used in molecular
breeding. Finely mapped QTL facilitates cloning of the genes located in some QTL
regions and understanding their functions.

2. QTL analysis provides an estimate of the phenotypic variation explained by a QTL.

It helps the breeders in selecting QTL for deployment for crop improvement.

Disadvantages of QTL mapping

1. The genetic variation for quantitative traits in the bi-parental mapping population
used for QTL mapping is limited to the variation present in the parents used.
Similarly, alleles studied are also limited to two only.

2. Mapping resolution is low due to limited meiotic cycles. QTL is often mapped to
a large genomic region which usually harbors hundreds of genes posing difficulty
in identifying the target gene.

3. QTL mapping is difficult in perennial crops; it needs special approach.

4. ldentified QTL needs validation which incurs extra cost and time.
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Commonly used Software for QTL mapping

A large number of QTL analysis software is available. For SMA, simple statistical package can
work. However, for CIM, MIM, ICIM, etc. different software with suitable algorithm would

be required. Name of a few commonly used software are:

Table 1: Tools and packages for QTL Mapping

Tool Name Description Interface URL References
QTL Integrated Software for | Written in | https/isbreedingen.ca
IciMapping Building Genetic Linkage | C# and runs ZS'C?;S?;;ZgBe;ﬂglm Meng at al., 2015
Maps and  Mapping | on
Quantitative Trait Genes | Windows
XP/Vista/7/
10,
with .NET
Framework
4.0.
solQTL Major tool for Solanaceae | Command- | http:/solgenomics.net | Tecle ef al., 2010
researchers to perform | line ot/
QTL analysis and | interface (R
dynamically crosslink to | based)
relevant genome
annotation and genetic
expression
QTL Identifies and maps | Windows https://brewebportal.c | Wang et al., 2012
Cartographer | quantitative trait loci | menu- OQSTTg;ﬁilﬁﬂcart/W
(QTL) in inbred cross | driven
populations stand-alone
MapMaker/Q | It's widely used in genetic http://hpcio.citnih.go | Lander ef al., 1987
TL: research for analyzing \F/{/isQeqeLr./MnﬁpMAKE
recombination between
different markers and for
mapping various genetic
traits.
R/QTL It is an extensible, http://www.rgtl.org Broman et al., 2003
interactive environment
for mapping quantitative
trait loci (QTL) in
experimental
populations.

Conclusion and Future Prospects

With the advancement of molecular biological tools, improved techniques, and a deeper
understanding of the genome, the concept of Quantitative Trait Loci (QTL) is evolving. The

definition of a 'trait' has expanded from the traditional whole-organism phenotype to include
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more specific phenotypes, such as the quantity of RNA transcript from a particular gene
expression (e-QTL) or the amount of protein produced from a specific gene (Protein QTL).
The challenge of limited molecular markers or sparsely populated maps has been overcome by
leveraging genomic sequences or Single Nucleotide Polymorphisms (SNPs). Similarly,
advancements in phenotyping techniques, including proteomics and metabolomics, are

addressing the challenges associated with capturing complex trait variations.

Genome-wide Association Studies (GWAS) have gained significant popularity,
complementing QTL mapping. Together, QTL mapping and GWAS offer the potential to
achieve the ultimate goal: identifying individual genes or nucleotides that contribute to the
target phenotype. This integrated approach represents a powerful strategy in the contemporary
era of genomics, enabling a more precise understanding of the genetic basis of complex traits

and facilitating targeted improvements in various fields, including agriculture and medicine.
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Abstract
Since the inception of the theory and conceptual framework of genomic selection (GS),
extensive research has been done on evaluating its efficiency for utilization in crop
improvement. Though marker-assisted selection has proven its potential for improvement of
qualitative traits that are controlled by one to few genes with large effects, its role in improving
quantitative traits that are controlled by several genes with small effects is limited. In this
regard, GS that utilizes genomic-estimated breeding values of individuals obtained from
genome-wide markers to choose candidates for the next breeding cycle is a powerful approach
to improve quantitative traits. In the past 20 years, GS has been widely adopted in animal
breeding programs globally because of its potential to improve selection accuracy, minimize
phenotyping, reduce cycle time and increase genetic gains. Improved statistical models that
leverage the genomic information to increase the prediction accuracies are critical for the

effectiveness of GS-enabled breeding programs.

Keywords: GEBVs, GS, LD, MAS, QTL, SNP.

Introduction

As it is known earlier selection based on phenotypic data has been successfully used in past.
As abundance of DNA and marker data, trend slightly shifted to marker assisted selection
(MAS). MAS is an indirect selection process where a trait of interest is selected, not based on
the trait itself, but on a marker linked to it. MAS has been shown to be efficient and effective
for traits that are associated with one or a few major genes with large effect but does not
perform as well when it is used for selection of polygenic traits (Bernardo 2008).As most
economic traits are influenced by many genes, tracking a small number of these through DNA
markers will only explain a small proportion of the genetic variance. In addition, individual
genes are likely to have small effects and so a large amount of data is needed to accurately
estimate their effects. To overcome these difficulties, Meuwissen et al. (2001) proposed a
variant of MAS that they called genomic selection. The key features of this method are that
markers covering the whole genome are used so that potentially all the genetic variance is

explained by the markers and the markers are assumed to be in linkage disequilibrium (LD)
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with the Quantitative trait loci (QTL), so that the number of effects per QTL to be estimated is

small.

Any successful GS program, starts with forming a training population in such a way that
individuals/lines/variety are genotyped for genomic markers distributed over entire genome
and should be representative of whole population. The training individuals are further subjected
to extensive phenotyping for underlying trait of interest. The information of individual
genotype and phenotype is used for identification and building of suitable statistical model
using phenotype as a response and genotype as independent variable whereas part of training
data can also be used for validation of fitted model. Genomic Estimated Breeding Values
(GEBVs) of the individuals of the breeding population (where only information of genotyped
individuals is available with no phenotypic records) is being calculated using their genotyped
information where marker effect are estimated from developed model. Ultimately

individuals/line/variety from the breeding population can be selected based on superiority of

their estimated value of GEBVs.

Fig. 1: Basic schema of genomic selection process

182



The major limitation to the implementation of genomic selection has been the large number of
markers required and the cost of genotyping these markers are very high. Recently both these
limitations have been overcome in most livestock and plant species following the sequencing
of the livestock genomes, the subsequent availability of hundreds of thousands of single
nucleotide polymorphisms (SNP), and dramatic improvements in development of SNP
genotyping technology. Various regression methods have been developed for predicting
phenotype. Methods are based on analysis of data consist of genotype and phenotype
information. These methods are primarily based on linear models, which are easy to interpret
and able to fit to the data without over fitting. However, the relationship between breeding
value and genetic markers is likely to be more complex than a simple linear relationship,
particularly when large numbers of SNPs are fitted simultaneously in the model. To answer
these issues, model-free or so-called nonparametric methods which side-step linearity and

require lesser genetic assumptions have gained more attention (Gianola et al, 2006).

Statistical model for Genomic Selection

Process of selecting the suitable individuals in GS starts with a simple linear model sometime

also called as least squares regression or ordinary least squares regression (OLS).

Y = 1,0+ XB+ ¢

where, Y = n x 1 vector of observations; p is the mean; B = p X 1 vector of marker
effects; € = n x 1vector of random residual effects; X = design matrix of order
n X p (where each row represents the genotype/individuals/lines (n) and column corresponds
to marker (p)), e~N (0, c2).

One major problem in linear models using several thousands of genome-wide markers is that
number of markers (p) exceed the number of observations (n) i.e. genotype/individuals/lines
and this creates the problem of over-parameterization (large ‘p’ and small ‘n’ problem (p>>n)).
Using a subset of the significant markers can be an alternative for dealing with large ‘p” and
small ‘n’ problem. Meuwissen et al. (2001) used a modification of the least squares regression
for GS. They performed least squares regression analysis on each maker separately with
following model

where,
Xj = jt"column of the design matrix of marker
B; = genetic effect of j** marker

183



Marker with significant effects are selected using the log likelihood of this model and those are
further used for estimation of breeding values. However, it has to be noted that some crucial or

key information may be lost by selection based on subset of markers.

Hence, an efficient solution for the over-parameterization problem in linear models is using
ridge regression (RR), which is a penalized regression-based approach (Meuwissen et al.,
2001). It also solves the problems of multicollinearity at the same time (i.e. correlated
predictors e.g. SNP or markers). RR shrinks the coefficients of correlated predictors equally
towards zero and solves the regression problem using £2 penalized least squares. Here, the goal
is to derive an estimator of parameter 8 with smaller variance than the least square estimator.
Similar to RR, least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996; Usai
et al., 2009) is other variant of penalized regression, which uses the €1 penalized least squares
criterion to obtain a sparse solution. LASSO sometime may not work well highly correlated
predictors (e.g. SNPs in high linkage disequilibrium) (Ogutu et al., 2012). The elastic net
(ENET) is an extension of the lasso that is robust to extreme correlations among the predictors
(Friedman et al., 2010) and it is a compromise between {1 penalty (lasso) and £2 penalty (ridge
regression) (Zou and Hastie, 2005).

The RR model considers that each marker contribute to equal variance, which is not the case
for all traits. Therefore, the variance of the markers based on the trait genetic architecture has
to be modeled. For this purpose, several Bayesian models have been proposed where it is
assumed that there is some prior distribution of marker effects. Further, inferences about model
parameters are obtained on the basis of posterior distributions of the marker effects. There are
several variants of Bayesian models for genomic prediction such as Bayes A, Bayes B, Bayes
Crn and Bayes Dn (Meuwissen et al., 2001; Habier et al., 2011) and other derivatives e.g.
Bayesian LASSO, Bayesian ridge regression (BRR). Besides the marker-based models, the
best linear unbiased prediction (BLUP), is one of the most commonly used genomic prediction
method. There are many variants of BLUP available for this purpose e.g. genomic BLUP
(GBLUP), single-step GBLUP (ssGBLUP), ridge regression BLUP (RRBLUP), GBLUP with
linear ridge kernel regression (rrGBLUP), of which is GBLUP is very frequently used. While
the BLUP has been used in other plant and animal breeding studies traditionally for various
purposes (Henderson et al., 1959), the GBLUP uses the genomic relationships calculated using
markers instead of the conventional pedigree-based BLUP which uses the pedigree

relationships to obtain the GEBVs of the lines or individuals (Meuwissen et al., 2001).
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The genomic prediction models discussed so far perform well for traits with additive genetic
architecture but their performance becomes very poor in case of epistatic genetic architectures.
Hence, Gianola et al. (2006) first used nonparametric and semiparametric methods for
modeling complex genetic architecture. Subsequently, several statistical methods were
implemented to model both main and epistatic effects for genomic selection (Xu, 2007; Cai et
al., 2011; Legarra and Reverter, 2018). There are several nonparametric methods have been
studied in relation to genomic selection e.g. NW (Nadaraya-Watson) estimator (Gianola et al.,
2006), RKHS (Reproductive Kernel Hilbert Space) (Gianola et al., 2006), SVM (support vector
machine) (Maenhout et al., 2007; Long et al., 2011), ANN (Artificial Neural Network)
(Gianola et al., 2011) and RF (Random Forest) (Holliday et al., 2012) among them
nonparametric methods SVM, NN and RF are based on machine learning approach.

Methods discussed earlier in this section are based on genomic information where information
is available for single-trait i.e. single-trait genomic selection (STGS). As performance of STGS
based methods may be affected significantly in case of pleiotropy i.e., one gene linked to
multiple traits. A mutation in a pleiotropic gene may have an effect on several traits
simultaneously. It was also observed that low heritability traits can borrow information from
correlated traits and consequently achieve higher prediction accuracy can be achieved. Also
STGS based methods considers the information of each trait independently. Hence we may
lose crucial information which may ultimately result in poor genomic prediction accuracy.
Now-a-days we are also getting data on multiple traits, so multi-trait genomic selection
(MTGS) based methods may provide more accurate GEBVs and subsequently the higher
prediction accuracy. Several MTGS based methods have been studied in relation to GS e.g.
Multivariate mixed model approach (Jia and Jannink, 2012; Klapsté et al., 2020), Bayesian
multi-trait model (Jia and Jannink, 2012; Cheng et al., 2018), MRCE (Multivariate Regression
with Covariance Estimation)(Rothman et al., 2010), cGGM (conditional Gaussian Graphical
Models) (Chiquet et al., 2017). Jia et al. (2012) presented three multivariate linear models (i.e.,
GBLUP, Bayes A, and Bayes Cn) and compared them to uni-variate models and a detailed
comparison of various STGS and MTGS based methods has also been studied by Budhlakoti
et al. (2019). A brief structure of different STGS and MTGS based methods used in GS studies
are given in Fig. 2.
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Fig. 2: Overall summary of the most commonly used models in Genomic Selection

Tools and packages to implement Genomic Selection

Several tools and packages have been developed for the evaluation of genomic prediction and

implementation of GS, some of which are discussed below.

Tools/Package | Description URL Reference

s

GMStool It is a genome-wide association | https://github.com/ | Jeong et al.
study (GWAS)-based tool for | JaeYoonKim72/GM | (2020)
genomic prediction using genome- | Stool
wide marker data

rrBLUP R package based on BLUP models | https://CRAN.R- Endelman,
its and other derivatives project.org/ (2011)

package=rrBLUP

BWGS It has a wide choice of totally 15 | https://CRAN.R- Charmet
parametric  and  nonparametric | project.org/package | et al.
statistical models for estimation of | =BWGS (2020)
GEBYV for selection candidates.

BGLR This package is an extension of the | https://CRAN.R- Perez
BLR package (Perezand Campos, | project.org/package | and
2014) and can be used to implement | =EBGLR Campos,
several Bayesian models (2014)

GenSel Used for estimation of molecular | https://github.com/ | Fernando
marker—based breeding values of | austin-putz/GenSel | and
animals for trait under evaluation
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Garrick,

MTGS-based methods (MRCE,
MLASSO, i.e., multivariate
LASSO, and KMLASSO, i.e.,
kernelized multivariate LASSO).

(2009)

Ime4GS This package can be used for fitting | https://github.com/p | Caamal-Pat
mixed models with covariance | erpdgo/Ime4GS et al.
structures  with  user  defined (2021)
parameter

GSelection Package comprises of a set of | https:// Majumdar
functions to select the important | CRAN.R- et al.
markers and estimates the GEBV of | project.org/package | (2019)
selection candidates using an | =GSelection
integrated model framework

STGS It is a comprehensive package which | https://CRAN.Rproj | Budhlakoti
gives a single-step solution for | ect. et al.
genomic selection based on most | org/package=STGS | (2019a)
commonly used statistical methods
(i.e., RR, BLUP, LASSO, SVM,
ANN, and RF).

MTGS MTGS is a comprehensive package | https://CRAN.R- Budhlakoti
which gives a single-step solution | project.org/ etal.
for genomic selection using various | package=MTGS (2019)

Issues and challenges in genomic selection

Genomic selection is a powerful tool for plant and animal breeding, but it also presents a

number of challenges and issues. Some of the key challenges and issues in genomic selection

include:

1. Data quality and quantity: Genomic selection requires large amounts of high-quality

genomic data. However, obtaining this data can be challenging, especially in species

with complex genomes or limited genomic resources.

2. Genetic diversity: Genomic selection works best when there is a large amount of genetic

diversity in the population. However, in some species, there may be limited genetic

diversity, which can limit the effectiveness of genomic selection.

3. Phenotyping: In order to train genomic selection models, accurate and consistent

phenotypic data is required. However, phenotyping can be time-consuming, expensive,

and difficult to standardize.
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4. Trait heritability: The effectiveness of genomic selection depends on the heritability of

the trait being selected. Some traits may have low heritability, making it difficult to

accurately predict their values using genomic data.

5. Statistical model used: The choice of statistical model used in genomic selection is

important because it can impact the accuracy of the predictions and the efficiency of

the analysis. Some of the key concerns related to the type of statistical model used in

genomic selection include:

Overfitting: Overfitting can occur when a model is too complex for the data,
leading to high accuracy in the training set but poor performance on new data.
This can be a concern in genomic selection, particularly when using models

with a large number of parameters or when the sample size is small.

Model assumptions: Different statistical models have different assumptions
about the data, and violating these assumptions can lead to biased or inaccurate
predictions. For example, linear regression assumes that the residuals are
normally distributed and homoscedastic, and violating these assumptions can
lead to poor performance.

Scalability: Some statistical models are computationally intensive and may not
be feasible for very large datasets. This can be a concern in genomic selection,

particularly as the amount of genomic data continues to grow.

Interpretability: Some statistical models are more interpretable than others,
which can be important for understanding the biological basis of the trait being
predicted. For example, linear regression models can provide insight into which
genomic regions are associated with the trait, while more complex models may

be more difficult to interpret.

Incorporation of external information: Some statistical models can incorporate
external information, such as gene annotation or pathway information, to
improve predictions. However, the quality and relevance of this external

information can impact the performance of the model.
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6. Integration with traditional breeding: Genomic selection is most effective when it is
integrated with traditional breeding methods. However, this can be challenging,

especially in species with long breeding cycles or complex genetic architectures.

Conclusion and perspectives

Genomic selection has improved genetic gains in plant and animal breeding research over the
past two decades. Advances in cheaper next-generation sequencing technologies have resulted
in the availability of high-density SNP genotyping chips and completely sequenced crop and
animal genomes, boosting the predictive ability of a genomic selection model. However, there
is still scope for improvement in the methodology of genomic selection, such as imputation of
missing genotypic value and implementation of GXE interaction, to successfully implement it
in breeding programs. Regular updating of the training set and evaluation under controlled
conditions is necessary for better performance. To achieve fruitful outcomes, a structured
program is needed that includes human resource development, advanced data recording

methodologies, and trait phenotyping.
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Introduction

The advent of Next-Generation Sequencing (NGS) technology has transformed genomic
studies. One important application of NGS technology is the study of the transcriptome,
which is defined as the complete collection of all the RNA molecules in a cell. Various types
of RNA that have been classified so far are shown in Fig. 1. All of these molecules are called
transcripts since they are produced by process of transcription.
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Fig. 1: Different types of RNA
(Image source: http://scienceblogs.com/digitalbio/2011/01/08/next-gene-sequencing)

Understanding the transcriptome is essential for interpreting the functional elements of the
genome and revealing the molecular constituents of cells and tissues, and also for
understanding development and disease [1]. The main purpose of transcriptomics are: to
catalogue all species of transcript, including mRNAS, non-coding RNAs and small RNAs; to
determine the transcriptional structure of genes, in terms of their start sites, 5’ and 3’ ends,
splicing patterns and other post-transcriptional modifications; and to quantify the changing
expression levels of each transcript during development and under different conditions.

The study of transcriptome is carried out through sequencing of RNAs. RNA sequencing
(RNA-Seq) is a powerful method for discovering, profiling, and quantifying RNA transcripts
[2]. RNA-Seq uses NGS datasets to obtain sequence reads from millions of individual RNAs.
The RNA-Seq analysis is performed in several steps: First, all genes are extracted from the
reference genome (using annotations of type gene). Other annotations on the gene sequences
are preserved (e.g.CDS information about coding sequences etc). Next, all annotated
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transcripts (using annotations of type mRNA) are extracted [3]. If there are several annotated
splice variants, they are all extracted. An example is shown in below Fig. 2(a).

[ 1] >
Spiice variant i D
Gene T

Fig. 2(a): A simple gene with three exons and two splice variants.

The given example is a simple gene with three exons and two splice variants. The transcripts
are extracted as shown in Fig. 2(b).

1
Splice variant 1 |
GGACAGTGTCGGAGATCCGCTCGCGCGCGGAAGTACTGCAAAATACAACGTGATCACATTCCTTCCGAG

1

Splice variant 2 |
GGACAGTGTCGGAGATCCGCTCGCGCGCGGAAGGTTATGAGAAGACAGATGATGTTTCAGAGAAGACCT!

Fig. 2(b): All the exon-exon junctions are joined in the extracted transcript.

Next, the reads are mapped against all the transcripts plus the entire gene [see Fig. 2(c)].

L
Splice variant 1 |
GGACAGTGTCGGAGATCCGCTCGCGCGCGGAAGTACTGCAAAATACAACGTGATCACATTCCTTCCGAG

L
Splice variant 2 |
GGACAGTGTCGGAGATCCGCTCGCGCGCGGAAGGTTATGAGAAGACAGATGATGTTTCAGAGAAGACCT

Gene
ACTGCGGGGAGACCTAGGCGGCTCTGCGGACGCAGCTCCTTCGCCGCCTTCCCCCTCCCGTCCAGTGCC

Fig. 2(c): The reference for mapping: all the exon-exon junctions and the gene
(Image source: CLC Genomic workbench tutorials)

From this mapping, the reads are categorized and assigned to the genes and expression values
for each gene and each transcript are calculated and putative exons are then identified.

RNA Sequencing Experiment

In a standard RNA-seq experiment, a sample of RNA is converted to a library of
complementary DNA fragments and then sequenced on a high-throughput sequencing
platform, such as Illumina's Genome Analyzer, SOLID or Roche 454 [4]. Millions of short
sequences, or reads, are obtained from this sequencing and then mapped to a reference
genome (Fig. 3). The count of reads mapped to a given gene measures the expression level of
this gene. The unmapped reads are usually discarded and mapped reads for each sample are
assembled into gene-level, exon-level or transcript-level expression summaries, depending on
the objectives of the experiment. The count of reads mapped to a given gene/exon/transcript
measures the expression level for this region of the genome or transcriptome.

One of the primary goals for most RNA-seq experiments is to compare the gene expression
levels across various treatments. A simple and common RNA-seq study involves two
treatments in a randomized complete design, for example, treated versus untreated cells, two
different tissues from an organism, plants, etc. In most of the studies, researchers are
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particularly interested in detecting gene with differential expressions (DE). A gene is
declared differentially expressed if an observed difference or change in read counts between
two experimental conditions is statistically significant, i.e. if the difference is greater than
what would be expected just due to random variation [5]. Detecting DE genes can also be an
important pre-step for subsequent studies, such as clustering gene expression profiles or
testing gene set enrichments.

mMRNA

- [AAAAAAAA
= Com—
RNA fragments l cDNA

EST library

with adaptors

}

ATCACAGTGGGACTCCATAAATTTTTCT
CGAAGGACCAGCAGAAACGAGAGEENNYY Short sequence reads
GGACAGAGTCCCCAGCGGGCTGAAGGGG
ATGAAACATTAAAGTCAAACAATATGAA

}

ORF
Coding sequence =

g
- poly(A) end reads

Mapped sequence reads

Base-resolution expression profile

N

sl
\. wr/%\f‘\h '[ \pp’v Hﬁ‘ f.(J L,\‘

\_,/\ s AN
| ﬁ/ 'k ",\-

RNA expression level

Nucleotide position

Fig. 3: General RNA-seq experiment. mRNA is converted to cDNA, and fragments from that
library are used to generate short sequence reads. Those reads are assembled into contigs
which may be mapped to reference sequences (Wang et al., 2009)

Analysing RNA-Seq data

RNA-seq experiments must be analyzed with robust, efficient and statistically correct
algorithms. Fortunately, the bioinformatics community has been striving hard at work for
incorporating mathematics, statistics and computer science for RNA-seq and building these
ideas into software tools. RNA-seq analysis tools generally fall into three categories: (i) those
for read alignment; (ii) those for transcript assembly or genome annotation; and (iii) those for
transcript and gene quantification. Some of the open source softwares available for RNA-seq
analysis are as follows:

« Data preprocessing
* Fastx toolkit
* Samtools

« Short reads aligners
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* Bowtie, TOPHAT, Stampy, BWA, Novoalign, etc
» Expression studies
» Cufflinks package
* R packages (DESeq, edgeR, more...)
» Visualisation
* CummeRbund, IGV, Bedtools, UCSC Genome Browser, etc.

Besides there are commercially data analysis pipelines like GenomeQuest, CLCBio etc
available for researchers to use. The most commonly used pipeline is to identify protein
coding genes by aligning RNA-Seq data to annotate data from sources like RefSeq. After
generating the alignments, the number of aligning sequences is counted for each
position. Since each alignment represents a transcript, the alignments allow to count the
number of RNA molecules produced from every gene.

Using NGS technology, RNA-Seq enables to count the number of reads that align to one of
thousands of different cDNAs, producing results similar to those of gene expression
microarrays [6]. Sequences generated from an RNA-Seq experiment are usually mapped to
libraries of known exons in known transcripts. RNA-Seq can be used for discovery
applications such as identifying alternative splicing events, allele-specific expression, and
rare and novel transcripts [7]. The sequencing output files (compressed FASTQ files) are the
input for secondary analysis. Reads are aligned to an annotated reference genome, and those
aligning to exons, genes and splice junctions are counted. The final steps are data
visualisation and interpretation, consisting of calculating gene- and transcript-expression and
reporting differential expression. A general Bioinformatics workflow to map transcripts from
RNA-seq data is shown in Fig. 4.

Genome

Align
o gename
— —d More abundamt i |
] S e —

Fig. 4: RNA-seq workflow (Adapted from Advancing RNA-Seq analysis Brian J. Haas and
Michael C. Zody Nature Biotechnology 28, 421-423 (2010)
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RPKM (Reads per KB per million reads)

RNA-Seq provides quantitative approximations of the abundance of target transcripts in the
form of counts. However, these counts must be normalized to remove technical biases
inherent in the preparation steps for RNA-Seq, in particular the length of the RNA species
and the sequencing depth of a sample. The most commonly used is RPKM (Reads Per
Kilobase of exon model per Million mapped reads). The RPKM measure of read density
reflects the molar concentration of a transcript in the starting sample by normalizing for RNA
length and for the total read number in the measurement [8]. RPKM is mathematically
represented as:

total exon reads

RPKM =

mapped reads (millions) X exon length (KB)
Total exon reads

This is the number of reads that have been mapped to a region in which an exon is annotated
for the gene or across the boundaries of two exons or an intron and an exon for an annotated
transcript of the gene. For eukaryotes, exons and their internal relationships are defined by
annotations of type mRNA.

Exon length

This is calculated as the sum of the lengths of all exons annotated for the gene. Each exon is
included only once in this sum, even if it is present in more annotated transcripts for the gene.
Partly overlapping exons will count with their full length, even though they share the same
region.

Mapped reads

The total gene reads for a gene is the total number of reads that after mapping have been
mapped to the region of the gene. A gene's region is that comprised of the flanking regions,
the exons, the introns and across exon-exon boundaries of all transcripts annotated for the
gene. Thus, the sum of the total gene reads numbers is the number of mapped reads for the
sample.

Applications of RNA-seq
This technique can be used to:
o Measure gene expression
o Transcriptome assembly, gene discovery and annotation

o Detect differential transcript abundances between tissues, developmental stages,
genetic backgrounds, and environmental conditions

o Characterize alternative splicing, alternative polyadenylation, and alternative
transcription.

Future Directions

Although RNA-Seq is still in the infancy stages of use, it has clear advantages over
previously developed transcriptomic methods. Compared with microarray, which has been
the dominant approach of studying gene expression in the last two decades, RNA-seq
technology has a wider measurable range of expression levels, less noise, higher throughput,
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and more information to detect allele-specific expression, novel promoters, and isoforms [9].
For these reasons, RNA-seq is gradually replacing the array-based approach as the major
platform in gene expression studies. The next big challenge for RNA-Seq is to target more
complex transcriptomes to identify and track the expression changes of rare RNA isoforms
from all genes. Technologies that will advance achievement of this goal are pair-end
sequencing, strand-specific sequencing and the use of longer reads to increase coverage and

depth.

As the cost of sequencing continues to fall, RNA-Seq is expected to replace

microarrays for many applications that involve determining the structure and dynamics of the
transcriptome.
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Hands-on Session for Transcriptomic Data Analysis
Soumya Sharma

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Identification of differentially expressed genes from the RNA-Seq data is an important area of

bioinformatics data analysis. There are several packages available in R to carry out the differential

gene expression analysis, like DESeq2 (Love et al., 2014), edgeR (Robinson et al., 2010), limma

(Smyth et al., 2005) etc. After preprocessing and quantification of reads in RNA-Seq data, we get

a matrix of read counts of each gene in every sample. Then we can use the “DESeq2” package to

identify differentially expressed genes. Here, we demonstrate the differential gene expression

analysis with R using a sample dataset available in the R package airway (Himes et al., 2014) in

following steps.

i) Download the sample dataset from the “airway” package. The package contains 2 data

files. One file contains read counts of 64102 genes in 8 samples obtained from the RNA-
Seq experiment on 4 primary human airway smooth muscle cell lines treated with 1
micromolar dexamethasone for 18 hours. Another file contains sample-wise metadata
information, viz., treated or untreated. Import the count matrix and metadata file into
RStudio.

R code to collect sample dataset from “airway” package:

# installing Bioconductor packages
if ('requireNamespace("BiocManager", quietly=TRUE))

install.packages("BiocManager")
BiocManager::install(“airway")
library(airway)
data(airway)
airway
sample_info <- as.data.frame(colData(airway))
sample_info <- sample_info[,c(2,3)]
sample_info$dex <- gsub('trt', 'treated’, sample_info$dex)

sample_info$dex <- gsub(‘untrt', 'untreated’, sample_info$dex)
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names(sample_info) <- c(‘cellLine’, 'dexamethasone’)
# Get the samplewise metadata file

write.table(sample_info, file = "/sample_info.csv", sep ="', col.names = T, row.names = T, quote
= F)

# Get the matrix of read counts for each gene in every sample
countsData <- assay/(airway)

write.table(countsData, file = "/counts_data.csv", sep ="',', col.names = T, row.names = T, quote =
F)

i) Then we have to load the package “DESeq2” to perform the subsequent differential
gene expression analysis. We have to create a DESegDataSet object and then run the
‘DESeq()’ function to perform the said analysis.
Differential gene expression analysis using the “DESeq2” package in R

BiocManager::install("DESeq2")

library(DESeq?2)

# read in counts data

counts_data <- read.csv('/counts_data.csv')

# read in sample info

colData <- read.csv('/sample_info.csv')

# making sure the row names in colData matches to column names in counts_data
all(colnames(counts_data) %in% rownames(colData))

# are they in the same order?

all(colnames(counts_data) == rownames(colData))

dds <- DESeqgDataSetFromMatrix(countData = counts_data, colData = colData, design = ~
dexamethasone)

dds

#pre-filtering: removing rows with low gene counts
# keeping rows that have at least 10 reads total
keep <- rowSums(counts(dds)) >= 10

dds <- dds[keep,]

# set the factor level
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dds$dexamethasone <- relevel(dds$dexamethasone, ref = "untreated")

dds <- DESeq(dds)

res <- results(dds)

res

summary(res)

res0.01 <- results(dds, alpha = 0.01) # When padj = 0.01

summary(res0.01)

Here, we are trying to find the genes which are differentially expressed in Dexamethasone treated
conditions as compared to untreated conditions. Hence, the reference level is set as ‘untreated’.
After the analysis, the result contains base means, log2FoldChange values, p-values, adjusted p-
values, etc. for each gene. If at 1% level, the adjusted p-value for a gene is found as > 0.01, it means
the result has been obtained purely by chance, i.e., a non-significant result. Otherwise, that gene is
differentially expressed if the adjusted p-value is < 0.01. In the latter case, if the log2FoldChange
value is > 0, the gene is upregulated and if it is < 0, then that gene is downregulated. Thus, we can
find out differentially expressed genes using R.

iii) Visualization of differentially expressed genes in R. After identifying differentially
expressed genes, we can visualize the result in terms of various plots such as MA plot,
volcano plot, heatmap, etc. Several R packages are available to develop these plots. MA
plot can be generated using the ‘plotMA()’ function. We can use the “ggplot2” package
to develop volcano plot. Similarly, R package “heatmap2”, “pheatmap” etc. are useful
to create heatmaps. MA plot (fig 1), volcano plot (fig 2) and heatmap (fig 3) created

from the result of the previous analysis.

R code to visualize the result of differential gene expression analysis
# MA plot

plotMA(res)
# Volcano plot

library(ggplot2)
library(tidyverse)
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df<-as.data.frame(res)

df$diffexpressed <- "non-significant"

# if log2Foldchange > 0 and padj < 0.01, set as "UP"
df$diffexpressed[df$log2FoldChange > 0 & df$padj < 0.01] <- "UP"

# if log2Foldchange < 0 and padj < 0.01, set as "DOWN"
df$diffexpressed[df$log2FoldChange < 0 & df$padj < 0.01] <- "DOWN"

ggplot(df, aes(log2FoldChange, -log10(padj), col=
diffexpressed))+geom_point()+scale_color_manual(values = c("red", "black", "green™))

# Developing Heatmap of first 10 genes for better demonstration
library(pheatmap)

library(RColorBrewer)

breaksL.ist = seq(-0.4, 0.5, by = 0.04)

rowLabel = row.names(counts_data[1:10,])

pheatmap(df$log2FoldChange[1:10], color = colorRampPalette(c("'dark blue", "white",
"yellow"))(25), breaks = breaksL.ist, border_color = "black", cellheight = 25, cellwidth = 25,
cluster_rows = F,cluster_cols = F, fontsize = 12, labels_row = rowLabel)

log fold change

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05

mean of normalized counts

Fig 1: MA plot showing significantly upregulated and downregulated genes as blue dots.
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Fig 2: Volcano plot representing upregulated genes as green, downregulated genes as red and
non-significant genes as black dots.

.ENSGOOOODOOODD3 04
ENSGO0000000005
ENSG00000000419
ENSG00000000457 | O

0.2

ENSG00000000460 & g 2
.ENSGOOOUOUDOQBB
ENSG00000000971

ENSG00000001036
ENSG00000001084
ENSG00000001167

Fig 3: Heatmap representing the expression levels of first 10 genes in terms of
log2FoldChange values in a scale of -0.4 to 0.4 where, blue colour represents downregulated
genes, yellow represents upregulated genes and expression levels of remaining genes are

represented by gradation of colour between blue and yellow.
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Introduction to Python Programming
U. B. Angadi and Sudhir Srivastava
ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Python is an easiest and simple open source powerful programming language. It has efficient high-
level data structures with support of multiple programming paradigms, such as Procedural, Object
Oriented and Functional paradigms. it an ideal language for scripting and rapid application
development in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary
form specifically ML, Al and Data science in Python web site, https://www.python.org/, and may
be freely distributed. The Python interpreter is easily extended with new functions and data types
implemented in C or C++. This can be used as a scripting language or can be compiled to byte-
code for building large application like Perl, R, LINUX shell script. Python has been developed
under virtual machine concept and support.

Installing Python

The most up-to-date and current source code, binaries, documentation, news, etc., is available on
the official website of Python https://www.python.org/ and also available in many source for a
wide variety of platforms.

If the binary code for your platform is not available, you need a C compiler to compile the source
code manually. Compiling the source code offers more flexibility in terms of choice of features
that you require in your installation. Installation from source codes is better than binary.

Linux Installation
e Open a Web browser and go to https://www.python.org/downloads/. Or use wget command
with url of desire version of python.
« Follow the link to download zipped source code available for Unix/Linux.
« Download and extract files and change directory to python folder then run following

commands
e $ ./configure script
e $make

o $ make install
Or you can install though yum i.e. sudo yum install python3

Window installation
e Down load window version installation file
e Double click to installation file python-XYZ.msi such as python-3.10.2-amd64.exe

Setting up PATH
e Linux— type export PATH="$PATH:/usr/local/bin/python™ and press Enter. Or make
entry the same entry in bashrc file
e Window- control panel-> System Security—> System-> System Properties—> Environmental
variables—>path—> add path at last in existing path
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Running Python

You can start Python from Unix, DOS, or any other system that provides you a command-
line interpreter or shell window.

Enter python the command line and press enter

Or

Stored program or packages with py file extension

Enter python filename.py and press enter i.e. $python script.py in linux
Or

Make python file into standard scripting language file by adding #!/usr/bin/python in top of the
python code/scrip file

Add executable previlages to python file $ chmod +x pythonfile.py
Run python file by $ ./pythonefile.py (dot slash filename)
GUI - Integrated Development Environment

You can run Python from a Graphical User Interface (GUI) environment as well, if you have a
GUI application on your system that supports Python.

e Unix — IDLE is the very first Unix IDE for Python.

e Windows — PythonWin/pycharm/MSvisual studio are Windows interface for Python and
is an IDE with a GUI.

For these IDE need to be set python interpreter
Python Lines and Indentation

Python programming provides no braces to indicate blocks of code for class and function
definitions or flow control. Blocks of code are denoted by line indentation, which is rigidly
enforced.

The number of spaces in the indentation is variable, but all statements within the block must be
indented the same amount

Comments- non executable statement

Python comments are non-executable and readable explanation or annotations for programmer.
They are added with the purpose of making the source code easier for humans to understand and
are ignored by Python interpreter.

Single Line Comments

A hash sign (#) at beginning of a string. All characters after the # and up to the end of the physical
line are part of the comment.

# This is a single line comment in python and below is print statement
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print ("Hello, World! This print statement print constant and variable"

Multi-Line Comments

Triple-quoted string can be used for multiline comments and it ignores by Python interpreter

This is first in multi-lines
This is 2" in multi-lines

This is 3rd in multi-lines

Docstring Comments

Python docstrings provide a convenient way to provide a help documentation with Python
modules, functions, classes, and methods. The docstring is then made available via the _ doc__
attribute.
def add(a, b):
"""'Function to add the value of a and b™""
return a+b
printladd.__doc__
print(add.__doc__) # for help
print(add(10,20)) # for execution

Variables

Python variables are name of memory location, in which values are stored. This means that when
you create a variable you reserve some space in the memory to store values. Based on the data type
of a variable, Python interpreter allocates memory and decides what can be stored in the reserved
memory. Therefore, by assigning different data types to Python variables, you can store integers,
decimals or characters in these variables.

Python variables do not need explicit declaration like other language to reserve memory space or
to create a variable. A Python variable is created automatically when you assign a value to it. The
equal sign (=) is used to assign values to variables.

The operand to the left of the = operator is the name of the variable and the operand to the right of
the = operator is the value stored in the variable.

counter = 1000 # Creates an integer variable

miles =11234.567  # Creates a floating point variable
name ="Arun Kumar" # Creates a string variable

print (counter

print (miles

print (name
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Delete a Variable

You can delete the reference to a number object by using the del statement.
del varl var2| var3|... varN| ||

del var

del var_a var_b

Local Variable

Python Local Variables are defined inside a function. We can not access variable outside the
function.
def sum(xy):
sum=X+y
return sum
print(sum(5, 10))

Global Variable

Any variable created outside a function can be accessed within any function and so they have
global scope.
X=5
y =10
def sum():
sum=x+y
return sum
print(sum())

Data Types

Python has various built-in data types which we will discuss with in this tutorial:
« Numeric - int, float, complex

# integer variable.

a=123

print("The type of variable having value", a, " is ", type(a))
# float variable.

b=2345.345

print("The type of variable having value", b, " is ", type(b))
# complex variable.

c=11+5j

print("The type of variable having value”, ¢, " is ", type(c))
e String — str

str = 'Hello World!'

print (str) # Prints complete string

print (str[0])  # Prints first character of the string
print (str[2:5])  # Prints characters starting from 3rd to 5th
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print (str[2 # Prints string starting from 3rd character
print (str * 2)  # Prints string two times

print (str + "TEST") # Prints concatenated string

e Sequence - list, tuple, range

A Python list contains items separated by commas and enclosed within square brackets ([]). To
some extent, Python lists are similar to arrays in C. One difference between them is that all the
items belonging to a Python list can be of different data type

list = [ 'abed', 786, 2.23, 'john’, 70.2

tinylist = [123, 'john’

print (list # Prints complete list

print (list|0 # Prints first element of the list

print (list[1:3 # Prints elements starting from 2nd till 3rd
print (list[2 # Prints elements starting from 3rd element

print (tinylist * 2) # Prints list two times
print (list + tinylist) # Prints concatenated lists

Tuple is another sequence data type that is similar to a list. A Python tuple consists of a number of
values separated by commas. Unlike lists, however, tuples are enclosed within parentheses.

Lists are enclosed in brackets ([ ]) and their elements and size can be changed, while tuples are
enclosed in parentheses ( () ) and cannot be updated. Tuples can be thought of as read-only lists
tuple = ('abcd', 786 , 2.23, 'john’, 70.2

tinytuple = (123, 'john’

print (tuple # Prints the complete tuple

print (tuple[0 # Prints first element of the tuple

print (tuple[1:3 # Prints elements of the tuple starting from 2nd till 3rd
print (tuple[2 # Prints elements of the tuple starting from 3rd element

print (tinytuple * 2 # Prints the contents of the tuple twice
print (tuple + tinytuple) # Prints concatenated tuples

Range - range() is an in-built function in Python which returns a sequence of numbers starting
from 0 and increments to 1 until it reaches a specified number.

We use range() function with for and while loop to generate a sequence of numbers.
range(start, stop, step
« Mapping - dict

Python dictionaries are kind of hash table type. They work like associative arrays or hashes found
in Perl and consist of key-value pairs. A dictionary key can be almost any Python type, but are
usually numbers or strings. Values, on the other hand, can be any arbitrary Python object.
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Dictionaries are enclosed by curly braces ({ }) and values can be assigned and accessed using
square braces ([])

dict =

dict['one’] = "This is one™

dictf2] ="This is two"

tinydict = {'name": 'john’,'code":6734, 'dept": 'sales’
print (dict['one’ # Prints value for 'one’ key
print (dict[2 # Prints value for 2 key

print (tinydict # Prints complete dictionary

print (tinydict.keys()) # Prints all the keys
print (tinydict.values()) # Prints all the values

Binary - bytes, bytearray, memoryview

hexStr = bytes.fromhex('A2f7 4509")
myByteArray = bytearray('String’, 'UTF-8")
memView = memoryview(myByteArray)

« Boolean — bool

Boolean type is one of built-in data types which represents one of the two values
either True or False. Python bool() function allows you to evaluate the value of any expression
and returns either True or False based on the expression.

a=True

# display the value of a

print(a

# display the data type of a

print(type(a

e Set - set, frozenset- immutable

fruits = {"Apple", "Banana", "Cherry", "Apple", "Kiwi"}

fruits.add("Orange")

fruits.remove("Mango™)

print('After removing element:’, fruits)

| = ["Geeks", "for", "Geeks"]

fnum = frozenset(l)

Data Type Conversion

Sometimes, you may need to perform conversions between the built-in data types. To convert data
between different data types.

Function & Description
int(x [,base]) -Converts x to an integer. base specifies the base if x is a string.

long(x [,base] ) -Converts x to a long integer. base specifies the base if X is a string.
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float(x) -Converts x to a floating-point number.
complex(real [,imag]) -Creates a complex number.
str(x) -Converts object x to a string representation.
repr(x) -Converts object x to an expression string.
eval(str)-Evaluates a string and returns an object.
tuple(s)-Converts s to a tuple.

list(s)-Converts s to a list.

set(s)-Converts s to a set.

dict(d)-Creates a dictionary. d must be a sequence of (key,value) tuples.
frozenset(s)-Converts s to a frozen set.
chr(x)-Converts an integer to a character.
unichr(x)-Converts an integer to a Unicode character.
ord(x)-Converts a single character to its integer value.
hex(x)-Converts an integer to a hexadecimal string.
oct(x)-Converts an integer to an octal string.

Arithmetic Operators

Arithmetic operators are used to perform mathematical operations on numerical values. List is
given below table

Operator Name Example
+ Addition 10+20=30
- Subtraction 20-10=10
* Multiplication 10 * 20 = 200
/ Division 20/10=2
% Modulus 22%10=2
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**

I

Exponent

Floor Division

Comparison/relational Operators

4%%2 = 16

9/12=4

Python comparison operators compare the values on either sides of them and decide the relation

among them.

Operator

Name
Equal
Not Equal
Greater Than
Less Than
Greater than or Equal to

Less than or Equal to

Assignment Operators

Example
4 == 5 is not true.
4 1=5is true.
4 > 5 is not true.
4 <5istrue.
4 >=5 is not true.

4 <=5 s true.

Python assignment operators are used to assign values to variables. These operators include simple
and complex with arithmetic operator.

Operator

0p=

*k—

/1=

Name
Assignment Operator
Addition Assignment
Subtraction Assignment
Multiplication Assignment
Division Assignment
Remainder Assignment
Exponent Assignment

Floor Division Assignment

Bitwise Operators
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Example
a=10
a+t=5(Sameasa=a+5)
a-=5(Sameasa=a-b5)
a*=5(Sameasa=a*5h)
a/=5(Sameasa=a/b)
a%=>5(Sameasa=a%>5)
a**=2 (Sameasa=a**2)

all=3(Sameasa=all3)



Bitwise operator works on bits and performs bit by bit operation. Assume if a = 60; and b = 13;
Now in the binary format their values will be 0011 1100 and 0000 1101 respectively.

Operator Name Example

& Binary AND Sets each bit to 1 if both bits are 1
a&b =12 (0000 1100

| Binary OR Sets each bit to 1 if one of two bits is 1
alb =61 (0011 1101)

A Binary XOR Sets each bit to 1 if only one of two bits is 1
ab =49 (0011 0001)

~ Binary Ones Complement Inverts all the bits
~a =-61 (1100 0011)

<< Binary Left Shift Shift left by pushing zeros in from the right and let
the leftmost bits fall off
a << 2 =240 (1111 0000)

>> Binary Right Shift Shift right by pushing copies of the leftmost bit in
from the left, and let the rightmost bits fall off
a>>2 =15 (0000 1111)

Logical Operators

There are following logical operators supported by Python language. Assume variable a holds 10
and variable b holds 20 then

Operator Description Example

and Logical AND If both the operands are true then condition  (a and b) is true.
becomes true.

or Logical OR If any of the two operands are non-zero then  (a or b) is true.
condition becomes true.

not Logical NOT  Used to reverse the logical state of its Not(a and b) is false.
operand.
Membership Operators

Membership operators test for membership in a sequence, such as strings, lists, or tuples. There
are two membership operators as explained below —

Operator Description Example
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in Evaluates to true if it finds a variable in the xiny, hereinresultsinal if

specified sequence and false otherwise. X is a member of sequence y.
not in Evaluates to true if it does not finds a variable ~ x not in y, here not in results
in the specified sequence and false otherwise.  ina 1 if x is not a member of
sequence y.
Identity Operators
Identity operators compare the memory locations of two objects.
Operator Description Example
is Evaluates to true if the variables on either side of . ) S
. . X isy, here is results in 1 if
the operator point to the same object and false id(x) equals id(y)
otherwise. g Y):
IS not Evaluates to false if the variables on either side of ~ x is noty, here is
the operator point to the same object and true not results in 1 if id(X) is
otherwise. not equal to id(y).

Decision making

Usual codes are executed sequentially, the first statement in a function is executed first, followed
by the second, and so on. Decision making is to change path on conditions while execution of the
program and specifying action/path taken according to the conditions result(TRUE/FALSE).

is true is false

conditional Y
code

If conditionl If condition

Sr.No. Statement & Description

1 if statements
An if statement consists of a boolean expression followed by one or more
statements.

2 if...else statements
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An if statement can be followed by an optional else statement, which executes
when the boolean expression is FALSE.

3 nested if statements
Again if or else can use in if statement inside another if or else if statement(s).

var = 100

if (var ==100) : print "Value of expression is 100"
print "Good bye!"

amount = 2000

if (amount <10000 ) : print "Interest rate is 10%"
else:

print "Interest rate is 20 %"

Loops

Generally statements are executed sequentially. There may be a situation when you need to
execute a block of code several number of times or based termination condition. A loop statement
allows us to execute a statement or group of statements multiple times.

T

A

Conditional Code

If condition
is true

If condition
is false

Python programming language provides following types of loops to handle looping requirements.
Sr.No. Loop Type & Description
1 while loop

Repeats a statement or group of statements while a given condition is TRUE. It tests
the condition before executing the loop body.

2 for loop

Executes a sequence of statements multiple times and abbreviates the code that
manages the loop variable.
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3 nested loops
You can use one or more loop inside any another while, for or do..while loop.

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a
scope, all automatic objects that were created in that scope are destroyed.

Python supports the following control statements. Click the following links to check their detail.
Let us go through the loop control statements briefly
Sr.No. Control Statement & Description

1 break statement : Terminates the loop statement and transfers execution to the
statement immediately following the loop.

2 continue statement :Causes the loop to skip the remainder of its body and
immediately retest its condition prior to reiterating.

i=1
while i < 6:
print(i)
ifi==3:
break
i+=1
Functions

A function is a block of organized, reusable code that is used to perform a single, related action.
Functions provide better modularity and a high degree of code reusing. You can define functions
to provide the required functionality with following simple rules.
« Function blocks begin with the keyword def followed by the function name and parentheses
() and then a colon ()
e Input parameters should be placed within these parentheses. parameters can be defined
inside the parentheses.
o First statement of a function can be an optional statement - the documentation string of the
function or docstring.
e The statement return [expression] exits a function, optionally passing back an expression
to the caller. A return statement with no arguments is the same as return None.
def printme( str ):
"This prints a passed string into this function"
print str
return
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Calling a Function

Defining a function only gives it a name, specifies the parameters that are to be included in the
function and structures the blocks of code.

printme("1'm first call to user defined function!")
printme("Again second call to the same function™)

Required arguments

Required arguments are the arguments passed to a function in correct positional order. Here, the
number of arguments in the function call should match exactly with the function definition.

#!/usr/bin/python

# Function definition is here
def printme( strl, str2 ):
"This prints a passed string into this function"
print strl
print str2
return “Success”;
# Now you can call printme function
printme(“Hi”, “Good Morning”)

Keyword arguments

Keyword arguments are related to the function calls. When you use keyword arguments in a
function call, the caller identifies the arguments by the parameter name. This allows you to skip
arguments (if default is assigned) or place them out of order because the Python interpreter is able
to use the keywords provided to match the values with parameters

#!/usr/bin/python

# Function definition is here

def printme( strl, str2 ):
"This prints a passed string into this function”
print str
return;

# Now you can call printme function

printme( str2 = "Good Morning", str1="Hi!!”)

Default arguments

A default argument is an argument that assumes a default value if a value is not provided in the
function call for that argument. The following example gives an idea on default arguments, it prints
default age if it is not passed —

| #!/usr/bin/python

| # Function definition is here

| def printinfo( name, age = 35 ):

| "This prints a passed info into this function"
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print "Name: ", name

print "Age ", age

return;
# Now you can call printinfo function
printinfo( age=50, name="miki" )
printinfo( name="miki" )

The Anonymous Functions

These functions are called anonymous because they are not declared in the standard manner by
using the def keyword. You can use the lambda keyword to create small anonymous functions.
« Lambda form is one-line statement and can take any number of arguments but return just one.
« An anonymous function cannot be a direct call to print because lambda requires an expression
« Can be own local namespace and cannot access variables other than those in their parameter list.

lambda [argl [,arg2,.....argn]]:expression
Modules

A module is a Python object with arbitrarily named attributes and logically organize python
code/functions. Grouping related code into a module makes the code easier to understand and use.
A module is a file consisting of Python code. A module can define functions, classes and variables.

The Python code for a module named aname normally resides in a file named aname.py. Here's an
example of a simple module, support.py

def print_func( par ):
print "Hello : ", par
return

The import Statement

You can use any Python source file as a module by executing an import statement in some other
Python source file as below.

import modulel[, module2[,... moduleN]

It imports the module if the module is present in the search path. A search path is a list of directories
that the interpreter searches before importing a module. Example, to import the module support.py,
need to put the following command at top of the script

#!/usr/bin/python

# Import module support

import support

# Now you can call defined function that module as follows
support.print_func("Zara")

A module is loaded only once, regardless of the number of times it is imported.

The from...import Statement
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Python's from statement lets you import specific attributes from a module into the current
namespace. The from...import has the following syntax —

from modname import namel[, name2[, ... nameN]]
Import the function fibonacci from the module fib, use the following statement
from fib import fibonacci

This statement does not import the entire module fib into the current namespace; it just introduces
the item fibonacci from the module fib into the global symbol table of the importing module.

The from...import * Statement

It is also possible to import all names from a module into the current namespace.
from modname import *

Locating Modules

When you import a module, the Python interpreter searches for the module in the following
sequences.
e The current directory.
e If the module isn't found, Python then searches each directory in the shell variable
PYTHONPATH.
o If all else fails, Python checks the default path. On UNIX, this default path is normally
{usr/local/lib/python/.

The module search path is stored in the system module sys as the sys.path variable. The sys.path
variable contains the current directory, PYTHONPATH, and the installation-dependent default.

The PYTHONPATH Variable

The PYTHONPATH is an environment variable, consisting of a list of directories. The syntax of
PYTHONPATH is the same as that of the shell variable PATH.

Here is a typical PYTHONPATH from a Windows system —
set PYTHONPATH = c:\python20\lib;

And here is a typical PYTHONPATH from a UNIX system —
set PYTHONPATH = /usr/local/lib/python

#!/usr/bin/python

Money = 2000

def AddMoney():
# Uncomment the following line to fix the code:
# global Money
Money = Money + 1

print Money

AddMoney()

print Money
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The reload() Function

When the module is imported into a script, the code in the top-level portion of a module is executed
only once. if you want to reexecute the top-level code in a module while module development
stage or modified, you can use the reload() function. The reload() function imports a previously
imported module again.

reload(module_name)
Files 1/0
Printing to the Screen

The simplest way to produce output is using the print statement where you can pass zero or more
expressions separated by commas. This function converts the expressions you pass into a string
and writes the result to standard output (screen)

#!/usr/bin/python
print "Python is really a great language,”, "isn't it?"

Reading Keyboard Input

Python provides two built-in functions to read a line of text from standard input, which by default
comes from the keyboard.

e raw_input

e input

The raw_input Function

The raw_input([prompt]) function reads one line from standard input and returns it as a string
(removing the trailing newline).

#!/usr/bin/python
str = raw_input("Enter your input: )
print "Received inputis : ", str

Enter your input: Hello Python

Received input is : Hello Python

The input Function

The input([prompt]) function is equivalent to raw_input, except that it assumes the input is a valid
Python expression and returns the evaluated result.

#!/usr/bin/python
str = input("Enter your input: ™)
print "Received input is : ", str

This would produce the following result against the entered input —
Enter your input: [x*5 for x in range(2,10,2)]

Recieved input is : [10, 20, 30, 40]

Opening and Closing Files
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Until now, you have been reading and writing to the standard input and output. Now, we will see
how to use actual data files.

The open Function

Before you can read or write a file, you have to open it using Python's built-in open() function.
This function creates a file object, which would be utilized to call other support methods associated
with it.

file object = open(file_name [, access_mode][, buffering])

Here are parameter details —

o file_name — The file name argument is a string that contains the name of the file that you
want to access.

e access_mode — The access_mode determines the mode in which the file has to be opened,
i.e., read, write, append, etc and details as below.

e buffering — If the buffering value is set to 0, no buffering takes place. If the buffering value
is 1, line buffering is performed while accessing a file. If you specify the buffering value as
an integer greater than 1, then buffering action is performed with the indicated buffer size.
If negative, the buffer size is the system default(default behavior).

Here is a list of the different modes of opening a file

Sr.No. Modes & Description

1 r
Opens a file for reading only. The file pointer is placed at the beginning of the file.
This is the default mode.

2 rb
Opens a file for reading only in binary format. The file pointer is placed at the
beginning of the file. This is the default mode.

3 r+
Opens a file for both reading and writing. The file pointer placed at the beginning
of the file.

4 rb+

Opens a file for both reading and writing in binary format. The file pointer placed
at the beginning of the file.

3) w
Opens a file for writing only. Overwrites the file if the file exists. If the file does
not exist, creates a new file for writing.

6 wb
Opens a file for writing only in binary format. Overwrites the file if the file exists.
If the file does not exist, creates a new file for writing.
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7 w+
Opens a file for both writing and reading. Overwrites the existing file if the file
exists. If the file does not exist, creates a new file for reading and writing.

8 wb+
Opens a file for both writing and reading in binary format. Overwrites the existing
file if the file exists. If the file does not exist, creates a new file for reading and
writing.

9 a
Opens a file for appending. The file pointer is at the end of the file if the file exists.
That is, the file is in the append mode. If the file does not exist, it creates a new file
for writing.

10 ab
Opens a file for appending in binary format. The file pointer is at the end of the file
if the file exists. That is, the file is in the append mode. If the file does not exist, it
creates a new file for writing.

11 a+
Opens a file for both appending and reading. The file pointer is at the end of the
file if the file exists. The file opens in the append mode. If the file does not exist, it
creates a new file for reading and writing.

12 ab+
Opens a file for both appending and reading in binary format. The file pointer is at
the end of the file if the file exists. The file opens in the append mode. If the file
does not exist, it creates a new file for reading and writing.

The file Object Attributes

Once a file is opened and you have one file object, you can get various information related to that
file.

Here is a list of all attributes related to file object —

Sr.No. Attribute & Description

1 file.closed
Returns true if file is closed, false otherwise.

2 file.mode
Returns access mode with which file was opened.

3 file.name
Returns name of the file.
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4 file.softspace
Returns false if space explicitly required with print, true otherwise.

#!/usr/bin/python

# Open a file

fo = open(“foo.txt", "wh")

print "Name of the file: ", fo.name
print "Closed or not : ", fo.closed
print "Opening mode : ", fo.mode
print "Softspace flag : ", fo.softspace

This produces the following result —
Name of the file: foo.txt

Closed or not : False

Opening mode : wb

Softspace flag : 0

The close() Method

The close() method of a file object closes the file object, after which no more access for read or
write. Python automatically closes a file when the reference object of a file is reassigned to another
file. It is a good practice to use the close() method to close a file.

fileObject.close()

#!/usr/bin/python

# Open a file

fo = open("foo.txt", "wh")

print "Name of the file: ", fo.name
# Close opend file

fo.close()

Name of the file: foo.txt
The write() Method

The write() method writes any string to the opened file. The write() method does not add a newline
character ('\n") to the end of the string

fileObject.write(string)

Here, passed parameter is the content to be written into the opened file.

#!/usr/bin/python

# Open a file

fo = open("'foo.txt", "wh")

fo.write( "Python is a great language.\nYeah its great!'\n")
# Close opend file

fo.close()

The read() Method
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The read() method reads a string from an open file. It is important to note that Python strings can
have binary data. apart from text data.

fileObject.read([count])

Here, passed parameter is the number of bytes to be read from the opened file. This method starts
reading from the beginning of the file and if count is missing, then it tries to read as much as
possible, maybe until the end of file.

#!/usr/bin/python

# Open a file

fo = open("foo.txt", "r+")
str = fo.read(10);

print "Read String is : ", str
# Close opend file
fo.close()

File Positions

The tell() method tells you the current position within the file; in other words, the next read or
write will occur at that many bytes from the beginning of the file.

The seek(offset[, from]) method changes the current file position. The offset argument indicates
the number of bytes to be moved. The from argument specifies the reference position from where
the bytes are to be moved.

If from is set to 0, it means use the beginning of the file as the reference position and 1 means use
the current position as the reference position and if it is set to 2 then the end of the file would be
taken as the reference position.

#!/usr/bin/python

# Open a file

fo = open("foo.txt", "r+")

str = fo.read(10)

print "Read String is : ", str

# Check current position

position = fo.tell()

print "Current file position : ", position
# Reposition pointer at the beginning once again
position = fo.seek(0, 0);

str = fo.read(10)

print "Again read String is : ", str

# Close opend file

fo.close()

Read String is : Python is
Current file position : 10

Again read String is : Python is
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Renaming and Deleting Files

Python os module provides methods that help you perform file-processing operations, such as
renaming and deleting files.

To use this module you need to import os module first and then you can call any related functions.
The rename() Method
The rename() method takes two arguments, the current filename and the new filename.

os.rename(current_file_name, new_file_name)

#!/usr/bin/python

import 0s

# Rename a file from testl.txt to test2.txt
os.rename( "testl.txt", "test2.txt" )

You can use the remove() method to delete files by supplying the name of the file to be deleted as
the argument.

os.remove(file_name)

#!/usr/bin/python
import 0s

# Delete file test2.txt
0s.remove("'text2.txt")

Directories in Python

All files are contained within various directories, and Python has handling these too.
The os module has several methods that help you create, remove, and change directories.

The mkdir() Method

You can use the mkdir() method of the os module to create directories in the current directory. You
need to supply an argument to this method which contains the name of the directory to be created.

os.mkdir(*"'newdir')

#!/usr/bin/python

import os

# Create a directory "test"
os.mkdir("test")

The chdir() Method

You can use the chdir() method to change the current directory. The chdir() method takes an
argument, which is the name of the directory that you want to make the current directory.

os.chdir(**newdir)

‘ #!/usr/bin/python
|import os
\ # Changing a directory to "/home/newdir"
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| 0s.chdir("/home/newdir")

The getcwd() Method
The getcwd() method displays the current working directory.

o0s.getcwd()

#!/usr/bin/python

import 0s

# This would give location of the current directory
o0s.getcwd()

The rmdir() Method
The rmdir() method deletes the directory, which is passed as an argument in the method.

os.rmdir(*dirname")

#!/usr/bin/python

import os

# This would remove "/tmp/test” directory.
os.rmdir( "/tmp/test” )

Virtual environments

A virtual environment is a provision to keep dependencies required by different projects. For a
scenario, working on two python projects one of them uses Tensorflow 4.0 and another uses
Tensorflow 4.1. In this scenario tow environment may be created. When used from within a virtual
environment, common installation tools such as pip will install Python packages into a virtual
environment

Creating virtual environments

python3 -m venv /path/to/new/virtual/environment

usage: venv [-h] [--system-site-packages] [--symlinks | --copies] [--clear]
[--upgrade] [--without-pip] [--prompt PROMPT] [--upgrade-deps]
ENV_DIR[ENV_DIR ..]

Creates virtual Python environments in one or more target directories.

positional arguments:

ENV_DIR A directory to create the environment in.
optional arguments:
-h, --help show this help message and exit

--system-site-packages
Give the virtual environment access to the system
site-packages dir.

--symlinks Try to use symlinks rather than copies, when symlinks
are not the default for the platform.

--copies Try to use copies rather than symlinks, even when
symlinks are the default for the platform.

--Clear Delete the contents of the environment directory if it
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already exists, before environment creation.
--upgrade Upgrade the environment directory to use this version
of Python, assuming Python has been upgraded in-place.
--without-pip Skips installing or upgrading pip in the virtual
environment (pip is bootstrapped by default)
--prompt PROMPT  Provides an alternative prompt prefix for this
environment.
--upgrade-deps Upgrade core dependencies: pip setuptools to the
latest version in PyPI
Once an environment has been created, you may wish to activate it, e.g. by
sourcing an activate script in its bin directory.
source env/bin/activate
python3 -m pip install requests
deactivate

Using requirements files

Instead of installing packages individually, pip allows you to declare all dependencies in
a Requirements File. Example you could create a plain text file “requirements.txt” with following

requests==2.18.4
google-auth==1.1.0
python3 -m pip install -r requirements.txt

Some of python based Bioinformatics tools are given below:

Tool Description

vcfR Variant call format (VCF) files document the genetic variation observed
after DNA sequencing, alignment and variant calling of a sample cohort.
Given the complexity of the VCF format as well as the diverse variant
annotations and genotype metadata, there is a need for fast, flexible
methods enabling intuitive analysis of the variant data within VCF and

BCF files.
circexplorer2 it is a comprehensive and integrative circular RNA analysis toolset.
VCF-KIt VCF-kit is a command-line based collection of utilities for performing

analysis on Variant Call Format (VCF) files.

DMRfinder it is written in Python and R, DMRfinder efficiently identifies genomic
regions with differentially methylated CpG sites from high-throughput
MethylC-seq datasets

Trim Galore is a wrapper script to automate quality and adapter trimming as well as
quality control, with some added functionality to remove biased
methylation positions for RRBS sequence files
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mltest A fast, robust and easy-to-use calculation of multiclass classification
evaluation metrics based on confusion matrix.

SqueezeMeta SqueezeMeta IS a full automatic pipeline for
metagenomics/metatranscriptomics, covering all steps of the analysis.

checkM CheckM provides a set of tools for assessing the quality of genomes
recovered from isolates, single cells, or metagenomes.

Primer3 Primer3-py is a Python-abstracted API for the popular Primer3 library.
The intention is to provide a simple and reliable interface for automated
oligo analysis and design.

VCF-kit VCF-kit is a command-line based collection of utilities for performing
analysis on Variant Call Format (VCF) files.

gmx-MMPBSA | gmx_MMPBSA is a new tool based on AMBER's MMPBSA.py aiming
to perform end-state free energy calculations with GROMACS files

MODELLER MODELLER is used for homology or comparative modeling of protein
three-dimensional structures
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Introduction

The main goal of learning theory is to provide a framework for studying the problem of
inference that is of gaining knowledge, making predictions, making decisions or
constructing models from a set of data. A theory of inference gives a formal definition
of words like learning, generalization, over fitting, and also to characterize the
performance of learning algorithms so that, ultimately, it may help design better
learning algorithms. There are thus two goals: make things more precise and derive new
or improved algorithms.

Learning

What is under study here is the process of inductive inference which can roughly be
summarized as the following steps:

e Observe a phenomenon
e Construct a model of that phenomenon
e Make predictions using this model

Though, this definition is very general and could be taken more or less as the goal of
Natural Sciences. The goal of Machine Learning is to actually automate this process
and the goal of Learning Theory is to formalize it. Given some training data, it is always
possible to build a function that fits exactly the data. But, in the presence of noise, this
may not be the best thing to do as it would lead to a poor performance on unseen
instances; this is usually referred to as over fitting. The general idea behind the design
of learning algorithms is thus to look for regularities in the observed phenomenon i.e.
training data. These can then be generalized from the observed past to the future.
Typically, one would look, in a collection of possible models, for one which fits well
the data. This immediately raises the question of how to measure and quantify
simplicity of a model.

It turns out that there are many ways to do so, but no best one. In classical statistics, the
number of free parameters of a model is usually a measure of its complexity.
Surprisingly as it may seem, there is no universal way of measuring simplicity or its
counterpart complexity and the choice of a specific measure inherently depends on the
problem at hand. It is actually in this choice that the designer of the learning algorithm
introduces knowledge about the specific phenomenon under study.

This lack of universally best choice can actually be formalized in what is called the No
Free Lunch theorem, which in essence says that, if there is no assumption on how the
past i.e. training data is related to the future i.e. test data, prediction is impossible. Even
more, if there is no a priori restriction on the possible phenomena that are expected, it
is impossible to generalize and there is thus no better algorithm. Hence there is a need
to make assumptions.
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Assumptions

At the core of the theory is a probabilistic model of the phenomenon or data generation
process. Within this model, the relationship between past and future observations is that
they both are sampled independently from the identical distribution (i.i.d.). The
independence assumption means that each new observation yields maximum
information. The identical distribution means that the observations give information
about the underlying phenomenon i.e. a probability distribution. An immediate
consequence of this very general setting is that one can construct algorithms that are
consistent, which means that, as one gets more and more data, the predictions of the
algorithm are closer and closer to the optimal ones. So this seems to indicate that we
can have some sort of universal algorithm. Unfortunately, any (consistent) algorithm
can have an arbitrarily bad behavior when given a finite training set. Again, these
assumptions indicate that generalization can only come when one adds specific
knowledge to the data. Each learning algorithm encodes specific, and works best when
this assumption is satisfied by the problem to which it is applied.

Formulation of the Learning Problem

Let us consider a model of the learning and analysis of this model can be conducted in
the general statistical framework of minimizing expected loss using observed data. The
practical problems such as pattern recognition, regression estimation, and density
estimation are particular case of this general model.

Function Estimation Model
The model of learning from examples can be described using three components:

e A generator of random vectors x, drawn independently from a fixed but unknown
distribution P(x) ;

e A supervisor that returns an output vector y for every input vector x, according to
a conditional distribution function P(y/x) , also fixed but unknown;

¢ A learning machine capable of implementing a set of functions f(x,«),a € A.

The problem of learning is that of choosing from the given set of functions
f (X, ), € A, the one which predicts the supervisor’s response in the best possible

way. The selection is based on a training set of | random independent identically
distributed (i.i.d.) observations drawn according to P(x,y)=P(X)P(y/x).

(X1,Y1, ..o, X1,Y1) (1)
Problem of Risk Minimization
In order to choose the best available approximation to the supervisor’s response, one
measures the loss or discrepancy L(y, f (X, «)) between the response y of the supervisor
to a given input x and the response f (x,«) provided by the learning machine. Consider
the expected value of the loss, given by the risk functional

R(@)=[1(y, f (x,@))dP(x, ) )

The goal is to find the function f(X,«,)which minimizes the risk functional R(«)
(over the class of functions f(x,«),« € Ain the situation where the joint probability

distribution P(x,y) is unknown and the only available information is contained in the
training set (1).
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Three Main Learning Problems

This formulation of the learning problem is rather general. It encompasses many
specific problems; the important ones are the problems of pattern recognition,
regression estimation, and density estimation.

a) The Problem of Pattern Recognition:

Let the supervisor’s output y take on only two values y={0,1} and let f(Xx,a),a €A,

be a set of indicator functions (functions which take on only two values zero and one).
Consider the following loss-function:

0ify=~1f(x,a)

Ly, T(x @) = {1 if y = f(xa) ®)

For this loss function, the functional (2) provides the probability of classification error.
The problem, therefore, is to find the function which minimizes the probability of
classification errors when probability measure P(x,y) is unknown, but the data (1) are
given.

b) The Problem of Regression Estimation:

Let the supervisor’s answer y be a real value, and let f (x,«),a € A, be a set of real
functions which contains the regression function

f(x,a):jydp(y/x)

It is known that if f (X, ) € L,then the regression function is the one which minimizes
the functional (2) with the the following loss-function:

L(y, f(x,a))=(y - f(x,))° (4)

Thus the problem of regression estimation is the problem of minimizing the risk
functional (2) with the loss function (4) in the situation where the probability measure
P(x,y) is unknown but the data (1) are given.

¢) The Problem of Density Estimation

Finally, the problem of density estimation from the set of densities p(x,a),a e A . For
this problem we consider the following loss-function:

L(p(x,a))=~log p(x,a) ()

It is known that desired density minimizes the risk functional (2) with the loss-function
(5). Thus, again, to estimate the density from the data one has to minimize the risk-
functional under the condition where the corresponding probability measure P(X) is
unknown but i.i.d. data xs, ..., Xnare given.

The General Setting of the Learning Problem
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The general setting of the learning problem can be described as follows. Let the
probability measure P(z) be defined on the space Z. Consider the set of functions
Q(z,a),ae A . The goal is to minimize the risk functional

R(2)=[Q(z,a)dP(2), aeA (6)
if probability measure P(z) is unknown but an i.i.d. sample
2,..., Z (7)

is given. The learning problems considered above are particular cases of this general
problem of minimizing the risk functional (6) on the basis of empirical data (7), where
z describes a pair (x,y) and Q(z,a) is the specific loss function. [for example, one of (3),

(4), or (5)].

Empirical Risk Minimization Induction Principle

In order to minimize the risk functional (6), for an unknown probability P(z) measure
the following induction principle is usually used. The expected risk functional R(a) is
replaced by the empirical risk functional

Rup (=7 2Q(2.2) ®

constructed on the basis of the training set (7). The principle is to approximate the
function Q(z,a0) which minimizes risk (6) by the function Q(z,a;) which minimizes
empirical risk (8). This principle is called the empirical risk minimization induction
principle (ERM principle).

Empirical Risk Minimization Principle and the Classical Methods

The ERM principle is quite general. The classical methods for solving a specific
learning problem, such as the least squares method in the problem of regression
estimation or the maximum likelihood method in the problem of density estimation are
realizations of the ERM principle for the specific loss functions considered above. In
order to specify the regression problem one introduces an n+1 dimensional variable z =
(x,y) = (x} ..., x",y)and uses loss function (4). Using this loss function in the functional
(8) yields the functional

R (@)=7 2 (3~ (2.2)) ©

which one needs to minimize in order to find the regression estimate (i.e., the least
square method). In order to estimate a density function from a given set of functions
p(x,a) one uses the loss function (5). Putting this loss function into (8) one obtains the

|
maximum likelihood method: the functional R (a):}ZIn p(x.,a) which one needs
emp I — i
to minimize in order to find the approximation to the density. Since the ERM principle
is a general formulation of these classical estimation problems, any theory concerning
the ERM principle applies to the classical methods as well.

Structural Risk Minimization Induction Principle

The ERM principle is intended for dealing with a large sample size. Indeed, the ERM
principle can be justified by considering the inequalities.

Theorem: With probability at least1—7, the inequality
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R(@) <R, (@) + B;‘ {1+ /1+ Mi%p(a)] (10)

holds true simultaneously for all functions of the set 0<Q(z,a)<B, aecA,

When I/h is large, the second summand on the right hand side of inequality (10)
becomes small. The actual risk is then close to the value of the empirical risk. In this
case, a small value of the empirical risk provides a small value of (expected) risk.
However, if is small, then even a small Remp(&a1) does not guarantee a small value of risk.
In this case the minimization for R(a) requires a new principle, based on the
simultaneous minimization of two terms in (10) one of which depends on the value of
the empirical risk while the second depends on the VC-dimension of the set of
functions. To minimize risk in this case it is necessary to find a method which, along
with minimizing the value of empirical risk, controls the VVC-dimension of the learning
machine. The following principle, which is called the principle of structural risk
minimization (SRM), is intended to minimize the risk functional with respect to both
empirical risk and VC-dimension of the set of functions.

Machine Learning

Learning denotes changes in a system that enable a system to do the same task more
efficiently the next time or Learning is constructing or modifying representations of
what is being experienced. Machine learning is a scientific discipline concerned with
the design and development of algorithms that allow computers to evolve behaviors
based on empirical data, such as from sensor data or databases. A learner can take
advantage of examples (data) to capture characteristics of interest of their unknown
underlying probability distribution. Data can be seen as examples that illustrate
relations between observed variables. Discover new things or structure that is unknown
to humans eg. data mining. A major focus of machine learning research is to
automatically learn to recognize complex patterns and make intelligent decisions based
on data.

Types of Machine Learning

Broadly, machine learning is classified into two categories i.e. supervised and
unsupervised learning. Supervised learning generates a function that maps inputs to
desired outputs based on labelled training data, where the desired output for each object
is known. Approaches of supervised learning are classification and prediction. The
prevalent techniques of supervised learning are Naive Bayes classifier, Logistic
Regression, Linear Discriminant Analysis, K-Nearest-Neighbour classifiers, Artificial
Neural Networks, Support vector machine etc.

Unsupervised learning discovers underlying patterns in the data based on unlabelled
training data. In other words if data has to be processed by machine learning methods,
where the desired output is not known, then the learning task is called unsupervised.
Approaches to unsupervised learning include clustering (e.g., k-means, hierarchical
clustering)

Selection of learning algorithms

Major issues which needs special consideration in section of supervised learning
algorithms
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a) Tradeoff between bias and variance: The prediction error is sum of bias and
variance of the learning algorithms. Generally it is desirable that a learning algorithm
with low bias should be flexible such that it can fit the data set but it should not be that
flexible that it fit differently to each training data set due to its high variance. Therefore,
it is necessary to adjust this tradeoff between bias and variance.

b) Availability of dataset and complexity of function: In case, simple true function,
learning algorithm with high bias and low variance will results reliable inferred function
with the help of small amount of dataset. But in case of highly complex true function
resulting from interactions within different components needs large amount of training
dataset to build learning algorithm with low bias and high variance. Therefore, it is
desirable for good learning algorithms to automatically adjust the bias/variance tradeoff
based on the amount of data available and the apparent complexity of the function to be
learned.

c¢) Dimensions of input dataset: Large dimension of the dataset may create confusion
and it may become difficult learning problem even if the true function depends on only
small number of features. This will results in large variance. Hence, high input
dimensionality typically requires tuning the classifier to have low variance and high
bias. It is always desirable to apply feature selection procedures or dimensionality
reduction techniques to get desirable output.

d) Noisy output values: In case output values are incorrect beyond a limit due to
response errors then the learning algorithm is expected to lead to undesirable inferred
function. This is case where it is usually best to employ a high bias, low variance
classifier.

The selection of learning algorithms also depends on number of other factors such as
(i) heterogeneity of the data, (ii) redundancy of data and (iii) linear and non-linear
relationships among the factors etc.

Data Mining

The field of data mining and knowledge discovery is emerging as a new, fundamental
research area with important applications to science, engineering, medicine, business,
and education. Data mining attempts to formulate analyze and implement basic
induction processes that facilitate the extraction of meaningful information and
knowledge from unstructured data. Data mining extracts patterns, changes, associations
and anomalies from large data sets. Work in data mining ranges from theoretical work
on the principles of learning and mathematical representations of data to building
advanced engineering systems that perform information filtering on the web, find genes
in DNA sequences, help understand trends and anomalies in economics and education,
and detect network intrusion. Data mining is also a promising computational paradigm
that enhances traditional approaches to discovery and increases the opportunities for
breakthroughs in the understanding of complex physical and biological systems.
Researchers from many intellectual communities have much to contribute to this field.
These include the communities of machine learning, statistics, databases, visualization
and graphics, optimization, computational mathematics, and the theory of algorithms.

The Process of Data Mining

The data mining process is often characterized as a multi-stage iterative process
involving data selection, data cleaning, and application of data mining algorithms,
evaluation, and so forth. Here it is taken as process-oriented and break down into
different steps:
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a) Exploring and Preprocessing: the initial steps of exploring, visualizing, and
querying the data, to gain insight into the data in an interactive manner. Preprocessing
steps such as variable selection, data focusing, and data validation can also be included
in these initial steps.

b) Modeling: the steps involved in (a) selecting the model representations that we seek
to fit to the data (e.g., a tree, a linear function, a probability density model, etc.), (b)
selecting the score functions that score different models with respect to the data, and (c)
specifying the computational methods and algorithms to optimize the score function
(e.g., greedy local search). These \components™ combined together specify the data
mining algorithm to be used. The components may be \precompiled” into a specific
algorithm (e.g., CART or C4.5 decision tree implementations) or may be integrated in
a \customized" manner for a specific application (much more common in the sciences).

¢) Mining: the step (often repeated) of actually running a particular data mining
algorithm on a particular data set.

d) Evaluating: the step (often ignored) of critically evaluating the quality of the output
of the data mining algorithm from step 3, both the predictions of the model and the
interpretation of the fitted model itself.

e) Deploying: the step (rarely achieved) of putting a model from a data mining
algorithm into routine predictive use, e.g., using the model continuously in real-time
for scoring customers visiting an ecommerce Web site. A challenging (and under-
appreciated) technical issue in this context is how and when models should be updated
for such continuous data stream™ applications.

Recent Research Achievements

The opportunities today in data mining rest solidly on a variety of research
achievements, which were interdisciplinary in nature, resting on discoveries made by
researchers from different disciplines working together collaboratively.

Neural Networks: Neural networks are systems inspired by the human brain. A basic
example is provided by a back propagation network which consists of input nodes,
output nodes, and intermediate nodes called hidden nodes. Initially, the nodes are
connected with random weights. During the training, a gradient descent algorithm is
used to adjust the weights so that the output nodes correctly classify data presented to
the input nodes. The algorithm was invented independently by several groups of
researchers.
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Tree-based Classifiers: A tree is a convenient way to break large data sets into smaller
ones. By presenting a learning set to the root and asking questions at each interior node,
the data at the leaves can often be analyzed very simply. For example, a classifier to
predict the likelihood that a credit card transaction is fraudulent may use an interior
node to divide a training data set into two sets, depending upon whether or not five or
fewer transactions were processed during the previous hour. After a series of such
questions, each leaf can be labeled fraud/no-fraud by using a simple majority vote. Tree
based classifiers were independently invented in information theory, statistics, pattern
recognition and machine learning.

Graphical Models and Hierarchical Probabilistic Representations: A directed graph is a
good means of organizing information about qualitative knowledge about conditional
independence and causality gleamed from domain experts. Graphical models generalize
Markov models and hidden Markov models, which have proved themselves to be a
powerful modeling tool. Graphical models were independently invented by
computational probabilists and artificial intelligence researchers studying uncertainty.

Ensemble Learning: Rather than use data mining to build a single predictive model, it
is often better to build a collection or ensemble of models and to combine them, say
with a simple, efficient voting strategy. This simple idea has now been applied in a wide
variety of contexts and applications. In some circumstances, this technique is known to
reduce variance of the predictions and therefore to decrease the overall error of the
model.

Linear Algebra: Scaling data mining algorithms often depends critically upon scaling
underlying computations in linear algebra. Recent work in parallel algorithms for
solving linear system and algorithms for solving sparse linear systems in high
dimensions are important for a variety of data mining applications, ranging from text
mining to detecting network intrusions.

Large Scale Optimization: Some data mining algorithms can be expressed as large-
scale, often non-convex, optimization problems. Recent work has provided parallel and
distributed methods for large-scale continuous and discrete optimization problems,
including heuristic search methods for problems too large to be solved exactly.

High Performance Computing and Communication: Data mining requires statistically
intensive operations on large data sets. These types of computations would not be
practical without the emergence of powerful SMP workstations and high performance
clusters of workstations supporting protocols for high performance computing such as
MPI and MPIO. Distributed data mining can require moving large amounts of data
between geographically separated sites, something which is now possible with the
emergence of wide area high performance networks.

Databases, Data Warehouses, and Digital Libraries: The most time consuming part of
the data mining process is preparing data for data mining. This step can be stream-lined
in part if the data is already in a database, data warehouse, or digital library, although
mining data across different databases, for example, is still a challenge. Some
algorithms, such as association algorithms, are closely connected to databases, while
some of the primitive operations being built into tomorrow's data warehouses should
prove useful for some data mining applications.

Visualization of Massive Data Sets: Massive data sets, often generated by complex
simulation programs, required graphical visualization methods for best comprehension.
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Recent advances in multi-scale visualization allow the rendering to be done far more
quickly and in parallel, making these visualization tasks practical.

Research Challenges

The amount of digital data has been exploding during past decade, while the number of
scientists, engineers, and analysts available to analyze the data has been static. To
bridge this gap requires the solution of fundamentally new research problems, which
can be grouped into the following broad areas

o Developing a unifying theory of data mining

« Scaling up for high dimensional data and high speed data streams
e Mining sequence data and time series data

e Mining complex knowledge from complex data

« Data mining in a network setting

« Distributed data mining and mining multi-agent data

« Data mining for biological and environmental problems

« Data Mining process-related problems

o Security, privacy and data integrity

« Dealing with non-static, unbalanced and cost-sensitive data

Machine Learning and data miming in Bioinformatics

Machine learning techniques are widely accepted as tool to perform tasks of molecular
biology. Many machine learning approaches which have been used to solve important
biological problems are briefly described below.

Gene prediction

The problem of gene prediction is to first determine which regions in DNA are gene
regions, and then to determine which parts of the gene regions are introns and exons.
The predicted gene region is sensitive to the type of the algorithm. This is the typical
problem of classifying DNA bases according to how they participate during
transcription. Machine Learning techniques based on SVM have been successfully used
in classifying DNA bases according to their role in transcription in nematode genome.
A highly accurate gene-prediction system for eukaryotic genomes, called mGene which
combines in an unprecedented manner the flexibility of generalized hidden Markov
models (gHMMs) with the predictive power of modern machine learning methods, such
as SVMs.

Splice site prediction

Splice sites are locations in DNA which separate protein-coding regions (exons) from
noncoding regions (introns). Accurate splice site detectors thus form important
components of computational gene predictors. Splice site prediction can be considered
as a classification problem with the classifier learnt from a labeled data set consisting
of only local information around the potential splice site. Classification algorithms such
as ANN, SVM have been used extensively.
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Single nucleotide polymorphism (SNP)

SNP is nothing but DNA sequence variation occurring in a single nucleotide in inter or
intra genomic sequences. SNPs are important in crop and livestock breeding programs
because a single or multiple SNPs may cause simple or complex diseases respectively.
Recent discovery of SNP in genome-wide association (GWA) studies to revolutionize
not only the process of genetic variation and disease detection but also the convention
of preventative and curative medicine for future prospects. Genes are classified for a
particular disease condition based on SNPs data. Various machine learning based
classifiers such as logistic regression, naive bayes classifier, SVM etc. have been used
for this purpose.

Protein secondary structure prediction

Protein structure prediction is of great interest to biologists because proteins are able to
perform their functions based on their specific three-dimensional structures. Protein
structure prediction is a difficult task because the number of possible protein structures
is extremely large, and the physical basis of protein structural stability is not fully
understood till now. Therefore, computational approaches have been developed to
reveal the protein structure from the protein sequence information. Machine learning
approaches such as neural networks and support vector machines have been used in
protein secondary structure prediction with remarkable success.

Systems biology and modelling

Systems biology approach allows researchers to move beyond a reductionist approach.
This integrates and comprehends the interactions of multiple components interacting
within the system. Understanding of the specific roles of various metabolites will give
rise to strategy for the metabolic engineering to improve productivity. Large numbers
of approaches have been proposed to model the behaviour of gene regulatory networks.
These approaches are based on various machine learning methods along with other
methods, such as graph theory, neural network, fuzzy logic, hidden markov model,
bayesian belief network, boolean network and nonlinear ordinary differential equations.
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Analysis of Non-Coding Sequencing Data
Sarika Sahu
ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Abstract

Non-coding RNA (ncRNA) has emerged as a pivotal player in the intricate regulatory networks
governing gene expression in agriculturally important crops. The diverse roles and regulatory
mechanisms of ncRNAs in crop plants, shedding light on their impact on key biological
processes. From microRNAs (miRNAs) modulating post-transcriptional gene silencing to long
non-coding RNAs (IncRNAs) orchestrating chromatin remodelling and endogenous target
mimicking (eTMs), these molecular entities act as fine-tuners of gene expression, influencing
plant growth, development, and stress responses. Understanding the regulatory roles of
ncRNASs presents a promising avenue for enhancing crop yield, quality, and resilience in the
face of changing environmental conditions. The potential applications of ncRNAs in crop
improvement strategies, including the development of RNA-based tools for targeted gene
regulation. As researchers uncover the intricate web of non-coding RNA interactions from the
transcriptome data, future directions in agricultural research are poised to harness this
knowledge for the sustainable advancement of crop productivity, addressing global food
security challenges in the 21st century.

Keywords: ncRNAs, miRNAs, IncRNAs, eTMs

Introduction

Non-coding RNAs (ncRNAs) are RNA molecules that do not code for proteins. They are
transcribed from DNA and can be categorized into two main types: long non-coding RNAs
(IncRNAs) and small non-coding RNAs (sncRNAs). While sncRNAs are shorter than 200
nucleotides, INcCRNAs are usually longer than 200 nucleotides. Non-coding RNAs have been
found to play important roles in a variety of cellular processes, including gene expression, cell
differentiation, and development.

One of the well-studied classes of ShcRNAs are microRNAs (miRNAS). miRNAs are single-
stranded RNA molecules that are about 21-25 nucleotides long. They play important roles in
post-transcriptional regulation of gene expression by targeting mRNAs for degradation or
translational repression. This means that miRNAs can control the amount of protein that is
produced from a particular gene. miRNAs have been implicated in a variety of biological
processes, including cell proliferation, differentiation, and apoptosis. Dysregulation of miRNA
expression has been linked to various diseases, such as cancer, neurological disorders, and
cardiovascular disease. Another type of sSncRNA is the small interfering RNA (siRNA). Like
miRNAs, siRNAs are about 21-25 nucleotides long and are involved in gene regulation by
inducing degradation of specific mRNAs. However, siRNAs are usually exogenously
introduced into cells for therapeutic purposes or for use in research. They can be used to
specifically target and silence disease-causing genes or to study gene function in experimental
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systems. Piwi-interacting RNAs (piRNAS) are a class of sncRNAs that interact with a family
of proteins known as Piwi proteins. piRNAs are typically longer than miRNAs or siRNAs and
are expressed primarily in the germ cells of animals. They play important roles in protecting
the genome from transposable elements (mobile genetic elements that can cause mutations) by
inducing their silencing or degradation. piRNAs have also been implicated in other processes
such as epigenetic regulation and germ cell development.

In addition to sncRNAs, IncRNAs have also been found to play important roles in various
biological processes. They are involved in gene regulation at multiple levels, including
transcription, splicing, and chromatin remodelling. IncRNAs can interact with DNA, RNA, and
proteins to modulate gene expression. Dysregulation of InCRNA expression has been
implicated in a variety of diseases, such as cancer, cardiovascular disease, and neurological
disorders.

One example of a IncRNA is Xist, which is involved in X chromosome inactivation in female
mammals. Xist is expressed from one of the two X chromosomes in female cells and coats the
same chromosome it is transcribed from, leading to silencing of most genes on that
chromosome. Another example is HOTAIR, which is involved in regulating gene expression
during development and has been found to be dysregulated in various types of cancer.

In conclusion, non-coding RNAs are a diverse group of RNA molecules that play important
roles in a variety of cellular processes. While sncRNAs like miRNAs and siRNAs are involved
in post-transcriptional regulation of gene expression, piRNAs are involved in transposon
silencing in germ cells. IncRNAs, on the other hand, are involved in gene regulation at multiple
levels and have been implicated in various diseases. With the continued development of new
technologies for studying RNA, we can expect to uncover many more functions and roles for
these fascinating molecules in the future.

Long non-coding RNAs (IncRNAS) are a diverse class of RNA molecules that have been found
to play important roles in gene regulation and other biological processes in many different
organisms, including plants. In this discussion, we will explore the current understanding of
IncRNAs in plants, their functions, and their potential applications in agriculture.

Plant IncRNAs are typically longer than 200 nucleotides and are transcribed from intergenic
regions, introns, and other non-coding regions of the genome. They can be classified into
several different categories based on their genomic origin and structure, including natural
antisense transcripts (NATS) and long intergenic non-coding RNAs (lincRNAs). NATs are
RNA molecules that are complementary to other RNA transcripts and transcribed from the
opposite DNA strand. They may also overlapping with the sequence of protein-coding genes.
These antisense transcripts can be transcribed in the opposite direction to the sense (coding)
strand of the DNA, forming RNA-RNA duplexes with their complementary sense transcripts.
One of the most well-studied plant IncRNAs involved in growth and development is
COOLAIR, a NAT of the FLOWERING LOCUS C (FLC) gene in Arabidopsis thaliana. FLC
is a key regulator of flowering time, and the expression of COOLAIR promotes FLC mRNA
decay, leading to earlier flowering. COOLAIR is also involved in regulating the expression of
other genes related to plant development, such as genes involved in the biosynthesis of
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gibberellins, a class of plant hormones that promote stem elongation and other growth
processes.

Moreover, LincCRNAs are transcribed from intergenic regions of the genome and can interact
with DNA, RNA, and proteins to modulate gene expression. They can act as scaffolds for the
assembly of regulatory complexes, as well as serve as guides for chromatin-modifying
enzymes. Inrice, a lincRNA called NERICAL is involved in promoting nodulation in response
to symbiotic bacteria by interacting with chromatin-modifying enzymes to regulate gene
expression. In addition to their roles in plant growth and development, InCRNAS have also been
implicated in stress responses. For example, a lincRNA called COLDAIR in Arabidopsis is
involved in the regulation of the COLD-REGULATED (COR) genes in response to cold stress.
COLDAIR interacts with a transcription factor called CBF1 to promote the expression of COR
genes, which are involved in protecting plants from freezing damage. Another IncCRNA
involved in the regulation of flowering time is IPS1 (Induced by Phosphate Starvation 1) in
Arabidopsis. IPS1 is a lincRNA that is induced by phosphate starvation and negatively
regulates the expression of miR399, a microRNA that targets a gene involved in phosphate
homeostasis. The downregulation of miR399 by IPS1 promotes the expression of genes
involved in phosphate uptake and transport, leading to earlier flowering.

LINCS is another lincRNA involved in the regulation of flowering time in Arabidopsis. LINC5
is specifically expressed in the shoot apical meristem, where it interacts with the transcription
factor WUSCHEL (WUS) to promote its expression. WUS is a key regulator of stem cell
maintenance and differentiation in the shoot apical meristem, and the expression of LINC5 is
required for normal shoot development. Similarly, in rice, a lincRNA called LDMAR is
involved in the regulation of lateral root development. LDMAR is specifically expressed in
lateral root primordia and promotes the expression of genes involved in lateral root
development. Knockdown of LDMAR leads to a reduction in the number of lateral roots,
indicating its importance in this process.

The roles of plant INcCRNAs in development have also been extensively studied. In maize, a
lincRNA called Zm401 is involved in regulating the expression of key genes during the
transition from vegetative growth to reproductive development. Zm401 interacts with a
chromatin-modifying complex to regulate the expression of genes involved in flowering and
other developmental processes.

One study identified 285 IncRNAs in potato leaves and tubers and analysed their expression
patterns during potato development. The researchers found that many IncRNAs were
differentially expressed in different tissues and developmental stages, indicating their potential
roles in regulating potato growth and development.

Another study investigated the role of a potato IncRNA called INcRNA1604 in response to
potato virus Y (PVY) infection. The researchers found that INcRNA1604 was induced in
response to PVY infection and was involved in regulating the expression of genes involved in
defence responses. Knockdown of IncRNA1604 resulted in increased susceptibility to PVY
infection, indicating its role in potato resistance to viral infections.
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In addition to their roles in development and stress responses, INCRNAs in potato have also
been implicated in other biological processes. For example, a recent study identified a potato
IncRNA called StTILLING1 that was involved in regulating the production of starch in potato
tubers. Knockdown of StTILLING1 resulted in reduced starch content and altered starch
granule morphology, indicating its role in starch synthesis.

Overall, the study of IncRNAs in plants is still in its early stages, and much remains to be
learned about their functions and mechanisms of action. However, the identification of
IncRNAs involved in growth and development processes in plants provides new insights into
the regulatory networks underlying these processes and offers new targets for crop
improvement and genetic engineering.

Circular RNAs (circRNAs) are a relatively new class of ncRNAs that are formed by back-
splicing events, in which a downstream splice acceptor is joined to an upstream splice donor.
circRNAs can act as sponges for microRNAs (miRNAs) and other RNA-binding proteins,
thereby regulating gene expression. In tomato, a circRNA called ciRs-7 is involved in
regulating fruit ripening by sequestering miR-7, which targets several genes involved in fruit
ripening. Some of the known functions of circRNAs in plants include regulating gene
expression at both the transcriptional and post-transcriptional levels, modulating alternative
splicing, and participating in stress responses. For example, a CcircRNA called
circRNA 022653 has been shown to regulate the expression of the transcription factor
WRKY40 in response to salt stress in Arabidopsis thaliana. In addition, circRNAs have been
implicated in plant development, particularly in the regulation of flowering time. A circRNA
called circFTO has been found to play a role in the photoperiodic flowering pathway in
Arabidopsis, by regulating the expression of a key flowering-time regulator called
CONSTANS.

Conclusion

The intricate regulatory roles of ncRNAs (IncRNA, miRNAs, circRNAs) in agriculturally
important crops underscore their significance in shaping plant development, stress responses,
and overall productivity. As we unveil the complex interplay of these molecular entities, the
potential for harnessing ncRNAS as tools for crop improvement becomes increasingly evident.
Future research directions should focus on elucidating specific ncRNA functions and
developing innovative strategies to leverage their regulatory prowess for sustainable
agriculture, ultimately contributing to global food security in the face of environmental
challenges. The evolving landscape of ncRNA research holds promise for unlocking novel
avenues in crop science, paving the way for precision agriculture and resilient crop varieties.
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PERL Programming for Bioinformatics
K. K. Chaturvedi
ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Introduction

What is Perl?

Perl stands for “Practical Extraction and Report Language™ Perl is the natural outgrowth of a
project started by Larry Wall in 1986. Originally intended as a configuration and control system
for six VAXes and six SUNs located on opposite ends of the country, it grew into a more general
tool for system administration on many platforms. Since its unveiling to programmers at large, it
has become the work of a large body of developers. Larry Wall, however, remains its principle
architect. Although the first platform Perl inhabited was UNIX; it has since been ported to over 70
different operating systems including, but not limited to, Windows 9x/NT/2000, MacOS, VMS,
Linux, UNIX (many variants), BeOS, LynxQOS, and QNX.

Uses of Perl

1. Tool for general system administration

2. Processing textual or numerical data

3. Database interconnectivity

4. Common Gateway Interface (CGI/Web) programming

5. Driving other programs! (FTP, Mail, WWW, OLE)
Philosophy & Idioms

The Virtues of a Programmer

Perl is a language designed to cater to the three chief virtues of a programmer.

= Laziness - develop reusable and general solutions to problems

= Impatience - develop programs that anticipate your needs and solve problems for you.
= Hubris - write programs that you want other people to see (and be able to maintain)
There are many means to the same end

Perl provides you with more than enough rope to hang yourself. Depending on the problem, there
may be several “official” solutions. Generally those that are approached using “Perl idioms” will
be more efficient.

Resources

- The Perl Institute (http://www.perl.org)

- The Comprehensive Perl Archive Network (http://www.cpan.org)
- The Win32 port of Perl (http://www.activestate.com/ActivePerl/)
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Perl Basics
Script names

While generally speaking you can name your script/program anything you want, there are a
number of conventional extensions applied to portions of the Perl bestiary:

.pm - Perl modules
.pl - Perl libraries (and scripts on UNIX)
.plx - Perl scripts

Language properties

= Perl is an interpreted language — program code is interpreted at run time. Perl is unique among
interpreted languages, though. Code is compiled by the interpreter before it is actually executed.

= Many Perl idioms read like English

= Free format language — whitespace between tokens is optional
= Comments are single-line, beginning with #

= Statements end with a semicolon (;)

= Only subroutines and functions need to be explicitly declared
= Blocks of statements are enclosed in curly braces {}

= A script has no “main()”

Data Types & Variables
Basic Types

The basic data types known to Perl are scalars, lists, and hashes. Scalar $foo Simple variables that
can be a number, a string, or a reference. A scalar is a “thingy.” List @foo An ordered array of
scalars accessed using a numeric subscript. $foo[0] Hash %foo An unordered set of key/value
pairs accessed using the keys as subscripts. $foo{key} Perl uses an internal type called a typeglob
to hold an entire symbol table entry. The effect is that scalars, lists, hashes, and filehandles occupy
separate namespaces (i.e., $foo[0] is not part of $foo or of %foo). The prefix of a typeglob is *, to
indicate “all types.” Literals are symbols that give an actual value, rather than represent possible
values, as do variables. For example in $foo = 1, $foo is a scalar variable and 1 is an integer literal.
Variables have a value of undef before they are defined (assigned). The upshot is that accessing
values of a previously undefined variable will not (necessarily) raise an exception.

Variable Contexts

Perl data types can be treated in different ways depending on the context in which they are
accessed. Scalar Accessing data items as scalar values. In the case of lists and hashes, $foo[0] and
$foo{key}, respectively. Scalars also have numeric, string, and don’t-care contexts to cover
situations in which conversions need to be done. List Treating lists and hashes as atomic objects
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Boolean Used in situations where an expression is evaluated as true or false. (Numeric: O=false;
String: null=false, Other: undef=false) Void Does not care (or want to care) about return value
Interpolative Takes place inside quotes or things that act like quotes

Special Variables (defaults)

Some variables have a predefined and special meaning to Perl. A few of the most commonly used
ones are listed below:

$_ The default input and pattern-searching space

$0 Program name

$$ Current process 1D

$! Current value of errno

@ARGV Array containing command-line arguments for the script
@INC The array containing the list of places to look for Perl scripts to
be evaluated by the do, require, or use constructs

%ENV The hash containing the current environment

%SIG The hash used to set signal handlers for various signals
Scalars

Scalars are simple variables that are either numbers or strings of characters. Scalar variable names
begin with a dollar sign followed by a letter, then possibly more letters, digits, or underscores.
Variable names are case-sensitive.

Numbers

Numbers are represented internally as either signed integers or double precision floating point
numbers. Floating point literals are the same used in C. Integer literals include decimal (255), octal
(0377), and hexadecimal (0xff) values.

Strings

Strings are simply sequences of characters. String literals are delimited by quotes: Single quote
‘string’ Enclose a sequence of characters Double quote “string” Subject to backslash and variable
interpolation Back quote ‘command™ Evaluates to the output of the enclosed command The
backslash escapes are the same as those used in C:

\n Newline \e Escape
\r Carriage return \\ Backslash
\t Tab \” Double quote
\b Backspace \’ Single quote
In Windows, to represent a path, use either “c:\\temp” (an escaped backslash) or

“c:/temp” (UNIX-style forward slash). Strings can be concatenated using the “.”” operator: $foo =
“hello” . "world”;
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Basic 1/0
The easiest means to get operator input to your program is using the “diamond” operator:

$input = <>;The input from the diamond operator includes a newline (\n). To get rid of this
peskycharacter, use either chop() or chomp(). chop() removes the last character of thestring, while
chomp() removes any line-ending characters (defined in the specialvariable $/). If no argument is
given, these functions operate on the $ variable.To do the converse, simply use Perl’s print
function:

print Soutput.”\n”;

Basic Operators

Arithmetic

Example Name Result

$a + $b Addition Sum of $a and $b

$a * $b Multiplication Product of $a and $b

$a % $b Modulus Remainder of $a divided by $b
$a ** $b Exponentiation $a to the power of $b

String

Example Name Result

$a . “string” Concatenation String built from pieces

“S$a string” Interpolation String incorporating the value of $a
$a x $b Repeat String in which $a is repeated $b times

Assignment

The basic assignment operator is “=": $a = $b. Perl conforms to the C idiom that Ivalue operator=
expression is evaluated as: Ivalue = lvalue operator expression So that $a *= $b is equivalent to
$a = $a * $b $a += $b $a = $a + $b This also works for the string concatenation operator: $a .=
“\n”

Autoincrement and Autodecrement

The autoincrement and autodecrement operators are special cases of the assignment operators,
which add or subtract 1 from the value of a variable:

++$a, $a++ Autoincrement Add 1 to $a
--$a, $a-- Autodecrement Subtract 1 from $a

Logical

€C

Conditions for truth:Any string is true except for “” and “0”Any number is true except for 0 Any
reference is trueAny undefined value is false Example Name Result $a && $b And True if both
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$a and $b are true $a || $b Or $a if $a is true; $b otherwise !$a Not True if $a is not true $a and
$b And True if both $a and $b are true $a or $b Or $a if $a is true; $b otherwise not $a Not True
if $a is not true Logical operators are often used to “short circuit” expressions, as in:
open(FILE,”< input.dat”) or die “Can’t open file”;

Comparison

Comparison Numeric String Result Equal == eq True if $a equal to $b Not equal !=ne True if $a
not equal to $b Less than < It True if $a less than $bGreater than > gt True if $a greater than $b
Less than or equal <= le True if $a not greater than $b Comparison <=>cmp 0 if $a and $b equall
if $a greater -1 if $b greater

Operator Precedence

Perl operators have the following precedence, listed from the highest to the lowest, where operators
at the same precedence level resolve according to associativity:

Associativity Operators Description
Left Terms and

list operators

Left -> Infix dereference operator
++

Auto-increment

Auto-decrement

Right

Right

Right

\

! ~

+-

Reference to an object (unary)
Unary negation, bitwise complement
Unary plus, minus

Left

Left

Binds scalar to a match pattern
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Same, but negates the result

Left * / % x Multiplication, Division, Modulo, Repeat
Left + - . Addition, Subtraction, Concatenation

Left >> << Bitwise shift right, left

<><=>=

Itgtlege

Numerical relational operators

String relational operators

== l=<=>

eq ne cmp

Numerical comparison operators

String comparison operators

Left & Bitwise AND

Left | ~ Bitwise OR, Exclusive OR

Left && Logical AND

Left || Logical OR

In scalar context, range operator

In array context, enumeration

Right ?: Conditional (if ? then : else) operator

Right = += -= etc Assignment operators

Left,

=>

Comma operator, also list element separator

Same, enforces left operand to be string

Right not Low precedence logical NOT

Right and Low precedence logical AND

Right or xor Low precedence logical OR

Parentheses can be used to group an expression into a term.
A list consists of expressions, variables, or lists, separated by commas. An array variable
or an array slice many always be used instead of a list.
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Control Structures

Statement Blocks

A statement block is simply a sequence of statements enclose in curly braces:
{

first_statement;

second_statement;

last_statement

}

Conditional Structures (If/elsif/else)

The basic construction to execute blocks of statements is the if statement. The if statement permits
execution of the associated statement block if the test expression evaluates as true. It is important
to note that unlike many compiled languages, it is necessary to enclose the statement block in curly
braces, even if only one statement is to be executed.The general form of an if/then/else type of
control statement is as follows:

if (expression_one) {
true_one_statement;
} elsif (expression_two) {
true_two_statement;

}else {
all_false_statement;
}

Loops
Perl provides several different means of repetitively executing blocks of statements.
While
The basic while loop tests an expression before executing a statement block
while (expression) {
statements;
}
Until
The until loop tests an expression at the end of a statement block; statements will be
executed until the expression evaluates as true.
until (expression) {
statements;
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}
Do while
A statement block is executed at least once, and then repeatedly until the test expression

is false.

do {
statements;
} while (expression);

Do until
A statement block is executed at least once, and then repeatedly until the test expression

is true.

do {
statements;
} until (expression);

For
The for loop has three semicolon-separated expressions within its parentheses. These
expressions function respectively for the initialization, the condition, and re-initialization
expressions of the loop. The for loop

for (initial_exp; test_exp; reinit_exp) {

statements;

}

This structure is typically used to iterate over a range of values. The loop runs until the
test_exp is false.

for ($i; $i<10;$i++) {

print $i;

}
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Foreach
The foreach statement is much like the for statement except it loops over the elements of
a list:

foreach $i (@some_list) {

statements;

}

Indexed Arrays (Lists)
A list is an ordered set of scalar data. List names follow the same basic rules as for
scalars. A reference to a list has the form @foo.

List literals

List literals consist of comma-separated values enclosed in parentheses:
(1,2,3)

(“fo0”,4.5)

A range can be represented using a list constructor function (such as “..”):
(1..9)=(1,2,3,4,5,6,7,8,9)

($a..$b) = ($a, $a+1, ..., $b-1,$b)

In the case of string values, it can be convenient to use the “quote-word” syntax
@a = (“fred”,”barney”,”betty”,”wilma”);

@a = qw( fred barney betty wilma );

Accessing List Elements

List elements are subscripted by sequential integers, beginning with 0

$foo[5] is the sixth element of @foo

The special variable $#foo provides the index value of the last element of @foo.
A subset of elements from a list is called a slice.

@foo[0,1] is the same as ($foo[0],$foo[1])

You can also access slices of list literals:

@foo = (qw( fred barney betty wilma ))[2,3]
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List operators and functions

Many list-processing functions operate on the paradigm in which the list is a stack. The highest
subscript end of the list is the “top,” and the lowest is the bottom.

push Appends a value to the end of the list
push(@mylist,$newvalue)

pop Removes the last element from the list (and returns it)
pop(@mylist)

shift Removes the first element from the list (and returns it)
shift(@mylist)

unshift Prepends a value to the beginning of the list
unshift(@mylist,$newvalue)

splice Inserts elements into a list at an arbitrary position
splice(@mylist,$offset,$replace, @newlist)

The reverse function reverses the order of the elements of a list

@b = reverse(@a);

The sort function sorts the elements of its argument as strings in ASCII order. You can
also customize the sorting algorithm if you want to do something special.

@x = sort(@y);

The chomp function works on lists as well as scalars. When invoked on a list, it removes
newlines (record separators) from each element of its argument.

Associative Arrays (Hashes)
A hash (or associative array) is an unordered set of key/value pairs whose elements are
indexed by their keys. Hash variable names have the form %foo.

Hash Variables and Literals

A literal representation of a hash is a list with an even number of elements (key/value
pairs, remember?).

%foo = gw( fred wilma barney betty );

%foo = @foolist;
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To add individual elements to a hash, all you have to do is set them individually:
$foo{fred} = “wilma”;

$foo{barney} = “betty”;

You can also access slices of hashes in a manner similar to the list case:

@foo{“fred”,”barney”} = qw( wilma betty );

Hash Functions

The keys function returns a list of all the current keys for the hash in question.
@hashkeys = keys(%hash);

As with all other built-in functions, the parentheses are optional:

@hashkeys = keys %hash;

This is often used to iterate over all elements of a hash:

foreach $key (keys %hash) {

print $hash{$Skey}.”\n”;

}

In a scalar context, the keys function gives the number of elements in the hash.
Conversely, the values function returns a list of all current values of the argument
hash:

@hashvals = values(%hash);

The each function provides another means of iterating over the elements in a hash:
while (($key, $value) = each (%hash)) {

statements;

}

You can remove elements from a hash using the delete function:

delete $hash{‘key’};
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Overview of Metagenomics Data Analysis
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Introduction

Metagenomics is the study of overall genomes present in any environment without the need for prior
individual identification or amplification. It encompasses microbial communities sampled directly from
their natural environment, without prior culturing. Community genomics, environmental genomics,
and population genomics are synonyms for the same approach. Metagenomics term was first used
by Jo Handelsman et al. and first appeared in publication in 1998. The field initially started with
the cloning of environmental DNA, followed by functional expression screening and was then
quickly complemented by direct random shotgun sequencing of environmental DNA. The idea of
cloning DNA directly from environmental samples was first proposed by Pace in 1991.There has
been remarkable progress in this field of research due to recent advances in Next Generation Sequencing
(NGS) technologies. Since over 99.8% of microbes in some environments are still far from culturing in the
media, metagenomics offers a path to the study of microbial community structure, phylogenetic
composition, species diversity and abundance, metabolic capacity and functional diversity.

Metagenomics helps in knowing about the functional gene composition of the microbial
communities and thus gives more information about the phylogenetic surveys, which are more
often based on the diversity of one gene like 16s rRNA gene. It gives genetic information on
potentially novel biocatalysts or enzymes, genomic linkages between function and phylogeny for
uncultured organisms, and evolutionary profiles of community function and structure. So it acts as
novel tool for generating novel hypothesis of microbial function.

Majority of microorganisms have not been cultivated in the laboratory, and almost all of our
knowledge of microbial life is based on organisms raised in pure culture. Metagenomics provides
an additional set of tools to study uncultured species. Metagenomics entails extraction of DNA
from a community so that all of the genomes of organisms in the community are pooled. These
genomes are usually fragmented and cloned into an organism that can be cultured to create
‘metagenomic libraries’, and these libraries are then subjected to analysis based on DNA sequence
or on functions conferred on the surrogate host by the metagenomic DNA.

For a typical sequence-based metagenome project one need to go through sampling and
processing, sequencing technology, assembly, binning, annotation, experimental design, statistical
analysis, and data storage and sharing.

These steps are described as follow:
Sampling and Processing

DNA extracted should represent all cell present in the sample and sufficient amount of high-quality
nucleic acids must be obtained for subsequent library production and sequencing. Also processing
requires specific protocols for each sample type. The physical and chemical structure of each
microbial community affects the quality, size, and amount of microbial DNA that can be extracted.
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Sequencing Technology

High-throughput sequencing technologies has improved the capabilities of metagenomic studies to a greater
strength but at the same time, it has led to generation of huge and big data sets that largely require high end
algorithms and computational tools for data analysis and storage. Metagenome sequencing, also called
shotgun sequencing, refers to sequencing DNA fragments extracted from microbial populations.
Over the past few years metagenomic shotgun sequencing has gradually shifted from classical
Sanger sequencing technology to next-generation sequencing (NGS). However, Sanger
sequencing is still best because of its low error rate, long read length (> 700 bp) and large insert
sizes (e.g. >30 Kb for fosmids or bacterial artificial chromosomes (BACSs)). The only drawback
associated is the labor intensive cloning process.

Bioinformatics Approach

Metagenomic projects running worldwide pose several levels of challenges with respect to the processing,
analyzing and storing huge data being accumulated. Some of the major computational challenges include
the assembly of the whole data, phylogenetic surveys, gene finding and comparative metagenomic analysis
for the metabolic pathways.

The data generated by metagenomics experiments are both enormous and inherently noisy.
Collecting, curating, and extracting useful biological information from datasets as well as pre-
filtering steps in which low-quality sequences and sequences of probable eukaryotic origin
(especially in metagenomes of human origin) are removed.

Assembly

DNA sequence data from genomic and metagenomic projects are essentially the same, but
genomic sequence data offers higher coverage while metagenomic data is usually highly non
redundant. Furthermore, the increased use of second-generation sequencing technologies with
short read lengths means that much of future metagenomic data will be error-prone. Taken in
combination, these factors make the assembly of metagenomic sequence reads into genomes
difficult and unreliable. Mis-assemblies are caused by the presence of repetitive DNA sequences
that make assembly especially difficult because of the difference in the relative abundance of
species present in the sample. Mis-assemblies can also involve the combination of sequences from
more than one species into chimeric contigs.

Two strategies can be employed for metagenomics samples:
i)  Reference-based assembly (co-assembly)
ii)  De novo assembly

Reference-based assembly can be done with software packages such as Newbler (Roche), AMOS
(http://sourceforge.net/projects/amos/ ), or MIRA. It works well, if the metagenomic dataset
contains sequences where closely related reference genomes are available. De novo assembly
typically requires larger computational resources. Tools based on the de Bruijn graphs was
specifically created to handle very large amounts of data. Machine requirements for the de Bruijn
assemblers Velvet or SOAP are still significantly higher than for reference-based assembly (co-
assembly), often requiring hundreds of gigabytes of memory in a single machine and run times
frequently being days.
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In metagenomics single reads have generally lower quality and hence lower confidence in accuracy
than do multiple reads that cover the same segment of genetic information. Therefore, merging
reads increases the quality of information. So in a complex community with low sequencing depth
or coverage, it is unlikely to actually get many reads that cover the same fragment of DNA. Hence
assembly may be of limited value for metagenomics. Hence there is a need for metagenomic
assembly to obtain high-confidence contigs that enable the study of, e.g., major repeat classes.

Binning

Taxonomic binning is another problem in metagenomics analysis. Sequence binning refers to the separation
of sequences into taxon specific groups. A binning step may be part of the assembly process of metagenomic
data or may be used for separating the genomes of a few members in order to study the biological processes

carried by each one of them. Various algorithms have been developed, which employ two types of
information contained within a given DNA sequence.

i) First compositional binning makes use of the fact that genomes have conserved nucleotide
composition (e.g. a certain GC or the particular abundance distribution of k-mers).

i1) Secondly, the unknown DNA fragment might encode for a gene and the similarity of this gene
with known genes in a reference database can be used to classify and hence bin the sequence.

Important considerations for using any binning algorithm are the type of input data available and
the existence of a suitable training datasets or reference genomes. In general, composition-based
binning is not reliable for short reads, as they do not contain enough information. It can however
be improved, if training datasets (e.g. a long DNA fragment of known origin) exist and that is used
to define a compositional classifier. These “training” fragments can either be derived from
assembled data or from sequenced fosmids and should ideally contain a phylogenetic marker (such
as rRNA gene) that can be used for high-resolution, taxonomic assignment of the binned fragment.

Annotation

For annotation of metagenomics two approaches are used for annotation of coding regions in the
assembled contigs. First, if assembly has produced large contigs and reconstructed genomes are
the objective of the study then it is preferable to use existing pipelines for genome annotation, such
as RAST or IMG. For this, minimal contigs length of 30,000 bp or longer are required. Second,
annotation can be performed on the entire community and relies on unassembled reads or short
contigs. Here the tools for genome annotation are significantly less useful than those specifically
developed for metagenomic analyses.

Experimental Design and Statistical Analysis

For the reduction of sequencing cost and a much wider appreciation of the utility of metagenomics
to address fundamental questions in microbial ecology require proper experimental designs with
appropriate replication and statistical analysis. The data from multiple metagenomic shotgun-
sequencing projects can be reduced to tables, where the columns represent samples and the rows
indicate either a taxonomic group or a gene function (or groups thereof) and the fields containing
abundance or presence/absence data. As metagenomic data often contain many more species or
gene functions then the number of samples taken, so appropriate corrections for multiple
hypothesis testing have to be implemented (e.g. Bonferroni correction for t-test based analyses).

Sometimes variation between sample types can be due to true biological variation and technical
variation and this should be carefully considered when planning the experiment. One should kept
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in mind that many microbial systems are highly dynamic, so temporal aspects of sampling can
have a substantial impact on data analysis and interpretation. Taking multiple samples and then
pooling them will lose all information on variability and hence will be of little use for statistical
purposes. Ultimately, good experimental design of metagenomic projects will facilitate integration
of datasets into new or existing ecological theories. One of the ultimate aims of metagenomics is
to link functional and phylogenetic information to the chemical, physical, and other biological
parameters that characterize an environment.

Sharing and Storage of Data

Data sharing is important for the genomic research, there is a requirement for whole new level of
organization and collaboration to provide metadata and centralized services (e.g., IMG/M,
CAMERA and MG-RAST) as well as sharing of both data and computational results. Once this
has been achieved, researchers will be able to download intermediate processed results from any
one of the major repositories for local analysis or comparison. A suite of standard languages for
metadata is currently provided by the Minimum Information about any (x) Sequence checklists
(MIxS). MIXS is an umbrella term to describe MIGS (the Minimum Information about a Genome
Sequence), MIMS (the Minimum Information about a Metagenome Sequence) and MIMARKS
(Minimum Information about a MARKer Sequence) and contains standard formats for recording
environmental and experimental data. The latest of these checklists, MIMARKS builds on the
foundation of the MIGS and MIMS checklists, by including an expansion of the rich contextual
information about each environmental sample.

The US National Center for Biotechnology Information (NCBI) is mandated to store all
metagenomic data, however, the sheer volume of data being generated means there is an urgent
need for appropriate ways of storing vast amounts of sequences. As the cost of sequencing
continues to drop while the cost for analysis and storing remains more or less constant, selection
of data storage in either biological (i.e. the sample that was sequenced) or digital form in (de-)
centralized archives might be required. Ongoing work and successes in compression of (meta-)
genomic data, help in the storage of digital information cost-efficiently.

Applications of Metagenomics

Among the enormous applications of metagenomics the most important ones include environmental studies,
human health, identification of novel microbes, genes, pathways and mechanisms of their survival,
biodegradation of sewage, ocean pollutants, plastics, garbage, energy generation and bio-fuels and
biotechnological and industrial implications of the huge meta-sequence data coming out from the unseen
microbial communities.

Community Metabolism

In many bacterial communities, natural or engineered (such as bioreactors), there is significant
division of labor in metabolism (Syntrophy), during which the waste products of some organisms
are metabolites for others. Eg. in methanogenic bioreactor.

Metatranscriptomics

Metagenomics allows researchers to access the functional and metabolic diversity of microbial
communities, but it cannot show which of these processes are active. The extraction and analysis
of metagenomic mMRNA (the metatranscriptome) provides information on the regulation and
expression profiles of complex communities apart from its technical difficulties (e g. the short half-
life of MRNA).
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Viruses

Metagenomic sequencing is particularly useful in the study of viral communities. As viruses lack
a shared universal phylogenetic marker (as 16S RNA for bacteria and archaea, and 18S RNA for
eukarya), the only way to access the genetic diversity of the viral community from an
environmental sample is through metagenomics. Viral metagenomes (also called viromes) should
thus provide more and more information about viral diversity and evolution.

Advantages of Metagenomics in Different Areas

Metagenomics has the potential to advance knowledge in a wide variety of fields. It can also be
applied to solve practical challenges in medicine, engineering, agriculture, sustainability and
ecology.

Agriculture

As one gram of soil contains around 10°-10%° microbial cells which comprise about one gigabase
of sequence information. They perform a wide variety of ecosystem services necessary for plant
growth, including fixing atmospheric nitrogen, nutrient cycling, disease suppression, and sequester
iron and other metals. Metagenomic approaches can contribute to improved disease detection in
crops and livestock and the adaptation of enhanced farming practices which improve crop health
by harnessing the relationship between microbes and plants.

Biotechnology

Recent progress in mining the rich genetic resource of non-culturable microbes has led to the
discovery of new genes, enzymes, and natural products. The application of metagenomics has
allowed the development of fine chemicals, agrochemicals and pharmaceuticals etc.

Ecology

Metagenomics can provide valuable insights into the functional ecology of environmental
communities. eg. Breaking down of defecations helps to release the nutrients in the faeces into a
bioavailable form that can be taken up into the food chain.

Environmental remediation

Metagenomics can improve strategies for monitoring the impact of pollutants on ecosystems and
for cleaning up contaminated environments. Increased understanding of how microbial
communities cope with pollutants improves assessments of the potential of contaminated sites to
recover from pollution and increases the chances of bioaugmentation or biostimulation trials to
succeed.

Medicine

Metagenomic sequencing of human microbiome helps to determine the core human microbiome.
It also helps to understand the changes in the human microbiome that can be correlated with human
health, and to develop new technological and bioinformatics tools to support these goals.

Biofuels

Biofuels are fuels derived from biomass conversion, as in the conversion of cellulose contained in
corn stalks, switchgrass, and other biomass into cellulosic ethanol. Metagenomic approaches helps

258



in the analysis of complex microbial communities thus allowing the targeted screening of enzymes
with industrial applications in biofuel production, such as glycoside hydrolases.

Conclusion

Metagenomics has changed the way microbiologists approach many problems, redefined the
concept of a genome, and accelerated the rate of gene discovery. The potential for application of
metagenomics to human benifit seems endless. Metagenomics gives genetic information on potentially
novel biocatalysts or enzymes, genomic linkages between function and phylogeny for uncultured organisms
and evolutionary profile of community function and structure. It can also be complemented with
metatranscriptomic or metaproteomic approaches to describe expressed activities. Metagenomics is also a
powerful tool for generating novel hypotheses of microbial functions, remarkable discoveries of
proteorhodopsin-based photoheterotrophy or ammonia-oxidizing Archaea. One of the primary goals of
metagenomics projects is to perform a comparative analysis of microbial communities residing in diverse
ecological niches. Assessing such differences can not only yield valuable insights into the inherent structure
of these microbial communities, but can also identify genes/proteins/organisms that may confer specific
functional characteristics to a given environment. Insights gained from such comparative studies are
expected to have immense potential in several important areas of biological research, ranging from
healthcare (e.g., disease diagnostics, detection of pathogenic contamination and characterization of novel
pathogens), industrial biotechnology (bio-prospecting) and bio-remediation studies.
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Statistical Aspects on Analysis of Metagenomics Data
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Introduction

The term “microbiome” is used to describe the community of microorganisms (such as fungi,
bacteria and viruses) that exists in a particular environment. The microbiome has been defined as
a characteristic microbial community occupying a reasonable well-defined habitat which has
distinct physio-chemical properties. The microbiota consists of all living members forming the
microbiome. The microbiome encompasses the microorganisms involved as well as their theatre
of activity, which results in the formation of specific ecological niches. Plants live in association
with diverse microbial consortia. In plants, the microbes live both inside (the endosphere) and
outside (the episphere) of plant tissues. The plant microbiome plays roles in plant health and
productivity and has received significant attention in recent years.

With the introduction of high-throughput DNA sequencing technologies, there is advancement in
microbiome research which enables the study of the genomes of all microbes of a given
environment and a precise quantification of microbiome abundances and function. The basic
steps of a microbiome study are as follows:

1. Extraction of microbial DNA followed by sequencing: There are two main types of
sequencing:
(i) Amplicon sequencing (reads belong to a fixed gene of each species, most commonly
16S rRNA)
(if) Shotgun sequencing (random sequences for the totality of the genetic material are
obtained)

2. Sequence processing by using bioinformatics tools

3. Statistical analysis

Amplicon sequencing relies on sequencing a phylogenetic marker gene (e.g. 16S, 18S, ITS).
For bacteria and archaea, the marker gene is the 16S ribosomal RNA. There are various
bioinformatic pipelines available for processing microbiome 16S sequence data such as mothur,
QIIME (Quantitative Insights into Microbial Ecology), BioMaS, etc. Main steps involved in
most of the bioinformatics pipelines are given below:

1. Preprocessing and quality control

The sequences are assigned to the samples (Demultiplexing). Quality control is performed to
remove too short sequences, ambiguous base pairs and chimeras.
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2. Operational taxonomic unit (OTU) binning

Binning refers to the process of clustering similar DNA sequences into OTUs. Usually, group of
DNA sequences should have at least 97% similarity.

3. Taxonomy assignment

Taxanomy assisgnment is obtained by comparing OTU consensus sequences to microbial 16S
rRNA reference databases such as GreenGenes (http://greengenes.second.genome.com), SILVA
(http://www.arbsilva.de), RDP (http://rdp.cme.msu.edu), etc. It provides the available annotation
of each OTU to the different taxonomy levels (domain, kingdom, phylum, class, order, family,
genus, and species).

4. Construction of the abundance table

An OTU abundance table is constructed where each entry in the table corresponds to the number
of sequences (reads) observed for each sample corresponding to each OTU. Many OTUs are
observed in a few samples. In this situation, it is better to agglomerate OTUs at broader
taxonomic groups or taxa.

5. Phylogenetic analysis

It is the study of evolutionary relatedness among biological groups. Phylogenetic trees are used
to obtain phylogenetic distances between samples.

Shotgun metagenomics sequencing involves sequencing the total microbial DNA of a
sample. By using this technique, one can

e Infer the relative abundance of each microbial gene.

e Quantify specific metabolic pathways to predict the potential functionality of the entire
community — by mapping the obtained sequences against a database [e.g., Kyoto
Encyclopedia of Genes and Genomes (KEGG);
http://www.genome.jp/kegg/pathway.htmi]

Examples of bioinformatics pipelines for metagenomics analysis: HumanN2, MetaPhlAn 2,
SqueezeMeta, etc.

The output (abundance table of counts) of both the approaches (amplicon and shotgun
sequencing) is similar. The main element of a microbiome study is the abundance table of counts
which represents the number of sequences per sample for a specific taxon. A microbiome
abundance table is a matrix of counts, X, with n rows (samples) and k columns (taxa) where each
entry Xjj provides the number of sequences (reads) corresponding to taxon j in sample i.
Sometimes, abundance tables are transposed where rows are taxa and columns are samples. In R
and Bioconductor packages such as phyloseq, besides abundance table, other elements are also
available such as sample data, taxonomy table, phylogenetic tree and DNA String Set (reference
sequences).
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Figure 2. Sample data
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1 Kingdom Phylum Class Order Family Genus Species

2 | OTU1 | Bacteria Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroides NA

3 | OTU2 | Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides caccae

4 | OTU3 | Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides ovatus

5 | OTu4 | Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae [Ruminococcus] torques
6 I OTUS | Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia NA

7 | OTU6 | Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus NA

8 | OTU7 | Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia faecis

9 | OTU8 | Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae [Ruminococcus] NA

10| OTU9 | Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales  Enterobacteriaceae Escherichia coli
11| OTU10 | Bacteria Proteobacteria  Betaproteobacteria Burkholderiales Alcaligenaceae Sutterella NA

12 OTU1l | Bacteria Firmicutes Clostridia Clostridiales NA NA NA

13 | OTU12 | Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus NA

14| OTU13 | Bacteria Bacteroidetes Bacteroidia Bacteroidales [Odoribacteraceae] Odoribacter NA

15 | OTU14 | Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira NA

16 | OTU15 | Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia producta
17 | OTU16 | Bacteria Firmicutes Clostridia Clostridiales Veillonellaceae Phascolarctobacterium NA

18 | OTU17 | Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae NA NA

19 OTU1E | Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus NA

20 | OTU19 | Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae NA NA

21| OTU20 | Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus NA

22| OTU21 | Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus bromii

Figure 3. Taxonomy table
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Statistical Analysis of Microbiome Data
A microbiome statistical analysis consists of the following major steps:
= Normalization
= Diversity analysis
=  Ordination
= Differential abundance testing

The statistical analysis of microbiome abundance data starts with the normalization of the data
followed by an exploratory study of the microbiome composition for the identification of
possible data structures. The exploratory part consists of the analysis of diversity measures and
their visualization through ordination plots. There are many challenges involved in the analysis
of microbiome count data. One of the challenges is related to count data analysis which involves
skewed distribution, zero inflation and over-dispersion.

Normalization

The microbiome data is very noisy due variations caused during the execution of experiment and
preprocessing steps such as quality control filtering. The total number of counts per sample is
highly variable which may arise due to biological and technical issues. Therefore, some
normalization is required prior to the analysis so that the microbiome abundances among the
different samples are comparable. Abundance tables are usually sparse since many species are
infrequent. Further, there is much redundant information because of co-abundance of many
species. Various approaches of normalization are as follows:

= Computation of relative abundances: The simplest way is the computation of relative
abundances by dividing the raw abundances by the total number of counts per sample.

= Rarefaction: It consists of subsampling the same number of reads for each sample so that
all samples have the same number of total counts. However, this method is not
recommended as it entails loss of important information and precision of measurement is
decreased. Further, the random choice of reads decreases repeatability of experiment and
adds bias.

= Sophisticated techniques implemented in some R packages for RNA-seq data analysis
such as DESeq?2 and edgeR:

* TMM (Trimmed Mean of M-values)
« TMMwsp (TMM with singleton pairing)
* RLE (relative log expression)

Compositional Data Analysis (CoDA) techniques such as log-ratio approach can be used as an
alternative because these do not require the normalization step.
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Examples:
« Additive log-ratio transformation (alr)
» Centered log-ratio transformation (clr)
» Isometric log-ratio transformation (ilr)

Microbiome abundance tables are sparse and contain many zeros. This should be properly
addressed before CoDA methods can be applied. One of the simplest approaches is to replace
zeros by a small pseudo-count or to add a small constant (e.g. 1) to all the elements of the
abundance matrix.

Diversity Analysis

Microbiome diversity can be measured through multiple ecological indices. There are basically
two kind of measures:

» Alpha diversity (within sample variability)
» Beta diversity (between samples variability)
Alpha diversity (within sample variability)

The simplest measure of alpha diversity is richness. Richness is estimated by the observed
richness, Robs, the number of different species observed in the sample. The observed richness
tends to underestimate the real richness in the environment, where the less frequent species are
likely to be undetected. There are different indices that adjust for less frequent or undetected
species.

fi(fi—1)
2(f2+1)

Chaol indeX, Rcpgo1 = Rops +

where f; is the number of species observed only once and £, is the number of species observed
twice.

Another important measure of alpha diversity is evenness which measures the homogeneity in
abundance of different species in a sample. Most commonly used measure of evenness is the
Shannon index:

k
Rshannon = — Z p; log(p;)
i=1
where p; represents the relative abundances of the i taxon.

Beta diversity (between samples variability)

It measures the differences in microbiome composition between samples. It provides a measure
of similarity, or dissimilarity, of one microbial composition to another. There is a wide range of
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ecological distances or dissimilarities for measuring beta diversity such as Bray-Curtis, UniFrac,
weighted UniFrac distances, Aitchison distance, etc.

The R package “vegan” provides a large set of diversity measures.

Let p1 = (P11, P1zs > P1i) @ P2 = (P21, P22, -, P2i) denote the microbiome relative abundance
of two different samples. Bray-Curtis is defined as

Y1 1p1 — pail

{":1(1911' + p2:1)
Consider a phylogenetic tree with r branches. Let b = (b,, b,, ..., b,) denotes the length of the
different branches in the phylogenetic tree. Let ¢q; = (911, 12, -,q1,) and g, =

(921, 922, ---,q2) denote the relative abundances associated to each branch for the first and the
second sample, respectively. The unweighted UniFrac distance is defined as

;‘=1 b;il1(q1; > 0) — I(qy; > 0)]
-1 bil(q1; + q2; > 0)

dpc(p1,02) =

dy(b,q1,92) =

The weighted UniFrac distance is defined as
Yi=1bilq1i — qail
=1(q1i + q20)1(q1i + G20 > 0)
Given two compositions x1 and Xz, the Aitchison distance is defined as
dy(xq1,%x) = dE(clr(xl), clr(xz))

where de denotes Euclidean distance.

dw(b,q1,q2) =

Ordination

The purpose of ordination plots is to visualize beta diversity for identification of possible data
structures. The multidimensional data is represented into a reduced number of orthogonal axes
while keeping the main trends of the data and preserving the distances among samples as much
as possible. Two most commonly used ordination methods for microbiome data are

e Principal coordinates analysis (PCoA) or multidimensional scaling (MDS)
e Non-metric multidimensional scaling (NMDS)

PCoA is an extension of Principal Components Analysis (PCA). PCoA results exactly the same
as PCA. In PCoA, some eigenvalues may be negative and the graphical representation will not
perform properly. Therefore, in such case, NMDS is more commonly used. It maximizes the
rank-based correlation between the original distances and the distances between samples in the
new reduced ordination space. Ordination plots can be obtained using R and Bioconductor
packages such as vegan, phyloseq, etc.
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Differential abundance testing

An inference analysis is performed where microbiome composition is tested for association with
a variable of interest. Differential abundance testing is usually done when the outcome of interest
is dichotomous (e.g., healthy and diseased). These association tests can be:

1. Univariate - aim is to identify which taxa are differentially abundant between sample groups
2. Multivariate - assess for global differences in microbial composition between sample groups

1. Univariate differential abundance testing: Every taxa is separately tested for association
with the response variable. Various methods for univariate abundance testing are given below.

(1) Nonparametric tests, e.g., Wilcoxon rank-sum test or Kruskal-Wallis test
(if) Parametric approaches

e Available in the Bioconductor packages such as edgeR and DESeq2, initially proposed
for RNA-Seq data analysis can be used.

e Both fit a generalized linear model and assume that read counts follow a Negative
Binomial distribution.

CoDA methods such as ANCOM and ALDEX2 can be applied.

= ANCOM - the log-ratio of all pairs of variables is tested for differences in means.
= ALDEX2 algorithm
v" It uses a Dirichlet-multinomial model to infer the multivariate abundance distribution
from counts.
v’ After clr transformation, it performs the Wilcoxon rank test (two groups) or Kruskal-
Wallis tests (more than two groups).

2. Multivariate differential abundance testing

It refers to a global test of differences in microbial composition between two or more groups of
samples. Some of the methods for multivariate differential abundance testing are given below:

(i) Permutational Multivariate Analysis of Variance Using Distance Matrices (PERMANOVA)

e The null hypothesis of no differences in composition among groups is formulated by the
condition that the different groups of samples have the same center of masses.

e Implemented in function “adonis” of R package “vegan”.

e Consists of a multivariate ANOVA based on dissimilarities.

e Significance is evaluated through permutations to generate a distribution of pseudo F
statistic under the null hypothesis.

(ii) A popular distance-based approach is the analysis of similarities implemented in the function
“anosim” of R package “vegan”.

(iii) Kernel machine regression (KMR)
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e A model-based approach for multivariate microbiome analysis that extends
PERMANOVA to a regression framework.
e A semi-parametric regression model that includes a nonparametric component.

(iv) Model-based methods for hypothesis testing, power and sample size calculations based on
Dirichlet-Multinomial distribution:

e Proposed by La Rosa et al.
e The methods are implemented in the R package “HMP”.

(v) Multivariate statistical framework mixMC

e Proposed by Le Cao et al. where sparse partial least squares discriminant analysis (SPLS-
DA) is performed.
e The proposed method has been implemented in the R package “mixOmics”.
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Metagenomics Data Analysis using QIIME 2
Anu Sharma

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

1. Introduction

QIIME 2 is a completely reengineered microbiome bioinformatics platform based on the
popular QIIME platform, which it has replaced. QIIME 2 facilitates comprehensive and fully
reproducible microbiome data science, improving accessibility to diverse users by adding
multiple user interfaces.

Raw ; Demultiplexed Denoise /
L Sequences Remuiiiplax ‘ Sequences Cluster

: 1

‘ ( Representative

‘ Feature Table Sequences
QIIME2: Pipeline o
X Differential | o i ¥
for amplicon data Abundance | —
ana |YS is S:“;It-lcs ! Classification Aligoment
ouing Barplots / b ¥ v
Heatmaps |
Aligned
. ; T@onomy Sequences
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Analyses i v
| J Phylogeny <-  Phylogeny

Fig. 1: Pipeline for amplicon data analysis

Key features:
e Integrated and automatic tracking of data provenance
e Semantic type system
e Plugin system for extending microbiome analysis functionality
e Support for multiple types of user interfaces (e.g. API, command line, graphical)

2. Data files: QIIME 2 artifacts

Data produced by QIIME 2 exist as QIIME 2 artifacts. A QIIME 2 artifact contains data and
metadata. The metadata describes things about the data, such as its type, format, and how it
was generated (provenance). A QIIME 2 artifact typically has the .qza file extension when
stored in a file.

Since QIIME 2 works with artifacts instead of data files (e.g. FASTA files), data can be
imported at any step in an analysis, though typically it start by importing raw sequence data.
QIIME 2 also has tools to export data from an artifact. By using QIIME 2 artifacts instead of
simple data files, QIIME 2 can automatically track the type, format, and provenance of data for
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researchers. Using artifacts instead of data files enables researchers to focus on the analyses
they want to perform, instead of the particular format the data needs to be in for an analysis.

2.1 Data files: visualizations

Visualizations are another type of data generated by QIIME 2. When written to disk,
visualization files typically have the .qzv file extension. Visualizations contain similar types of
metadata as QIIME 2 artifacts, including provenance information. Similar to QIIME 2 artifacts,
visualizations are standalone information that can be archived or shared with collaborators.

In contrast to QIIME 2 artifacts, visualizations are terminal outputs of an analysis, and can
represent, for example, a statistical results table, an interactive visualization, static images, or
really any combination of visual data representations. Since visualizations are terminal outputs,
they cannot be used as input to other analyses in QIIME 2.

2.2 Semantic types

Every artifact generated by QIIME 2 has a semantic type associated with it. Semantic types
enable QIIME 2 to identify artifacts that are suitable inputs to an analysis. For example, if an
analysis expects a distance matrix as input, QIIME 2 can determine which artifacts have a
distance matrix semantic type and prevent incompatible artifacts from being used in the
analysis (e.g. an artifact representing a phylogenetic tree). Semantic types also help users avoid
semantically incorrect analyses. For example, a feature table could contain presence/absence
data (i.e., a 1 to indicate that an OTU was observed at least one time in a given sample, and a
0 to indicate than an OTU was not observed at least one time in a given sample). However, if
that feature table were provided to an analysis computing a quantitative diversity metric where
OTU abundances are included in the calculation (e.g., weighted UniFrac), the analysis would
complete successfully, but the result would not be meaningful.

This guide assumes that QIIME 2 have been installed using one of the procedures in the install
documents at https://docs.qiime2.org/2022.8/install/.

3. Obtaining and importing data

wget \
-0 'emp-single-end-sequences.zip' \
'https://docs.giime2.0org/2021.11/data/tutorials/moving-pictures-usage/emp
-single-end-sequences.zip'

unzip -d emp-single-end-sequences emp-single-end-sequences.zip

giime tools import \
--type 'EMPSingleEndSequences' \
-—input-path emp-single-end-sequences \
--output-path emp-single-end-sequences.gza

4. Demultiplexing sequences

To demultiplex sequences we need to know which barcode sequence is associated with each
sample. This information is contained in the sample metadata file. You can run the following
commands to demultiplex the sequences (the demux emp-single command refers to the fact
that these sequences are barcoded according to the Earth Microbiome Project protocol, and are
single-end reads). The demux.qza QIIME 2 artifact will contain the demultiplexed sequences.
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giime demux emp-single \
--i-seqgs emp-single-end-sequences.gza \
--m-barcodes-file sample-metadata.tsv \
--m-barcodes-column barcode-sequence \
--o-per-sample-sequences demux.dza \
—--o-error-correction-details demux-details.qgza

After demultiplexing, it’s useful to generate a summary of the demultiplexing results. This
allows you to determine how many sequences were obtained per sample, and also to get a
summary of the distribution of sequence qualities at each position in your sequence data.

giime demux summarize \
--i-data demux.qgza \
--o-visualization demux.gzv

5. Sequence quality control and feature table construction

QIIME 2 plugins are available for several quality control methods, including DADAZ2, Deblur,
and basic quality-score-based filtering. In this tutorial we present this step using DADAZ2. These
steps are interchangeable, so you can use whichever of these you prefer. The result of both of
these methods will be a FeatureTable[Frequency] QIIME 2 artifact, which contains counts
(frequencies) of each wunique sequence in each sample in the dataset, and
a FeatureData[Sequence] QIIME 2 artifact, which maps feature identifiers in
the FeatureTable to the sequences they represent.

giime dada2 denoise-single \
-—-i-demultiplexed-segs demux.gza \
-—p-trim-left 0 \
-—-p-trunc-len 120 \
--o-representative-sequences rep-segs.gza \
--o-table table.gza \
--o-denoising-stats stats.qgza

giime metadata tabulate \
--m-input-file stats.gza \
--o-visualization stats.qgzv

6. FeatureTable and FeatureData summaries

giime feature-table summarize \
-—-i-table table.gza \
-—-m-sample-metadata-file sample-metadata.tsv \
--o-visualization table.qgzv
giime feature-table tabulate-seqgs \
-—-i-data rep-segs.gza \
--o-visualization rep-segs.qzv

7. Generate a tree for phylogenetic diversity analyses

giime phylogeny align-to-tree-mafft-fasttree \
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--i-sequences rep-segs.gza \
--output-dir phylogeny-align-to-tree-mafft-fasttree

8. Alpha and beta diversity analysis

giime diversity core-metrics-phylogenetic \

--i-phylogeny phylogeny-align-to-tree-mafft-fasttree/rooted tree.qza
\

-—-i-table table.gza \

--p-sampling-depth 1103 \

--m-metadata-file sample-metadata.tsv \

--output-dir diversity-core-metrics-phylogenetic

9. Taxonomic analysis

wget \
-0 'gg-13-8-99-515-806-nb-classifier.gza' \
'https://docs.giime2.0rg/2021.11/data/tutorials/moving-pictures-usage
/9g-13-8-99-515-806-nb-classifier.qgza'

giime feature-classifier classify-sklearn \
-—i-classifier gg-13-8-99-515-806-nb-classifier.gza \
-—-i-reads rep-segs.qgza \
--o-classification taxonomy.gza

giime metadata tabulate \
--m-input-file taxonomy.gza \
--o-visualization taxonomy.qzv

giime taxa barplot \
-—-i-table table.gza \
--i-taxonomy taxonomy.gza \
--m-metadata-file sample-metadata.tsv \
--o-visualization taxa-bar-plots.qgzv

References:

1. https://docs.qiime2.0rg/2022.8/tutorials/moving-pictures-usage/

2. https://docs.giime2.0rg/2022.8/concepts/#data-files-giime-2-artifacts

3. Mehrbod Estaki,Lingjing Jiang,Nicholas A. Bokulich,Daniel McDonald,Antonio
Gonzélez,Tomasz Kosciolek,Cameron Martino,Qiyun Zhu,Amanda Birmingham,Y oshiki
Vazquez-Baeza,Matthew R. Dillon,Evan Bolyen,J. Gregory Caporaso,Rob Knight (2020).
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Statistical Analysis of Metagenomics Data
Ritwika Das
ICAR-Indian Agricultural Statistics Research Institute, New Delhi

O Statistical Analysis of Metagenomic Profiles
Taxonomic and functional differences between metagenomic samples can highlight the
influence of ecological factors on patterns of microbial life in a wide range of habitats.
Statistical hypothesis tests help to distinguish ecological influences from sampling
artifacts, but knowledge of only the p-value is insufficient to make inferences about
biological relevance. Biological relevance of a feature requires consideration of effect
sizes and their associated confidence intervals. Interpretation of statistical results can also
benefit from transforming raw p-values to superior interpretations and by allowing
interactive filtering that permits focusing on features with specific statistical properties.
p-value indicates the probability of an observed difference occurring simply by chance.
Features in a profile with p-values below 0.05 are termed as statistically significant and
can reasonably be assumed to be enriched in one of the metagenomes due to ecological or
taxonomic differences as opposed to being the result of a sampling artifact. Fisher’s exact
test uses hypergeometric distribution to efficiently calculate the exact p-value without the
requirement of all possible permutation of sequences in a pair of metagenomic samples.
The chi-square test and G-test are well-known large sample approximations to Fisher’s
exact test. Barnard’s test is computationally prohibitive for the majority of features in a
typical metagenomic profile. So, we need to decide between an approximation to
Barnard’s exact test (e.g., bootstrapping) and Fisher’s exact test.
A typical metagenomic profile consists of several hundred features. When performing
multiple hypothesis tests, it is useful to modify the p-values so that they reflect a particular
interpretation. If we wish to examine a list of features where the probability of observing
one or more false positive is less than a specified probability, we can use a correction
method. Commonly applied correction methods include Bonferroni, Holm-Bonferroni and
Sidak (Abdi, 2007). Alternatively, during exploratory analysis, we may be willing to
accept a specific percentage of false positives. This can be achieved using the Benjamini—
Hochberg false discovery rate (FDR) procedure (Benjamini and Hochberg, 1995) or the
Storey FDR approach (Storey and Tibshirani, 2003). These approaches complement each
other while performing an exploratory analysis. The list of significant features obtained
without any multiple test correction method gives us an initial global look at those features
which may be differentially abundant between our samples. An FDR approach can be used
to refine this initial list and to make the number of expected false positives explicit. Finally,
a correction technique can be applied to focus our attention to only those features where
the observed enrichment or depletion is highly unlikely to be a sampling artifact.

U Effect Size and Confidence Intervals
To assess if a feature is of biological relevance, we should consider the magnitude of the
observed difference (i.e., an effect size statistic). An arbitrarily small effect can be
statistically significant if the sample sizes are sufficiently large. So, biological significance
of a feature must be supported by effect size statistics as well as p-values.
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Table 1: Contingency table summarising data for a feature of interest

Sample 1 Sample 2
Sequences in feature X X7 Ry =x1+x
Sequences in other features  y V2 Ry=vi+w
Total assigned sequences Ci=x1+v Co=x+y» N=C+C

Table 2: Effect size statistics of a feature of interest

Effect size statistic Equation
Difference between proportions DP=p; —p»

Ratio of proportions RP=p,/p»

OR OR = (x1 /v M(x2/v2)

p1=x1/C1, p2 =x2/C>: RP is often referred to as relative risk.

The most intuitive effect size statistic is the difference between proportions (DP) of
sequences assigned to a given feature in the two samples. Ratio of proportions (RP) is also
a measure that provides complementary information to the DP. Consideration of multiple
effect size statistics is often essential while assessing biological relevance as features can
have a small (or, large) DP, but a large (or, small) RP. The odds ratio (OR) has many
desirable mathematical properties. However, RP is preferred over OR due to the difficulty
in interpretation of the latter.

Confidence interval (Cl) indicates the range of effect size values that have a specified
probability of being compatible with the observed data. A 95% CI gives a lower and upper
bound in which the true effect size will be contained 19 times out of 20. There is a close
relationship between p-values and CIl. CI that encompasses the identity effect size (e.g.,
DP =0 or RP = OR = 1) will have a p-value > (1 — the coverage of the CI) (i.e., a p-value
> 0.05 for a 95% CI). If the identity effect size is outside the CI, the p-value will be < 0.05
for a 95% CI. Critically, CI provides a mean to infer the biological relevance of a feature
even when it is marginally statistically significant.

Software: STAMP (Parks et al., 2010)

Concept of STAMP

STAMP is a open source software package for analyzing various metagenomic profiles,
viz., taxonomic profiles indicating the number of marker genes assigned to different
taxonomic units or functional profiles indicating the number of sequences assigned to
different subsystems or pathways. A user-friendly, graphical interface permits easy
exploration of statistical results and generation of publication quality plots for inferring
biological relevant features present in a metagenomic profile. STAMP facilitates statistical
hypothesis tests to identify features (e.g., taxa or metabolic pathways) that differ
significantly between
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1. Pairs of profiles (Two Sample)
2. Sets of profiles organized into two groups (Two Groups)
3. Sets of profiles organized into multiple groups (Multiple Groups)

O Software Installation
STAMP is implemented in Python and can be installed in any operating system, i.e.,
Windows/ MacOS/Linux. Source codes and executable binary file can be downloaded
from the following link:
https://github.com/dparks1134/STAMP/releases/tag/v2.1.3

Properties 5 X Group legend 8 x
Parent level: -
Profile level: <
Unclassified: 'Retain unclassified reads -

Multiple groups Two groups Twa saihyp b3
& Statistical properties

Statistical test: ANOVA o
Post-hoc test:  Tukey-Kramer +  0.95 =

Effect size: Eta-squared -

Multiple test correction: | No correctior i}

{} Filtering

D Select specific features  Select features

No active features or degenerate plot

p-value filter (=): 0.05000 =

No active features or degenerate plot
Effect size (<): |0.80 20

Number active features:

PCAplot =  Configure plot Highlight: hd -

Vetadata table a8 x

B 8 Fitter: Add ~ | all samples where v = - -

Recalculate statistics and plots

Upon installation of the software, some example datasets also get downloaded in the
installation folder. Here, profile and metadata for the dataset EnterotypeArumugam is used
for the demonstration of this software.

O Input files
STAMP requires 2 input files:
1. Metagenomic profile file
2. Metadata file
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1. Metagenomic profile file:

STAMP can analyze both taxonomic and functional profiles. User defined input files
should be text files in tab-separated values (TSV) format. It can contain hierarchical
profile information for two or more samples. The first row of the file contains headers
for each column. First few columns indicate the hierarchical structure of a feature in
an arrangement of the highest to the lowest level. There are no restrictions on the depth
of the hierarchy but it must form a strict tree structure. Reads that have an unknown
classification at any point in the hierarchy should be marked as unclassified (case
insensitive). The parent of a classified child in the hierarchy must also be classified.
Other columns contain abundance values of features in different samples.

Hierarchy of features

Samples

Features

sanje) @suepunqy

STAMP can analyze taxonomic or functional profiles obtained from MG-RAST
software in .tsv format. First column of this MG-RAST profile is the metagenome
column. To perform statistical analysis using STAMP, MG-RAST profile needs to be
converted into a STAMP compatible profile (.spf) using: File — Create STAMP profile
from... - MG-RAST profile

Similarly, taxonomic and functional profiles from BIOM, Rita, CoMet and mothur can
also be analyzed using STAMP. It can directly process abundance profiles for multiple
samples obtained from the JGI IMG/M web portal. COG profiles from IMG/M do not
contain information about which COG category or higher level class a COG belongs
to. STAMP can add this information using: Append COG categories to IMG/M profile.

2. Metadata file:
STAMP requires additional data associated with each sample to perform statistical
analysis of metagenomic samples organized in two or more groups. These additional
information are provided in a metadata file in .tsv format. First column of this file
indicates Sample Ids. Other columns provide information about various grouping
categories and corresponding values.
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Grouping categories

BEmeml\/peﬁme(adatatﬁva‘ I I
1 sample Id Enterotype Nationality clinical Status Gender Project Clinical Status [filtered] Nationality [filtered] Gender [filtered]
2  BM-RD-1 Unclassified american healthy F  gill0é na na na
3 BEM-AD-2 Unclassified american healthy M gill06 na na na
4 AM-F10-T1 Enterotype 3 - twin american obese F turnbaugh0% na na na
5 RM-F10-T2 Enterotype 3 american obese F  turnbaugh09 obese na F

6 DA-AD-1 Enterotype 2 danish healthy F  MetaHIT healthy danish F
7 DA-BD-2 Enterotype 3 danish healthy M MetaHIT healthy danish M

5 DA-AD-3 Enterotype 3 danish obese F  MetaHIT obese danish F
S DA-AD-4 Enterotype 2 danish obese M  MetaHIT obese danish M
0 ES-AD-1 Enterotype 1 spanish CD F  MetaHIT CD spanish F

11 ES-RD-2 Enterotype 2 spanish healthy M  MetaHIT healthy spanish M
12 ES-AD-3 Enterotype 2 spanish UC F  MetaHIT UC spanish F
13 [ES-AD-4 Enterotype 3 spanish healthy F  MetaHIT healthy spanish F
14 FR-AD-1 Enterotype 3 french healthy M MicroObes healthy french
15 FR-AD-2 Enterotype 3 french healthy M MicrooObes healthy french
16 FR-AD-3 Enterotype 1 french healthy M MicroObes healthy french
17 FR-RD-4 Enterotype 3 french healthy M Microobes healthy french
i FR-RD-5 Enterotype 3 french obese M MicroObes obese french
15 FR-RD-6 Enterotype 2 french obese M MicroObes obese french
0 FR-AD-7 Enterotype 3 french obese M  MicroObes obese french
21 FR-RAD-8 Enterotype 3 french obese M  MicroObes obese french
2 IT-AD-1 Enterotype 3 italian elderly F  MicrohAge elderly italian F
23 IT-AD-2 Enterotype 3 italian elderly M Microkge elderly italian M
24 IT-AD-3 Enterotype 3 italian elderly F  MicroAge elderly italian F
25 IT-AD-4 Enterotype 2 italian elderly M Microige elderly italian M
26 IT-RD-5 Enterotype 3 italian elderly M Microkge elderly italian M

7 IT-AD-6 Enterotype 3 italian elderly F  Microage elderly italian F

§ JP-AD-1 Enterotype 1 Jjapanese healthy M kurokawa07 healthy japanese
9 JP-AD-2 Enterotype 3 Jjapanese healthy F kurokawal7 healthy japanese
3 JP-RD-3 Enterotype 3 japanese healthy M kurokawa07 healthy japanese
31 JP-RAD-4 Enterotype 1 Jjapanese healthy F kurokawa07 healthy japanese
32 JP-RD-5 Enterotype 3 japanese healthy M kurokawa07 healthy japanese
33 JP-RD-6 Enterotype 1 Jjapanese healthy F kurokawa07 healthy japanese
34 JP-AD-7 Enterotype 1 Jjapanese healthy M kurokawa07 healthy japanese
35 JP-AD-8 Enterotype 1 Jjapanese healthy M kurokawa07 healthy japanese
36 JP-RAD-9% Enterotype 1 Jjapanese healthy F kurokawa07 healthy japanese
37 Jp-IN-1 Infant Jjapanese healthy F kurokawa07 na na na

) JP-IN-2 Infant Jjapanese healthy M kurokawa07 na na na
3 JP-IN-3 Infant japanese healthy M kurokawa07 na na na
40  Jp-IN-4 Infant Japanese healthy F kurokawaO7 na na na

EEEREREERER

mEE M E Y EmE

If metadata file is not provided, STAMP assumes all samples contained in a single
group and performs only “Two Sample” tests.

O Analyzing Metagenomic Profiles:
Upload both profile file and metadata file to the STAMP software to perform various
statistical analysis for multiple groups/ two groups/ two samples.

% Statistical Analysis for Multiple Groups

Statistical properties can be set through the Properties window. It helps to set a number

of properties related to performing statistical tests:

e Parent Level: The proportion of sequences assigned to a feature will be calculated
relative to the total number of sequences assigned to its parent category. By default,
it is set as Entire sample.

o Profile Level: The hierarchical level at which statistical tests will be performed. It
facilitates analysis of metagenomic profile at different depths of the hierarchy.

¢ Unclassified: Unclassified sequences can be handled in 3 ways: a) retained in the
profile (Retain unclassified reads), removed from the profile (Remove unclassified
reads), or removed from consideration except when calculating a profile (Use only
for calculating frequency profiles).

o Statistical Properties: The statistical test, post-hoc test along with the confidence
interval width, effect size, and multiple test correction method to use can be
specified in this section. A list of methods provided in STAMP for analyzing
multiple groups is given in Table 3.
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Properties 5 X

Parent level: Entire sample -

Profile level: Phyla -

Unclassified: Retain unclassified reads -

Multiple groups Twa groups Two samples

& Statistical properties

Statistical test: ANOVA i
Post-hoc test:  Tukey-Kramer | 095 ~

Effect size: Eta-squared -

Multiple test correction: Mo correction ~| @

Ere Filtering

] select specific features Select features

p-value filter (=): 0.05000 =10

Effect size (<): 0.80 =10

Mumber active features: 17

o Filtering: This section provides a number of filters for identifying features that
satisfy a set of criteria (i.e., desired p-value and effect size).

Table 3: Multiple groups statistical techniques available in STAMP

Statistical hypothesis tests References
ANOVA An analysis of variance (ANOVA) is a method for testing whether Bluman, 2007
or not the means of several groups are all equal. [t can be seenas a
generalization of the t-test to more than two groups.

Emskal-Wallis H-test A non-parametric method for testing whether or not the median of Bluman. 2007
several groups are all equal. It considers the rank order of each
sample and not the actual preportion of sequences associated with a
feature. This has the benefit of not assuming the data 1s normally
distributed. Each group nmst contain at least 3 samples to apply this
test.

Post-hoc tests

Games-Howell Used to determine which means are significantly different when an
ANOWVA produces a significant p-value. This post-hoc test is
designed for use when variances and group sizes are unequal. It is
preferable to Tukey-Kramer when variances are nnesqual and group
sizes are small, but it more computationally expensive.

Scheffe A general post-hoc test for considering all possible contrasts unlike
the Tukey-Kramer method which considers only pairs of means.
Currently, STAMP cnly considers pairs of means so the Tukey-
Kramer method 15 preferred. In general. this test 1s highly
conservative.

Tukey-Kramer Used to determine which means are significantly different when an Bluman, 2007
ANOWVA produces a significant p-value. It considers all possible
pairs of means while controlling the familvwise emror rate (i.a.,
accounting for mmltiple comparisons). In general, we recommend
using the Games-Howell post-hoc test when reporting final results
and the Tukey-Kramer method for exploratory analysis since it is
less computationally intensive. The Tukey-Kramer may also be
preferred as it is more widely used and kmown amongst researchers.

Welch's (uncorrected) Simple performs Welch's t-test on each possible pair of means. No
effort 15 made to control the familywise error rate.
Multiple test correction methods
Benjamini-Hochberg FDR Initial proposal for controlling false discovery rate instead of the Benjamini and Hochberg,
familywise error. Step-down procedure. 1995
Bonferroni Classic method for controlling the familywise error. Often criticized Adbi, 2007
as being too conservative.
Siddk Less commeon method for controlling the familywise error rate. Adbi, 2007

Uniformly more powerful than Bonfervomi, but requires the
assumption that individual tests are independent.

Storey’s FDR Recent method used to control the false discovery rate. More Storey and Tibshirani, 2003
powerful than the Benjamini-Hochberg method. Recuires Storey et al, 2004
estimating certain parameters and is more computationally
expensive than the Benjamini-Hochberg approach.

279



% Graphical exploration of results:
Statistical analysis results can be graphically represented with the help of various
plots. The Group legend window helps to select the particular grouping category for
which we want to explore the results.

Group legend g X

Group field:  Enterotype -

| Enterotype 1 (8)

| enterotype 2 (6)

J Enterotype 3 (18)

C] J Enterotype 3 - twin (1)
(] _I Infant (4)

] J Unclassified (2)

The following plots can be generated for exploring the analysis results of multiple

groups:

e PCA plot: Principal component analysis (PCA) plot of the samples. Clicking on a
marker within the plot indicates the sample represented by the marker. Markers of
different colours belong to different groups.

| |
0.2 a4 | a
a4, ° ° NN
A I I
- 0l o &
# é al o &aa | o
o Al 'y A A A
= 0 = =—===-2"—_ - - - —_—— e ——- _- - = - -_—_ " = - = =
~ Ad A
& A ' B a'”gl
A A
-0l o | o ® o_3°
o % g )
A A I an
-0.2 L I
R
0.20 A | S ELF PP
s s
01s A |
| PC3 (7.7%)
5 010 o
|
E 0.05 . AR A g o o
moopon bl - - - A .
¥ Fiy + (o]
od
= pos| 2 & ) a4 g o o
a | @
-0.10 A

-03 -0z -01 00 0l 0z 0.3 0.4
PC1 (66.4%)

280



e Heatmap plot: It represents the proportion of sequences assigned to each feature
in every sample. Dendrograms can be shown along the sides of the heatmap and
are used to cluster both the features and samples.
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e Bar plot: Bar plot represents the proportion of sequences assigned to a particular
feature in every sample.
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e Box plot: It is similar to a bar plot. Box plot provides a more concise summary of
the distribution of sequence proportions of a feature in various groups. The box-
and-whiskers graphics show the median of the data as a line, the mean of the data
as a star, the 25th and 75th percentiles of the data as the top and bottom of the box,
and uses whiskers to indicate the most extreme data point within 1.5*(75th — 25th
percentile) of the median. Data points outside of the whiskers are shown as crosses.

Fea;ure
Bactercidetes 4= 32066 Acidobacteria
Actinobacteria
Bacteroidetes
Chlorobi
Chloroflexi
Cyanobacteria
) —L Deinococcus-Thermus

Euryarchaeota

Firmicutes

ences (%)

Fusobacteria

qus

30 o Other

of se:

Proteobacteria

Spirochaetes

Propartion

2 Synergistetes

Tenericutes
Unclassified

Verrucomicrobia

Enterotype 1 Enterotype 2 Enterotype 3

Eta-squared

-1.000
0.133
0.582
0.025
0035
0.063
0.025
0.110
0.065
0.102
0.140
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0.025
0.031
0033
0450
0.168

p-value
1.000
0.125
3.20e-6
0.692
0594
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0.692
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0.376
0.210
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0.475
0.689
0636
0614
1.73e-4
0.070

Corrected p-value
1.000
0125
3.20e-6
0.692
0.594
0392
0.692
0.183
0.376
0210
0.113
0.475
0.689
0636
0614
1.73e-4
0.070

e Post hoc plot: Upon rejection of the null hypothesis, post hoc tests are performed
to identify which pairs of groups are differing significantly from each other. Post
hoc plot shows the results of such a test. It provides p-value and effect size measure

for each pair of groups for a particular feature.
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Each of these plots provides a number of customization options. To customize a plot,
click the Configure plot button below the plot. Plots can also be sent to a new window
using the Send plot to window command under the VView menu. This allows multiple
plots to be viewed at once. Plots can be saved in raster (PNG) and vector (PDF, PS,

EPS, SVG) formats (File — Save plot).
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7

% Statistical Analysis for Two Groups

To analyze a pair of groups, click on the Two groups tab in the Properties window. In
the Profile section, we have to specify which pair of groups will be analyzed. Data
points of these 2 groups will be represented by 2 different colours. Groupings are
determined by the value of the Group field present in the Group legend window. Here,
the filtering section provides a large number of filters for identifying features that
satisfy a set of criteria.

Properties g X

Parent level: Entire sample -

Profile level:  Phyla -
Unclassified: Retain unclassified reads -

Multiple groups Two groups Two samples

3 Profile

Group 1: Enterotype 1 = _I

Group 2: Enterotype 2 = _I

& Statistical properties

Statistical test: Welch's t-test hd

Type: Two-sided A

CI method: DP: Welch's inverted v 095 v

Multiple test correction: Mo correction - @

&3 Filtering

[ Select specific features Select features

p-value filter (>):  0.05000 =

Sequence filter: maximum O
Maximum (<): |5 =

Group 2 (<): |5 =
Parent seq. filter:  maximum O

Maximum (<): 1

Ar| 4)

Group 2 (<): (1

Effect size filter 1: Difference between proportions O
Effect size (<): 1.00 =
O or O AnD
Effect size filter 2: Ratio of proportions O

Effect size (<): |2.00

4r

Number active features: 1

Sequence filter removes features that have been assigned fewer than the specified
number of sequences. Parent sequence filter does the filtering of sequence counts
within parental categories. Effect size filters remove features with small effect sizes.
Here, two different effect size statistics are used. It allows one to filter features based
on both absolute (i.e., difference between proportions) and relative (i.e., ratio of
proportions) measure of effect size.

A list of methods for statistical analysis of metagenomic profiles present in two groups
is given in Table 4.

283



Table 4: Two groups statistical techniques available in STAMP

Statistical hypothesis tests Comments References

t-test (equal variance) Student’s t-test which explicitly assumes the two groups have equal Bluman, 2007
variance. When this assumption can be made, this test 15 more
powerful than Welch's t-test.

Welch's t-test A variation of Student’s t-test that is intended for vse when the two Bivman, 2007
oroups cannot be assumed to have equal variance.

White’s non-parametric t-test Non-parametric test proposed by White ef al. for clinical White ef al., 2009

metagenomuc data. This test uses a permustation procedure fo
remove the normality assumption of a standard t-test. In addition, 1t
uses a heuristic to identify sparse features which are handled with
Fisher's exact test and a pooling strategy when either group consists
of less than § samples. See White er al., 2009 for details.

For large datasets this test can be computationally expensive. It may
help to reduce the number of replicates performed which can be set
inthe Preferences-=3zttings dialog.

Confidence interval methods

DF: t-test inverted Only available when using the equal variance t-test. Provides
confidence mtervals by inverting the equal variance f-test.

DP: Welch's inverted Only available when using Welch's t-test. Provides confidence
intervals by inverting Welch's t-test.

DP: bootstrap Only available when nsing White's non-parametric t-test. Provides

confidence intervals vsing a percentile bootstrapping method. If
White's nen-parametnc t-test defaults to using Fisher’s exact test,
confidence mtervals are obtained using the Asymptotic with CC

approach (see Table 3).
Multiple test correction methods

Benjamini-Hochberg FDR Initial proposal for controlling false discovery rate instead of the Benjamini and Hochberg,
familywise error. Step-down procedure. 1995
Bonferroni Classic method for controlling the familywise error. Often criticized Adbi, 2007
as being too conservative.
Sidak Less common method for controlling the familywise error rate. Adbi, 2007

Uniformly more powerful than Bonferroni, but requires the
assumption that individual tests are independent.

Storey’s FDR Recent method used to control the false discovery rate. More Storey and Tibshirani, 2003
powerfl than the Benjamini-Hochberg method. Requires Stogey et al., 2004
estimating certain parameters and is more compwationally
expensive than the Benjamini-Hochberg approach.

+ Graphical exploration of results:
Similar to multiple groups, here, bar plot, box plot, PCA plot and heatmap plot can be
generated to explore the result of statistical analysis for two groups.
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Other plots:

e Scatter plot:
It indicates the mean proportion of sequences within each group which are assigned
to each feature. This plot is useful for identifying features that are clearly enriched
in one of the two groups. The spread of the data within each group can be shown
in various ways (e.g., standard deviation, minimum and maximum proportions).

13
UW =

R* = 0.874

]

Enterotype 2 (%)

5]

/
10 y

y

]_|

o 10

e Extended error bar plot:
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It indicates the difference in mean proportion between two groups along with the
associated confidence interval of this effect size and the p-value of the specified
statistical test. In addition, a bar plot indicates the proportion of sequences assigned
to a feature in each group of samples.
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7

% Statistical Analysis for Two Samples

To analyze a pair of samples, click on the Two samples tab in the Properties window.
The Profile section is used to specify which pair of samples will be analyzed. Data
points (features) belonging to these 2 samples will be represented by 2 different

colours.

Properties g x
Parent level: Entire sample -
Profile level: Phyla -
Unclassified: Retain unclassified reads -

Multiple groups Two groups Two samples

& Profile

Sample 1:  AM-AD-1 -

Sample 2:  AM-AD-2 -

& Statistical properties

Statistical test: G-test (w/ Yates") + Fisher's hd

Type: Two-sided -

CI method: DP: Asymptotic-CC - 095

Multiple test correction: Mo correction - &

& Filtering

[] select specific features Select features

p-value filter (=):  0.05000 S

Sequence filter: maximum ]
Maximum (<): 5 S
Sample 2 (<): |5 =

Parent seq. filker: maximum ]

Maximum (<): 1

Ak |4

Sample 2 (<): |1

Effect size filter 1: Difference between proportions O

Effect size (<): 1.00

4k

O or () AND
Effect size filter 2: Ratio of proportions [

Effect size (<): 2.00

1k

Number active features: 6

Similar to the previous analyses, various statistical properties and filtering criteria can
be explicitly mention for the analysis of metagenomic profiles belonging to two
different samples.

A list of statistical techniques for the analysis of metagenomic profiles belonging to
two different samples is given in Table 5.
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Table 5: Two samples statistical techniques available in STAMP

Statistical hypothesis tests References

Bootstrap A rough non-parametric approximation to Barnard's exact fest. Manly, 2007
Aszumes sampling with replacement.

Chi-sguare Large sample approximation to Fisher's exact test. Generally liberal Cochran, 1932
compared to Fisher's. Apresti. 1992

Chi-sguare with Yates’ Large sample approximation to Fisher's exact test which has been Yates, 1934

corrected to account for the discrete nature of the distribution it is
approximating. Generally conservative compared to Fisher's.
Difference between proportions Z-test. Large sample approximation to Barnard's exact test. Apresti. 1990
Fisher’s exact test" Conditional exact test where p-values are calculated using the Agresti, 1990
‘minimum-likelihood’ approach Compwtationally efficient even for Rivals efal.. 2007
large metagenomic samples. Widely used and understood.

G-test Large sample approximation to Fisher's exact test. Often Apresti. 1990
considered more appropriate than the Chi-square approximation.
Generally liberal compared to Fisher’s.

G-test with Yates™ Large sample approximation to Fisher's exact test which has been Yates, 1934

corrected to account for the discrete nature of the distribution it is
approximating. Generally conservative compared to Fisher's.

G-test (w/Yates") + Fisher's Applied Fisher's exact test if any entry in the contingency table is Apresti, 1990
less than 20. Otherwise, the G-test with Yates™ continnify correction Rivals et al, 2007
is used. For clarity, we recommend reporting final results using just Yates, 1934
Fisher’s exact test. However, it is far more efficient to explore the
data using this hybrid statistical test.

Hypergeometric' Conditional exact test where p-values are calculated using the Rivals efal.. 2007

‘doubling” approach. More computationally efficient than the
‘minimum-likelihood approach, but the latter approach is more
commonly used by statistical packages (i.e., B and Stat¥act). Our
results suggest the doubling approach is generally more
conservative than the minimum-likelihood approach.

Pernmtation Approximation to Fisher's exact test. Assumes sampling without Manly, 2007
eplacement.

DF: Asymptotic Standard large sample method. Newcombe, 1998

DF: Asymptotic with CC As above, with a continuity comection to acconat for the discrete Newcombe, 1993
nature of the distribution being approximated.

DP: Newcombe-Wilson Method recommended by Newcombe in a comparison of seven Newcombe, 1998
asymptotic approaches.

OF.: Haldane adjustment Standard large sample method with a correction to handle Bland, 2000; Lawson,
degenerate cases. 2004; Agresti. 1999

RP: Asvmptotic Standard large sample method. Api Stl_ 1990

iltiple test correction methods

Benjamini-Hochberg FDR Initial proposal for centrolling false discovery rate instead of the Benjamini and Hochberg,
familywise error. Step-down procedure. 19935

Bonferroni Classic method for controlling the familywise error. Often criticized Adbi, 2007
as being too conservative.

Sidak Less common method for contrelling the familywise error rate. Adbi, 2007

Uniformly more powerful than Bonferrons, but requires the
assumption that individual tests are independent.

Storey’s FDR Recent method vsed to control the false discovery rate. More Storey and Tibshirani, 2003
powerful than the Benjamini-Hochberg method. Feguires Stotey et al., 2004
estimating certain parameters and is more computationally
expensive than the Benjamini-Hochberg approach.

R/

+« Graphical exploration of results:

Similar to the statistical analysis for two groups, here, bar plot, scatter plot and

extended error bar plot can be generated to explore the result of statistical analysis of

metagenomic profiles belonging to two different samples.

Other plots:

e Profile bar plot: It is a grouped bar plot indicating the proportion of sequences
assigned to each feature in the two selected samples. It is recommended for
investigating higher hierarchical levels of a profile where the number of features is
relatively small. Confidence intervals for each proportion are calculated using the
Wilson score method.
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e Sequence histogram: It gives a general overview of the number of sequences
assigned to each feature in both the samples.
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e Multiple comparison plots: It can be used to analyze the results of applying a
multiple test correction technique, e.g., Benjamini-Hochberg FDR.
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Multiple test correction method: Benjamini-Hochberg FDR
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e p-value histogram: It shows the distribution of p-values and corrected p-values
(i.e., number of features corresponding to a particular p-value) in a metagenomic
profile.

MNumber of features
a
=1~ =

0.0 0z 04 0.6 0.8 1.0
p-value (corrected)
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Protein Structure Prediction

Sunil Kumar

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Protein structure prediction is one of the most significant technologies pursued by
computational structural biologist and theoretical chemist. It has the aim of determining the
three-dimensional structure of proteins from their amino acid sequences. In other words, this
is expressed as the prediction of protein tertiary structure from primary structure.

The practical role of protein structure prediction is now more important than ever.
Massive amounts of protein sequence data have been derived from modern large-scale DNA
sequencing efforts such as the Human Genome Project. But, the output of experimentally
determined protein structures, by time-consuming and relatively expensive X-ray
crystallography or NMR spectroscopy, is lagging far behind the output of protein sequences.

Due to exponentially improving computer power, and new algorithms, much
progress is being made to overcome these factors by the many research groups that are
interested in the task. Prediction of structures for small proteins is now a perfectly realistic
goal. A wide range of approaches are routinely applied for such predictions. These
approaches may be classified into two broad classes; ab initio modeling and comparative or

homology modeling.

Ab initio Method

Ab initio- or de novo- protein modeling methods seek to build three-dimensional
protein models "from scratch”, i.e., based on physicochemical principles rather than
(directly) on previously solved structures. There are many possible procedures that either
attempt to mimic protein folding or apply some stochastic method to search possible
solutions (i.e., global optimization of a suitable energy function). These procedures tend to
require vast computational resources, and have thus only been carried out for tiny proteins.
To attempt to predict protein structure de novo for larger proteins, we will need better
algorithms and larger computational resources like those afforded by either powerful
supercomputers (such as Blue Gene or MDGRAPE-3).
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Comparative protein modeling

Comparative protein modeling uses previously solved structures as starting points, or

templates. This is effective because it appears that although the number of actual proteins is

vast, there is a limited set of tertiary structural motifs to which most proteins belong. It has

been suggested that there are only around 2000 distinct protein folds in nature, though there

are many millions of different proteins.

These methods may also be split into two groups:

Homology modeling is based on the reasonable assumption that two homologous
proteins will share very similar structures. Because a protein's fold is more
evolutionarily conserved than its amino acid sequence, a target sequence can be
modeled with reasonable accuracy on a very distantly related template, provided that
the relationship between target and template can be discerned through sequence
alignment. It has been suggested that the primary bottleneck in comparative
modeling arises from difficulties in alignment rather than from errors in structure
prediction given a known-good alignment. Homology modeling is most accurate
when the target and template have similar sequences.

Protein Threading scans the amino acid sequence of an unknown structure against a
database of solved structures. In each case, a scoring function is used to assess the
compatibility of the sequence to the structure, thus vyielding possible three-
dimensional models. This type of method is also known as 3D-1D fold recognition
due to its compatibility analysis between three-dimensional structures and linear
protein sequences. This method has also given rise to methods performing an inverse
folding search by evaluating the compatibility of a given structure with a large
database of sequences, thus predicting which sequences have the potential to produce

a given fold.

Homology Modeling: General Procedures

The steps to creating a homology model are as follows:

1)

Identify homologous proteins and determine the extent of their sequence similarity

with one another and the unknown.
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2) Align the sequences.

3) Identify structurally conserved and structurally variable regions.

4) Generate coordinates for core (structurally conserved) residues of the unknown
structure from those of the known structure(s).

5) Generate conformations for the loops (structurally variable) in the unknown
structure.

6) Build the side-chain conformations.

7) Refine and evaluate the unknown structure.

1) Identifying Homologues

Several computerized search methods are available to assist in identifying
homologues. In most cases of homology modeling, we have the sequence of a protein for
which we want to model the three-dimensional structure (the unknown or target). We then
apply sequence search methods to identify proteins with which the unknown has some
degree of sequence similarity and for which the three-dimensional structures are available
(the templates). We then assume that these proteins are homologous with our unknown and
use the three-dimensional structures of these proteins to develop a model of the structure of
our unknown. lIdeally, one should have several homologues with which to develop a
homology model, but modeling can be done with only one known structure.

2) Aligning Sequences
A critical step in the development of a homology model is the alignment of the
unknown sequence with the homologues. Many methods are available for sequence
alignment. Factors to be considered when performing an alignment are-
1) Which algorithm to use for sequence alignment,
2) Which scoring method to apply, and
3) Whether and how to assign gap penalties.

Algorithms for Alignments
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Sequence alignments generally are based on the dynamic programming algorithm of
Needleman and Wunsch. Current methods include FASTA, Smith-Waterman, and BLASTP,
with the last method differing from the first two in not allowing gaps.

Scoring Alignments

Scoring of alignments typically involves construction of a 20x20 matrix in which
identical amino acids and those of similar character (i.e., conservative substitutions) may be
scored higher than those of different character. Four general types of scoring have been

applied to alignments:

Identity: considers only identical residues

Genetic Code: considers the number of base changes in DNA or RNA to interconvert the

codons for the amino acids

Chemical Similarity: considers the physico-chemical properties (e.g., polarity, size, charge)

with greater weight given to alignment of similar properties

Observed Substitutions: considers substitution frequencies observed in alignments of
sequences. The substitution schemes are generally considered to be the best methods for
scoring alignments. These methods are based on an analysis of the frequency with which a
given amino acid is observed to be replaced by other amino acids among proteins for which

the sequences can be aligned.

PAM Matrices

One of the first substitution scoring schemes to be developed was the Dayhoff
mutation data matrix. Dayhoff and co-workers developed this method during analysis of the
evolution of proteins. The mutation probability matrix that they derived gives the probability
of one amino acid mutating to a second amino acid within a particular evolutionary time.
The scoring schemes are denoted PAM (Percentage of Acceptable point Mutations)

followed by a number. For example, if alignments were scored using PAM40 and PAM250,
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the lower PAM matrix would recognize short alignments of highly similar sequences and the

higher PAM matrix would find longer, weaker local alignments

BLOSUM Matrices

The PAM substitution matrix is based on substitution frequencies from global
alignments of very similar sequences. Henikoff and Henikoff extended this approach by
developing substitution matrices using local multiple alignments of more distantly related
sequences. A database was assembled that contained multiple alignments (without gaps) of
short regions of related sequences. These sequences were clustered into groups (blocks)
based on their similarity at some threshold value of percentage identity. Blocks substitution
matrices (BLOSUM) were derived based on substitution frequencies for all pairs of amino
acids within a group. The different BLOSUM matrices were obtained by varying the
threshold. For example, a BLOSUMBS80 matrix is derived using a threshold of 80% identity.

Evaluating the Alignment

The final aspect of sequence alignment that should be considered is evaluation of the
accuracy of the alignment. The best way to assess the accuracy is to compare alignments
from sequence comparisons with alignments from protein three-dimensional structures. Of
course this assessment is possible only if you are working with a family of proteins for
which three-dimensional structures are known for at least two members of the family. In

fact, this approach to evaluation of alignments can be applied during the alignment process.

3) ldentification of Structurally Conserved and Structurally Variable
Regions

After the known structures are aligned, they are examined to identify the structurally
conserved regions (SCRs) from which an average structure, or framework, can be
constructed for these regions of the proteins. Variable regions (VRs), in which each of the
known structures may differ in conformation, also must be identified because special

techniques must be applied to model these regions of the unknown protein.
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When only one known structure is available for homology modeling, it is more
difficult to identify the SCRs. Based on analyses of other homologues for which multiple
structures are available; we know that the SCRs generally correspond to the elements of
secondary structure, such as alpha-helices and beta-sheets, and to ligand- and substrate-
binding sites. Thus, these regions are used as the SCRs in the cases where only one structure
is available. The VRs usually lie on the surface of the proteins and form the loops where the

main chain turns.

4) Generate coordinates for core (structurally conserved) residues of the

unknown structure from those of the known structure(s)

When generating coordinates for the unknown structure, one needs to model main
chain atoms and side chain atoms, both in SCRs and VRs.

For the SCRys, it is straightforward to generate the coordinates of the main chain
atoms of the unknown structure from those of the known structure(s). Side chain coordinates
are copied if the residue type in the unknown is identical or very similar to that in the known
homologues. For other side chain coordinates one can apply a side chain rotamer library in a
systematic approach to explore possible side chain conformations. It may be desirable to
weight the contribution of each homologue in each SCR based on the extent of similarity
with the unknown. In the event that some coordinates in the unknown are undefined in the
SCRs, regularization can be used to build and relax both main chain and side chain atoms in
those regions. Note that this procedure should be used only if the region of undefined atoms

is one or two residues in length.

5) Generate conformations for the loops (structurally variable) in the

unknown structure

For the VRs, a variety of approaches may be applied in assigning coordinates to the
unknown. These regions will correspond most often to the loops on the surface of the
protein. If a loop in one of the known structures is a good model for that of the unknown,
then the main chain coordinates of that known structure can be copied. Side chain
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coordinates of residues that are similar in length and character also may be copied. Rotamer
libraries can be used to define other side chain  coordinates.

When a good model for a loop cannot be found among the known structures, one can
search fragment databases for loops in other proteins that may provide a suitable model for
the unknown. A residue range is chosen to include the undefined loop as well as a few
residues (e.g., three) on either side of the loop for which coordinates have been defined.
Fragments are examined for their ability to fit in the undefined region without making bad
contacts with other atoms and to overlap well with the residues on either side of the loop.
The loop may then be subjected to conformational searching to identify low energy
conformers if desired. Coordinates for side chain atoms in these loop regions may be copied
if residues are similar, though it is likely that considerable application of side chain rotamer
libraries will be required to define coordinates in these regions.

6) Evaluation and Refinement of the Structure
For a homology model from any source, it is important to demonstrate that the

structural features of the model are reasonable in terms of what is know about protein
structures in general. That is, researchers have analyzed three-dimensional structures of
proteins from which basic principles of protein structure and folding have been developed.
Several programs are available to assist in this analysis of correctness of a homology model.
The criteria for analysis of correctness can include:

1) Main chain conformations in acceptable regions of the Ramachandran map.

2) Planar peptide bonds.

3) Side chain conformations that correspond to those in the rotamer library

4) Hydrogen-bonding of polar atoms if they are buried

5) Proper environments for hydrophobic and hydrophilic residues

6) No bad atom-atom contacts

7) No holes inside the structure.

Programs that provide structure analysis along with output includePROCHEK and 3D-
Profiler. PROCHECK is based on an analysis of (phi, psi) angles, peptide bond planarity,
bond lengths, bond angles, hydrogen-bond geometry, and side-chain conformations of

known protein structures as a function of atomic resolution. Thus, the expected values of
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these parameters are known and can be compared to a modeled structure based on the
atomic resolution of the structures from which the model was developed. 3D-profiler
compares a homology model to its sequence using a 3D profile. The profile is based on the
statistical preferences of each of the 20 amino acids for particular environments within the
protein. Each residue position in a 3D model can be characterized by its environment.
Preferred environments for amino acids are derived from known three-dimensional
structures and are defined by three parameters: (1) the area of each residue that is buried, (2)
the fraction of side-chain area that is covered by polar atoms (i.e., O and N), and (3) the
local secondary structure. Based on these environment variables, a 3D structure is converted
into a 1D profile that describes each residue in the folded protein structure. Examination of
these profiles reveals which regions of a sequence appear to be folded correctly and which
do not.

Once any irregularities have been resolved, the entire structure may then be subjected to
further refinement. This process may consist of energy minimization with restraints,
especially for the SCRs. The restraints then may be gradually removed for subsequent
minimizations. It also may be advantageous to apply molecular dynamics in conjunction
with energy minimization. For any of these refinement procedures, the structure should be
solvated, using for example crystallographic waters from the known homologues, a solvent

shell, or a periodic box of pre-equilibrated water molecules.

Databases of Structures from Homology Modeling

Databases are now available that contain large numbers of protein structures that
have been obtained by comparative (homology) modeling. Two of these databases are listed
here:

1) ModBase - It is a query able database of annotated protein structure models. The
models are derived by Modpipe,an automated modeling pipeline relying on the
programs PSI-BLAST and MODELLER.The database also includes fold
assignments and alignments on which the models were based. MODBASE
contains theoretically calculated models, which may contain significant errors,

not experimentally determined structures.
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2) 3DCrunch - It is a large scale modeling project that aims to submit all entries
from protein sequence databases to SWISS-MODEL. Currently the database
contains 64,000 entries.

Automated Web-Based Homology Modeling

Web-based tools are now available to generate models of protein 3-dimensional

structures using comparative modeling techniques.

1) SWISS-MODEL - It is a fully automated protein structure homology-modeling
server, accessible via the EXPASy web server, or from the program Deep View
(Swiss Pdb-Viewer). The purpose of this server is to make Protein Modeling
accessible to all biochemists and molecular biologists World Wide. The present
version of the server is 3.5 and is under constant improvement and debugging.
SWISS-MODEL was initiated in 1993 by Manuel Peitsch

2) WHAT IF - It is available on EMBL servers, includes three components, one to
generate the homology models, one to evaluate the quality of the homology
models, and one to evaluate models of proteins for which the structure is already

known, thereby providing for evaluation of the quality of the modeling program.

Source:-

1)
2)
3)
4)
5)

6)

7)

http://en.wikipedia.org/wiki/Homology_modeling
http://en.wikipedia.org/wiki/Protein_structure_prediction
http://cmbi.kun.nl/gvteach/hommod/index.shtml
http://bioinfo.se/kurser/swell/homology.html

Sali A, Blundell TL. (1993). Comparative protein modelling by satisfaction of spatial
restraints. J Mol Biol 234(3):779-815

Fiser A, Sali A. (2003). ModLoop: automated modeling of loops in protein structures.
Bioinformatics 19(18):2500-2510

John B, Sali A. (2003). Comparative protein structure modeling by iterative alignment,
model building and model assessment. Nucleic Acids Res 31(14):3982-3992
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Molecular Docking
Sunil Kumar

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Objective:
To find the interaction between the protein and a ligand molecule by performing docking studies.

Theory

A molecule is a small chemical element that is made up of two or more atoms held together by
chemical bonds. A molecule can be composed of either single kind of element (e.g. Hz) or different
kinds of elements (e.g. CO2). Molecules can be found in both living things and non living things.
A drug is a small molecule that can interact, bind and control the function of biological receptors
that helps to cure a disease. Receptors are proteins that interact with other biological molecules to
maintain various cellular functions in plants. Enzymes, hormone receptors, cell signaling
receptors, neurotransmitter receptors etc. are some important receptors in plants.

Drug designing is a process of designing a drug molecule that can interact and bind to a target.
Receptors are molecules which can be seen on the surface of the cell which receives signals and
can be defined as a molecule which recognizes a small molecule, which on binding triggers a
cellular process. In an unbounded state receptor, functionalities of the receptor remain silent.
Hence this definition says that receptor binds specifically to a particular ligand or vice versa, but
in some cases high concentrations of ligands will binds to a multiple receptor sites.

Drug receptors usually remain without endogenous ligand. The receptors for these drugs molecules
can be an enzyme, an ion channels, proteins, nucleic acids etc. Hence the drug molecule will go
and cross link the DNA and stops DNA replication. Receptors for endogenous regulatory ligands
are hormones, growth factors etc. Hence the function of these receptors is to sense the ligands and
to initiate the response. For example, Aspirin is a small pain killer drug molecule which contains
nine carbon atoms, eight hydrogen atoms and four oxygen atoms. Design of the molecules should
be complementary in shape and charge to the target.

Molecular modeling includes computational techniques that are used to model a molecule. Drug
designing by using these modeling techniques is referred to as computer-aided drug design.
Computer based drug design is a fast, automatic, very low cost process. It can be done either by
Ligand based drug design or Structure based drug design. Ligand based drug design purely based
on the model which is going to bind to the target, defining of pharmacophoric regions are necessary
for the molecule in order to bind the target but Structure based drug design is based on the 3
dimensional structure of the target. If any target is not available it can be created by using
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homology modeling. Using the structure of the target predict the drug molecules binding affinity
to the target. Building a molecule using computer techniques is a very important step in drug
deigning. There are so many computational tools available for building a molecule.

After modeling a molecule, check where the ligand get docked onto the receptor, and check
whether the ligand fits for the target molecule and go for Docking studies.

Protein ligand interaction:

Proteins are the fundamental units of all living cells and play a vital role in various cellular
functions. Each protein has specific function in plants. The structure of the protein determines its
function. The binding of a protein with other molecules is very specific to carry out its function
properly. For this reason every protein has a particular structure. A molecule is a small chemical
element that is made up of two or more atoms held together by chemical bonds. A drug is a small
molecule that can interact, bind and control the function of biological receptors that helps to cure
a disease.

Protein—ligand interactions are essential for all processes happening in living organisms. Ligand-
mediated signal transmission through molecular complementary is essential to all life processes;
these chemical interactions comprises biological recognition at molecular level. The evolution of
the protein functions depends on the development of specific sites which are designed to bind
ligand molecules. Ligand binding capacity is important for the regulation of biological functions.
Protein-Ligand interactions occur through the molecular mechanics involving the conformational
changes among low affinity and high affinity states. Ligand binding interactions changes the
protein state and protein function.

Key concepts of protein ligand interaction:
1. Every biological reaction is initiated by protein-ligand interaction step. Such reactions
never involve in the binding of single ligand or single step.
Binding of two or more ligands to a same protein indicates mutual interaction.
Ligand binding plays an important role in regulation of biological function.
Ligand binding may leads to the conformational changes in proteins.
Ligand and macromolecule interaction provides the strength of the interaction.

ok~ wn

What is Docking?

Docking is a method which predicts the preferred orientation of one molecule to another molecule
when they are bound together to form a stable complex. Molecular docking can be referred as
“lock and key” model. Here the protein can be called as a lock and the ligand can be called as key,
which describes the best fit orientation of the ligand which it goes and binds to a particular protein.
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To perform a docking, first one may require a protein molecule. The protein structures and ligands
are the inputs for the docking.

Target Ligand Complex

docking

\ 4

docking

v

Figurel: Example of Docking
Docking can be based on two separate platforms.

1. Search algorithm

Search algorithm creates an optimum number of configurations that includes the binding modes
which are determined experimentally. Configurations are evaluated using scoring functions to
differentiate the binding modes from the other modes.

The common search algorithms are:
Monte Carlo methods

Genetic algorithms
Fragment-based methods
Point complimentary methods
Tabu searches

Systematic searches
Molecular dynamics.

No akrowbdPRE
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2. Scoring function:

Scoring functions are developed to find the interactions between the protein- protein interactions
and protein-DNA interactions. Scoring methods are the mathematical methods used to predict the
strength of interaction between two molecules.

Steps for Docking:

1. Preparation of the Protein molecule :
Download the protein structure to the working directory. Remove the water molecules and
add hydrogens to the molecule to satisfy the valances of the molecule. X-ray
crystallographic structures cannot resolove the hydrogen, so in most of the PDB structures
hydrogens are absent. Remove the disulphide and trisulphide bonds of a protein using
AutoDock. After the preparation of the molecules, molecules has to be minimized.

2. Preparation of ligand molecules :
Prepare a ligand molecule which is going to bind to the target add hydrogen atoms to the
molecule and filter the unwanted molecules based on their properties like water and small
ions. If the stereoisomers are missing from the Molecule it requires adding stereo chemical
information. Optimize the geometry of the molecule. Take the molecule for docking
studies.

3. Surface representation:
Take a receptor and ligand molecule for studies, receptor as a static and ligand molecule as
flexible. Find the Surface of the molecules by using geometric features of the molecules.
Grid points are used to find the surface area.

4. Feature calculation
Features are the methods which are used to find the potential docking sites that are derived
from surface representation.

5. Docking
It is important to find the cavities on the surface of the receptor in protein Ligand
interaction.

6. Evaluation of Docking result:

Dock the each individual parts, docking of each segments gives the total score.

Types of Docking:

302



Rigid Docking: In a rigid molecular docking the molecules are referred as rigid objects they cannot
change their shape during the docking

Flexible Docking: In a flexible docking the molecules are referred as flexible objects that they can
change their shapes according to the ligand and the target during docking process.

AutoDock:

AutoDock is a docking tool, which is designed to predict the behavior of the small molecules and
helps user to perform the docking of ligands to a set of grids which describes the target, once
docking completes result can visualize in 3D view. AutoDock 4 is freely available under the GNU
General Public License. AutoDock uses a Monte Carlo simulation with a rapid energy evaluation
using grid based molecular affinity potentials. It is given a volume around the protein, the rotatable
bonds for the substrate, and an arbitrary starting configuration, and the procedure produces a
relatively unbiased docking.

Different applications of AutoDock:
1. Structure based drug design.

X-ray crystallography

Lead optimization

Combinatorial library design

Protein-Protein docking.

Chemical mechanism studies.

ok wn

Home page of AutoDock:
ElE Ry S =0T T

ADT4 2 Ligand  Flexible Residues Grid Docking Run Analyze
r
<4

DashBoard | AniMol | Tools

Sel.: x|lemp x|

=

RS Zz  [SEBSEMSLE

¥ All Molecules S s e s
Current Selection b v

|Mud,:|Nune Time: (0687  Selected: [N Yone 100% Spinoff —i | FR:[ 213 [@@ |
N, @ LG el ] 7 RT3

Procedure
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Here one can perform rigid docking where the protein and the ligand molecule are non flexible.
Here phosphatidyl-inositol-3-kinases (PDB ID -1E7U) is used as an example for receptor and its
ligand KWT. Autodock Tools can be used to prepare PDBQT molecules of the receptor and ligand
with PDBQT format, in which PDB format contains partial charges (“Q”’) and atom types (“T”).

1. Open the Autodock software by clicking on Autodock icon from your desktop. (Figure 1).

[T a— & — DR T Mg T I g —wpe

AaEde FCR Iy ENmA SR

.

S Ui Phetie Sesdves  G6d  Docss
<

R e

LAz L1y
W 28 Moecuk SRR T
ST

Figure 1: AutoDock GUI
2. Read the downloaded PDB molecule 1E7U in the work space panel by clicking on the tab
“File* and then select “Read molecules” as shown in Figure 2.

74 AutoDockTools -

[ File 3D Graphics Edit Select Display c

[ | Read Molecule | L"_ \‘v@ —
= Read Session » »'—'A =
10 e » pidues  Grid _ Dockin
Recent Files > ‘ ~
Save g |
Order Physical Models —— -1
wllcmD v |
Browse Commands L BCRMSL Ci
Load Macros = =
o e B 3 = VAV
Preferences > BB BTV
server 4
Exit

Figure 2: To read a molecule
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Figure 3: 1E7U

3. PDB files can have errors such as missing atoms, chain breaks, water molecules etc. which is

needed to be corrected. Select all water molecules which obstruct the accuracy of docking
procedure.

4. Click on the “Edit” tab and select “Delete Water” to delete the water molecules from the receptor
molecule as shown in Figure 4.

72 rrevoateos T

| File 3D Graphics Edit Select Display

PEe 4 o [=]
=T Bonds -
iAC)TJZ‘ Ligand Flex Delete > I Docki

Atoms > } S
DashBoard | AniMol | T IEEES S |
| - Charges > ;I_ |
_SEI Hydrogens » O ¥
h%-‘ ék* Z z Misc » L El
¥ All Molecules Color Palettes » §7 <7
Current Selection Torsion Angles » & W7
» 17U TOSTTOUTYV V

Figure 4: Deleting water molecule
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5. For adding Hydrogens to satisfy valency, Click on the “Edit” tab and select “Hydrogen” and
then select “Add” option as shown in Figure 5.

i oo T TS

|Fi|e 3D Graphics Edit Select Display Color Compute Hydrogen

AEc$ .  [Emese

l___ S Bonds ’

ADT4 2 "Ligand _ FleX  pejete > |
Atoms 4

DashBoard] AniMolI T¢ Delete Water

Sl Charges >
| | Hydrogens ettt
ogens

I

R Z7  Misc » I

@ All Molecules Color Palettes »|  Merge Non-Polar

Current Selection | Torsion Angles »|  Fix Pdb Names

# TOWOSTOT Edit Histidine Hydrogens
¥1ETU

Figure 5: Adding Hydrogen to the receptor

6. Now select “Polar Only” -> “noBondOrder”->"Yes” respectively and then click on the “Ok”
option as shown in Figure 6.

" All Hydrogens

& Polar Only

Method

' noBondOrder (for pdb files...)

" withBondOrder (if you trust the bond order info)

Renumber atoms to include new hydrogens

* yes

" no

Cancel

Figure 6: Adding Hydrogen
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7. Click on the “Grid” option and select “Macromolecules” and select Choose option for
selecting the molecule as shown in Figure 7 and 8.

% AutoDockTools :‘ -

File 3D Graphics Edit Select Display Color Compute Hydrogen Bonds

AEA LN E |'}0|a:€'ﬁ|

.ADN 2 Ligand Flexible Residues Gnd  Docki Run

OashBoard‘ AniMoll Tools ‘ Open GPF...
Al Set Map Types * Open :
X P72 SLBC  GidBox.
¥ All Molecules %% %%  OtherOptions.. »
Current Selection % %% Output v
P ¥iEN O®CO  Edit GPF
P

>
74 Choose Macromolec...

select a molecule

Ev &

< -l

Select Molecule I

Dismiss

S

Figure 7 and 8: Selecting the receptor molecule for applying grid

307



8. By clicking on the respective molecule will display the details of non bonded atoms, non polar
hydrogen atoms and non integral charge on the molecule. After that save the molecule in
PDBQT format.(Figure 9)

T Samelnh Tty

HEde LTS al—

[0 tgend  Fictie Sewtves  God Dol

(
v A R s
S
v >
. -

9. To set grid parameters, go to “Grid” -> “Grid Box” as shown in Figure 10. A “Grid Option”
message appears which helps the user to change the grid point per map in all positions. It sets
the 3D space for better binding conformation as shown in the figure. The maximum value that
can be given by the Autogrid is 126.

7% Grid Options Sy
I File Center View Help [
£ Current Total Grid Pts per map: 16675
2 number of points in x-dimension:
B 22 T
Z number of points in y-dimension:
o 17T 24 T
:' number of points in z-dimension:
Spacing (angstrom): W11 1-000 TN |
Center Grid Box: <offset>
y center: [905 W7

Figure 10: Grid Option box
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Fie Certet View Mol
4 ] Current Total Grid Pts per map: 16675

number of points in x-dimension
I 122 3
number of points in y-dimension
NI4T
number of points in z-dimension:

UICE
offset>

e, »

Figure 11: Assigning 3D space for better binding conformation

10. Next step is to prepare the ligand molecule for docking. Open the ligand miolecule by clicking
on the “Ligand” option and select “Input” and click on “Open”.
molecule and open it in the work space panel as shown in Figure 12.

Select the downloaded

Figure 12: Reading ligand molecule
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Figure 13: KWT opened in work space panel

11. The receptor molecule and ligand molecule can be viewed separately by clicking on dashboard
which is displayed on the left side of the work space panel. By selecting the required molecule
will display it in work space panel. The other options will enable us to view in other formats
too as shown in Figure 14.

74 raobeciioo: T

File 3D Graphics Edit Select Disp!ay Color Compute Hy

Ee £S5 Q= i

ADT4 2 Ligand Flexible Residues Grid  Dockin

|
=
1/
I

Run  Analyze

DashBoard } AniMol | Tools ;

Sel - | v|lcvD |
=9 §|“|ZZ §L$.CBI»1SFEJ
¥ All Molecules NN NN VYV
Current Selection PPN VYV
P ¥ie7U OQQOOOVY
— S kwWT——————— O O-O-O-OSASA |

ldlsplay/undlsplay lines for KWT

Figure 14: Dashboard with other options
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12. To choose Torsions, click on the “ligand * -> “Torsion Tree” ->”Choose Torsions” which will
display the number of rotatable bonds. The rotatable bonds is displayed in green color, non-
rotatable bonds in magenta color and unrotatable bonds in red color. To make a non - rotatable
bond to rotatable, click on the bond itself as shown in Figure 15.

74 AutoDockTools

|File 3D Graphics

Edit Select Display Color Comput

FaEe £¢ 31

'ADH 2 Ligand Flexible Residues Grd  Docki

el

Run

DashBo:__Input

R_ Output

Sel.: I— Aromatic Carbons "

G

&

Choose Root.
> Detect Root...

. I

¥ All Molecules
Current Selection
P Frwr

0 % Show Root Expansion
Show/Hide Root Marker

%
P Choose Torsions._____|

Set Number of Torsions...

Figure 15: Selecting torsions to view rotatable bonds

13. The output can be saved inPDBQT format. For that click on the “Ligand” -> “Output” ->”Save
as PDBQT”, so that it can be saved along with the receptor molecule in the same folder itself as

shown in Figure 16.

74 AutoDockTools

lFile 3D Graphics Edit Select Display Color Compute Hyd

PECEL NS

Input
Torsion Tree

DashBo:

IADTA 2 Ligand Flexible Residues  Grid

Sel.: |_ Aromatic Carbons *

¥ All Molecules
Current Selection
P rwr

===
= . a
Dockin Run  Analyze
&5
»
» —
v|lcmD v|

TR SaveasPOBAT. |

) Randomize then Save as PDBQT
OeOCOO0OVV

Figure 16: Output saved as PDBQT format

311



14. For running the Vina program, command prompt is used, “vina help” prints the different
options necessary for running the program. It includes commands for receptor, ligand and so
on. The configuration file is wriiten in a text document with the following format as shown in
Figure 17.

conf - Notepad Ll oS i S

" File Edit Format View Help
receptor = 1E7U.pdbqt ~ |
ligand = KWT.pdbqt

log = all.pdbqt
center_x = 11
center_y = 90.
center_z =57

size_x = 22
size v = 24
size_z = 28

out = KWTout.pdbqgt

Figure 17: Configuartion file saved as a text document

15. For running Autodock Vina, vina.exe --config conf.txt --log log.txt can be used as the
script as shown in figure 14, which will create an outout file of the ligand and a log file along
with other files. (Figure 18)

m CAWiIndows\systerm3Zhvomd.exe - -

-‘I.nrl:!:l.nq\flnr_ Scripps Research InstitutesUima?> wina.exe ——config
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23
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"
]
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H
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3
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Figure 18: Output in Command prompt
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Molecular Dynamics and Simulation
Sneha Murmu, U. B. Angadi and Sudhir Srivastava
ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Introduction

Molecular dynamics (MD) simulation is a computational technique used to study the behavior
of atoms and molecules over time. It is based on the laws of classical mechanics, which describe
how particles move and interact with each other under the influence of forces. In an MD
simulation, the positions, velocities, and accelerations of the atoms or molecules are calculated

at each time step, and the system is evolved forward in time.

The basic principle of MD simulation is based on the integration of Newton's second law of
motion, which states that the force acting on an object is proportional to its mass times its
acceleration. In MD, the forces acting on each atom or particle are calculated using a force
field, which describes the interactions between the atoms or particles in the system. The force
field is typically based on empirical or theoretical models, which consider the van der Waals
forces, electrostatic interactions, and bonded interactions such as covalent bonds, hydrogen
bonds, and torsional angles. The motion of the atoms or particles is then simulated using
numerical integration of Newton's equations of motion. This process involves calculating the
position and velocity of each atom or particle at each time step, based on the forces acting on
it, and then updating the forces based on the new positions and velocities.

MD simulations can provide detailed information on the structure, dynamics, and
thermodynamics of a system. They can be used to study the behavior of molecules, proteins,
and materials in different environments, such as solvents, membranes, or under mechanical
stress. MD simulations can also be used to predict the behavior of systems under different

conditions or to explore the effects of mutations or drug interactions on protein structures.

Force Fields

Force fields are critical components of molecular dynamics (MD) simulations. They provide a
mathematical description of the interatomic or intermolecular forces that govern the behavior
of the simulated system. Force fields specify the potential energy and its corresponding force

as a function of the coordinates of the atoms or molecules, which is used to calculate the motion
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of the system over time. They are mathematical models that include parameters for the bond
stretching, bond bending, torsion, and non-bonded interactions between atoms (Figure 1). The

accuracy of the force field determines the accuracy of the MD simulations.

There are two primary types of force fields used in molecular dynamics simulations: classical
and quantum mechanical. Classical force fields are most commonly used in biomolecular
simulations and are based on a set of mathematical functions and empirical parameters to
describe the interactions between atoms. These force fields are computationally efficient and
can simulate systems up to millions of atoms. Quantum mechanical force fields, on the other
hand, consider the electronic structure of atoms and molecules and are computationally more

intensive but can provide higher accuracy in describing the system.

A functional form for a force field (also called Potential Energy Function) that can be used to model

single molecule or assemblies of atoms and / or molecules is as shown below:
Ny _ ki 2 ki 2 Vn
Yt = Zbonds? (i = L) + Zangles; (0; —0i0)" + Ztorsions? 1+ cos(nw —y)) +
ZN ZN 4 9ij 12 (% ° + _q4j Equation 1
i=1Zj=i+1\| *&ij i) - pre ... Equation

Y(r") denotes the potential energy, which is a function of the positions (r) of N particles (usually

atoms).

The first term in the Equation 1 models the interaction between pairs of bonded atoms, here modelled
by a harmonic potential that gives the increase in energy as the bond length I; deviates from the reference
value l;o. The second component is a summation over all valence angles in the molecule, modelled using
a harmonic potential. A valence bond angle is the angle formed between three atoms A-B-C in which
A and C are both bonded to B. The third component is a torsional potential that models how the energy
changes as a bond rotates. The fourth component is the non-bonded term. It is calculated between all
pairs of atoms (i and j) that are in different molecules or that are the same molecule but separated by at
least three bonds (1, n relationship where n>4). In a simple force field, the non-bonded term is modelled
using a Coulomb potential term for electrostatic interactions and a Lennard-Jones potential for van der

Waals interactions.

The first three are the components of covalent (or bonded) contribution and the last one is the component

of non-covalent (or non-bonded) contribution.
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A simple form of the above equation:

A potential function or force field calculates the molecular system's potential energy (E) in a given

conformation as a sum of individual energy terms,
E = Ecovatent + Enon-covalent ces Equation 2

Where, ECovaIent = Ebond + Eangle + Edihedral

ENon-covaIent = Eelectrostatic + Evan der Waals

O O

Bond stretching

Angle bending Bond rotation

(torsion)
o+
o-
\ \
7
\ 7 \ Ve 7
\ P 4 \ 7’
\ 7 \ 7 7
\ 4 \ ’
o+
Non-bonded interactions Non-bonded interactions
(electrostatic) (van der Waals)

Figure 1: Schematic representation of bonded (upper row) and non-bonded (lower row) components

contributing to a molecular mechanics force field.

There are several different force fields that have been developed over the years, each with its own

strengths and limitations. Here are some examples:

CHARMM (Brooks et al., 2009): The Chemistry at Harvard Macromolecular Mechanics (CHARMM)
force field is widely used for biomolecular simulations. It includes parameters for all of the major types
of interactions, including covalent bonds, angles, dihedrals, van der Waals forces, and electrostatics. It

is known for its accuracy in reproducing protein structures and dynamics.
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AMBER (Case et al., 2010): The Assisted Model Building with Energy Refinement (AMBER) force
field is also widely used in biomolecular simulations. It includes parameters for bond stretching, bond
bending, torsion, and non-bonded interactions, and is known for its accuracy in reproducing

experimental structures and dynamics.

OPLS (Damm et al., 1997): The Optimized Potentials for Liquid Simulations (OPLS) force field was
originally developed for liquid simulations, but has also been used in biomolecular simulations. It
includes parameters for bond stretching, bond bending, torsion, and non-bonded interactions, and is
known for its accuracy in reproducing thermodynamic properties of liquids.

GROMOS (Scott et al., 1999): The Groningen Molecular Simulation (GROMOS) force field is widely
used in simulations of small molecules and peptides. It includes parameters for bond stretching, bond
bending, torsion, and non-bonded interactions, and is known for its accuracy in reproducing

thermodynamic properties of small molecules.

Conclusion

In summary, the principle of molecular dynamics simulation is based on the integration of
classical mechanics, which involves calculating the positions, velocities, and forces of all atoms
or particles in a system as a function of time. MD simulations can provide detailed information
on the structure, dynamics, and thermodynamics of a system and can be used to study a wide

range of molecular and material systems.
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The purpose of this hands-on is to provide an introduction to the fundamental commands
needed to set up, run, and analyze MD simulations using a suitable simulation tool. GROMACS
which is one of the most popular Molecular Dynamics (MD) simulation software, will be used
for the practical session. Before starting with the steps of typical MD simulation, let us have a
quick look on how to install GROMACS in linux (here, Ubuntu).

Installation
To install GROMACS, we need the following software installed on our system:

I. C & C++ Compiler which comes built-in with Ubuntu.

ii.  CMake — A linux software to make binaries
iii.  BuildEssential — It is a reference for all the packages needed to compile a package.
iv.  FFTW Library: a library used by Gromacs to compute discrete Fourier transform
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v.  DeRegressionTest Package
Following are commands to install above mentioned pre-requisites:
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install cmake
sudo apt-get install build-essential
waget http://gerrit.gromacs.org/download/regressiontests-5.1.1.tar.gz
tar xvzf regressiontests-5.1.1.tar.gz
sudo apt-get install libfftw3-dev
waget ftp://ftp.gromacs.org/pub/gromacs/gromacs-5.1.1.tar.gz
tar xvzf gromacs-5.1.1.tar.gz

cd gromacs-5.1.1/

mkdir build

cd build

sudo cmake . -DGMX_BUILD_OWN_FFTW=OFF -
DREGRESSIONTEST_DOWNLOAD=0FF -DCMAKE_C_COMPILER=gcc -

DREGRESSIONTEST_DOWNLOAD=0ON
make

make check

sudo make install

source /usr/local/gromacs/bin/GMXRC

If the execution of above commands was successful, the installation is complete. You may
check the version of your Gromacs with a command to make sure the installation finished as

expected.
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gmx pdb2gmx --versionource /usr/local/gromacs/bin/GMXRC
MD Simulation protocol
Following steps are involved in simulating a protein structure.

= Create initial state
i.  Generate topology of protein
ii.  Add box and solvation to the system

iii.  Add ions to the solved system

= Introduction to the interaction potentials

iv.  Energy minimization

= Predict how the particles move
v.  Equilibration of system

vi.  MD Production run

Now, we will see how to perform each step in more details. For the purpose of demonstrating
simulation of protein, a small protein structure of ubiquitin (PDB code 1UBQ) was downloaded
from RCSB PDB.

1. Generate topology
The obtained protein structure must be checked for the following things:

= Remove the water molecules if present

= Non-standard residues like heteroatoms must be removed

= Residues with missing atoms must be fixed beforehand

If water molecules are present, we can simply use the grep command to search for “HOH” in
the PDB file and then remove them. The following command can be used for removing water

molecules:
grep -v HOH 1UBQ.pdb > 1UBQ_clean.pdb

The next step is to use the pdb2gmx module of GROMACS. The pdb2gmx module generates

three files:

O The topology for the molecule.
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O A position restraint file.
O A post-processed structure file.

The topology (topol.top by default) contains all the information necessary to define the
molecule within a simulation. This information includes nonbonded parameters as well as

bonded parameters. The following command was used to execute pdb2gmx:
gmx pdb2gmx -f 1UBQ_clean.pdb -0 1UBQ_processed.gro -water spce

The structure is processed by pdb2gmx, and we are prompted to choose a force field. We will

use the all-atom OPLS force field, so ‘15’ was typed at the command prompt
The force field will contain the information that will be written to the topology.
2. Solvation

To simulate proteins and other molecules we need to define the box dimensions around the

protein and fill in the box with solvent. The box was defined using the following command:
gmx editconf -f LTUBQ _processed.gro -o 1UBQ_newbox.gro -c -d 1.0 -bt cubic

-C : centers the protein in the box

-d 1.0 : places the protein at least 1.0 nm from the box edge

-bt cubic : The box type is defined as a cube

Specifying a solute-box distance of 1.0 nm will mean that there are at least 2.0 nm between any
two periodic images of a protein. This distance will be sufficient for just about any cut off

scheme commonly used in simulations.
The box is filled with solvent (water) by using the command below:
gmx solvate -cp 1UBQ_newbox.gro -cs spc216.gro -0 1UBQ_solv.gro -p topol.top

-cp : this parameter takes as input the configuration of the protein which is contained in the

output file obtained from the previous step

-cs : configuration of the solvent is part of the standard GROMACS installation. We are using

spc216.gro, which is a generic equilibrated 3-point solvent model.
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3. Adding lons

Neutralizing a system is a practice carried out for obtaining correct electrostatic values during
the simulation. This is done because under periodic boundary and using PME electrostatics -
the system has to be neutral. Therefore, we are adding ions to neutralization purpose only. The
tool for adding ions within GROMACS is called genion which reads through the topology and
replace water molecules with the ions that the user specifies. The input is called a run input
file, which has an extension of. tpr. The .tpr file contains all the parameters for all of the atoms
in the system.ed by the GROMACS grompp module (GROMACS pre-processor).

Assemble .tpr file with the following command:
gmx grompp -f ions.mdp -¢ 1UBQ_solv.gro -p topol.top -0 ions.tpr

Now we have an atomic-level description of our system in the binary file ions.tpr. We will pass

this file to genion:

gmx genion -s ions.tpr -0 1UBQ _solv_ions.gro -p topol.top -pname NA -nname CL -neutral
-s . input file given as structure/state file (.tpr file)

-pname and -nname : define the positive and negative ion names

-neutral : add only the ions necessary to neutralize the net charge on the protein by adding the
correct number of negative ions (in this case will add 8 Cl- ions to offset the +8 charge on the

protein)
4. Energy minimization (EM)
EM is done to ensure there that the system has no steric clashes or inappropriate geometry.

First, we need to assemble structure, topology, and simulation parameters into a binary input
file (.tpr file):

gmx grompp -f minim.mdp -¢ 1UBQ_solv_ions.gro -p topol.top -0 em.tpr

Here, minim.mdp is the file containing information regarding molecular dynamics parameter.
It is not inherently present in the GROMACS distribution; hence it needs to be created before

the execution of above command. An mdp file contain following parameters,
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; minim.mdp - used as input into grompp to generate em.tpr

; Parameters describing what to do, when to stop and what to save

integrator = steep ; Algorithm (steep = steepest descent minimization)

emtol =1000.0 ; Stop minimization when the maximum force < 1000.0 kJ/mol/nm
emstep =0.01 ; Minimization step size

nsteps  =50000 ; Maximum number of (minimization) steps to perform

; Parameters describing how to find the neighbors of each atom and how to calculate
the interactions
nstlist =1 ; Frequency to update the neighbor list and long range forces

cutoff-scheme = Verlet ; Buffered neighbor searching

ns_type =grid ; Method to determine neighbor list (simple, grid)
coulombtype =PME ; Treatment of long range electrostatic interactions
rcoulomb =10 ; Short-range electrostatic cut-off

rvdw =10 ; Short-range Van der Waals cut-off

pbc =Xyz ; Periodic Boundary Conditions in all 3 dimensions

Next, we have to invoke mdrun to carry out the EM:
gmx mdrun -v -deffnm em

The output em.edr file contains all of the energy terms that GROMACS collects during EM.
We can analyze any .edr file using the GROMACS energy module:

gmx energy -f em.edr -0 potential.xvg

At the prompt, type "10 0" to select Potential (10); zero (0) terminates input. The average of
Epot is shown, and a file called "potential.xvg" is written. To plot this data, we need the

Xmgrace plotting tool.
5. Equilibration

Since the objective of MD simulation is to study the dynamics of a particular system, we have
to suit the in-silico environment of our simulation system as close as possible to the real system

(e.g. experimental job in wet laboratory). Therefore, in equilibration step we optimize the
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temperature to 300K since we assumed that we do the experimental job at room temperature,

and pressure value at 1 atm.

Equilibration will be carried out in two steps. First, an NVT (constant Number of atoms,
Volume, and Temperature) simulation will be performed in order to bring the system to the
target temperature. Second, an NPT (constant Number of atoms, Pressure, and Temperature)

simulation will be performed to allow the system to find the correct density.
5. a) Temperature Equilibration

We will call grompp and mdrun just as we did at the EM step and run the following two

commands:

gmx grompp -f nvt.mdp -c em.gro -r em.gro -p topol.top -o nvt.tpr

gmx mdrun -deffnm nvt

To analyze the temperature progression, using energy we use the command given below:
gmx energy -f nvt.edr -0 temperature.xvg

Type "16 0" at the prompt to select the temperature of the system and exit and the
temperature.xvg can be plotted by Xmgrace tool.

5. b) Pressure Equilibration

We had included the -t flag to include the checkpoint file from the NVT equilibration. This file
contains all the necessary state variables to continue our simulation. To conserve the velocities
produced during NVT, we must include this file. The coordinate file (nvt.gro) is the final output
of the NVT simulation.

gmx grompp -f npt.mdp -c nvt.gro -r nvt.gro -t nvt.cpt -p topol.top -0 npt.tpr
gmx mdrun -deffnm npt

To analyze the pressure progression, again by using energy:

gmx energy -f npt.edr -0 pressure.xvg

Type "18 0" at the prompt to select the pressure of the system and exit. ‘pressure.xvg’ file will

be created which can be plotted through Xmgrace.
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To take a look at density as well using energy, we need to enter "24 0" at the prompt while

running the following command:
gmx energy -f npt.edr -o density.xvg
6. Production MD

After running the two equilibration phases, the system is now well equilibrated at desired
temperature and pressure. To run the production MD, we will make use of the checkpoint file

to grompp and run a 1 ns MD simulation:

gmx grompp -f md.mdp -c npt.gro -t npt.cpt -p topol.top -omd_0_1.tpr
To execute mdrun:

gmx mdrun -deffrmmd_0 1

Analysis

GROMACS comes equipped with many analysis tools, a complete list of which can be found
in the manual. Here you will be exposed to a few useful analysis tools: 'rms’, 'rmsf', and 'gyrate.
But first, it is useful to learn how to process the trajectory file to only keep the components of
interest. Use trjconv, which is a post-processing tool to strip out coordinates, correct for
periodicity, or manually alter the trajectory (time units, frame frequency, etc). trjconv accounts

for any periodicity in the system.
gmx trjconv-smd_0 1.tpr -fmd_0_1.xtc-omd_0_1 noPBC.xtc -pbc mol —center

Select 1 ("Protein") as the group to be centered and 0 ("System™) for output. Downstream

analyses will be conducted on this "corrected™ trajectory.

For checking the structural stability GROMACS has a built-in utility for RMSD calculations
called rms. Root mean square deviation (RMSD) is used for measuring the difference between
the backbones of a protein from its initial structural conformation to its final position. The

command to plot rmsd graph is as follows:
gmxrms-smd_0 1.tpr-fmd_0_1 noPBC.xtc -o rmsd.xvg -tu ns

When prompted choose 4 ("Backbone™) for both the least-squares fit and the group for RMSD

calculation.
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The radius of gyration of a protein is a measure of its compactness. If a protein is stably folded,
it will likely maintain a relatively steady value of Rg. If a protein unfolds, its Rg will change

over time. The command to plot radius of gyration graph is as follows:
gmx gyrate -smd_0_1.tpr -fmd_0_1_noPBC.xtc -0 gyrate.xvg
When prompted choose group 1 (Protein) for analysis.

With this, we have now completed molecular dynamics simulation of a protein with
GROMACS, and analyzed some of the results.
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Online Resources of Proteomics Data
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1. Introduction

The field of proteomics is based on the systematic, large-scale characterization and analysis
of the complete set of proteins produced by a given cell, tissue or organism under a defined
set of conditions [1]. It covers the exploration of proteomes from the overall level of protein
composition, structure, and activity, and is an important component of functional genomics. It
was coined in 1994 by then Ph.D. student Marc Wilkins at Macquarie University.

After genomics and transcriptomics, proteomics is the next step in the study of biological
systems, but it is more complex than genomics because an organism's genome is more or less
constant, whereas proteomes differ from cell to cell and from time to time [2].

Proteins also are subjected to a wide variety of chemical modifications after translation. The
most common and widely studied post-translational modifications include phosphorylation
and glycosylation. Many of these post-translational modifications are critical to the protein's
function. In addition to phosphorylation and ubiquitination, proteins may be subjected to
methylation, acetylation, glycosylation, oxidation, and nitrosylation. Some proteins undergo
all these modifications, often in time-dependent combinations [3]. Proteomics generally
refers to the large-scale experimental analysis of proteins and proteomes, but often refers
specifically to protein purification and mass spectrometry.

2. Mass spectrometry data format

Mass spectrometry (MS) has recently emerged as a major discovery tool in the life sciences.
This analytical technique is used to analyze the molecular composition of a biological sample
by ionizing the sample or analyze molecules and then measuring the mass-to-charge ratios of
the resulting ions. The data from an MS experiment consist of mass spectra that are used to
identify, characterize, and quantify the abundance of the molecules of interest [4].

Many open, XML-based data formats have recently been developed by the Trans-Proteomic
Pipeline at the Institute for Systems Biology for global data exchange to facilitate integration
and comparison of data stored in various databases. These data formats are described here.

2.1 JCAMP-DX

This format was one of the earliest attempts to supply a standardized file format for in mass
spectrometry based data exchange. It was initially developed for infrared spectrometry. It is
an ASCII based format and therefore not very compact although it provides standards for file
compression [5].

2.2 mzData

mzData was the first attempt by the Proteomics Standards Initiative (PSI) from the Human
Proteome Organization (HUPO) to create a standardized format for Mass Spectrometry data,
primarily as a data exchange and archive format [6]. The mzData format is quite flexible as it
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uses  controlled vocabulary extensively. This controlled vocabulary could be frequently
updated to support new technologies, instruments, and methods of acquiring data while XML
schema remains stable.

2.3 mzXML

mzXML is a XML (eXtensible Markup Language) based common file format
for proteomics mass spectrometric data [7]. mzXML format was developed at the Institute
for Systems Biology (ISB), primarily in order to streamline data processing
software. mzXML have a very strict schema with most auxiliary information described in
enumerated attributes.

2.4 YAFMS

YAFMS (Yet Another Format for Mass Spectrometry) is light, serverless, relational database
format for proteomics data exchange purposes. Here file format is highly efficient in
processing time, as well as in storage space. YAFMS allows data extraction and updates by
writing simple SQL queries. Also, this format provides the flexibility to add tables that
contain, processed data, deconvolution results, or even images used in publications.[8].

2.5 mzML

Both mzData and mzXML data formats used to represent same information, therefore
HUPO-PSI, the SPC/ISB and instrument vendors made a joint effort to create a unified
standard called mzML. It includes the best aspects of both mzData and mzXML data
formats and replace these two formats. It was first published in 2008 [9].

7xml version="1.0" encoding="IS0-8859-1"?
<indexednzML xmins="http://psi.hupo.org hena revision/mzMl o0 X :xsis="heep: //www, w3, 0rg/2 17X hena-instance x31:schenal
<mzML xmlns="http://psi.hupo.ory hema_revision/mzML 1.0.0" xalns:xsis="http://www,u3.org/2001/ XMLSchena-instance”™ xsi:scheaalocati
<cvlist counts
cev 1da"M5" fullNames"Proteomics Standards Initiative Ma pectrometry Ont 5y" version="1.2. URI="http: //psidev,
Cev 1d="U fullName="Unit Ontology” version="unknown” URI="http: t T
</cvlist>

<fileDescription>
<fileContent>
<cvParam cvRef="} accession="N5:1 g name="N5n spectrun” value=""/>
</tileContent>
[seguent removed)
</ran>
</mzML>
<indexList counts
<index name="spectrum">
<offset idRef="519" nativelD="19">5630</offset>
<offset idRef= nativelDs= >8633</offset>
<offset idRef= 1" nativelD="21">12444</offset>
</index>
<index name="chromatogran">
<offset idRef="tic" nativelD="tic native”>12921</offset>
<offset idRef="si nativeID="sic native”>14398</offset>
</index>
</indexList>
<indexListOffset>15808</indexListOfLset>
<fileChecksum>4caccazs8c88lef6264adc30dlfcS5cq4887c20L3ec/f1leChecksund>
</indexedszML>

Figure 1. Example top and bottom of an mzML document with the middle segment removed for display
purposes. The main part of the mzML document is contained within the <mzML></mzML> tags. It is wrapped
within an <indexedmzML></indexedmzML> construct, which contains the random access index at the bottom.
(Source: Deutsch, 2010)

327



2.6 mzAPI

It is common API (application program interface) proposed by a group of scientists to shift
the burden of standards compliance to the instrument manufacturers' existing data access

libraries [10].
2.7 mzldentML

mzldentML is one of the standards developed by the Proteomics Informatics working group
of the PSI and the mzldentML 1.0 specification was published in August 2009. The
mzldentML format is XML-based, meaning the files are XML files but with additional
structure [11]. It is a data standard that contains the peptide/protein identification
information of a proteomics experiment, but not the quantification information.

Description of controfled
vocabulories used within the file .. MzldentML
Software packages used .. { cvlist
Biological samples analysed, : [ AnalysisSoftwarelList

annototed with CV terms

| AnalysisSampleCollection

Database entries of protein / peptide

sequences (plus associations between them) -------- [ SequenceCollection
and modificotions
Application of protocol AnalysisCollection " .
inputs = external spectra, , - -....._ | I AR T | J SpmMaﬂean
output = SpectrumldentificationList , 5 g AdditionalSearchParams
Application of protocol 4 (BRORGHR Il | | Modifcationparams
Inputs = SpectrumlidentificationList , , - /
output = ProteinDetectionlList, Enzymes
AnalysisProtocolCollection o RS
Fi
Parameters for the spectrum —_————————— I DatabaseFilters
identification procedure T l . | -
Parameters for the protein T O G Bl o All identifications made from
detection procedure ' ‘ nF IVU_:I_QG‘_Q‘ | | K Spectrum|dentificationList """ seorching one spectrum
SpectrumidentificationResult e pepUide-spectrum
. Spectrumidentificationitem .
DataCollection match
The databose ond spectro seorched . = N A set of reloted protein
and the input file converted to - I & RS 4] X ProteinDetectionList .- identifications e.g. conflicting
mzldentML [l | 15D ] ProteinAmbiguityGroup i peptide-protein assignments
ProteinDetectionHypothesis 2 . A single protein identification

Figure 2. Detailed structure of mzldentML file format (Source: Jones et al. 2012)

2.8 mzTab

mzTab is also XML-based one of the standards developed by the Proteomics Informatics
working group of the PSI [12]. mzTab files can contain protein, peptide, and small molecule
identifications together with experimental metadata and basic quantitative information.

2.9 imzML

The imzML standard is used to exchange data from mass spectrometry imagingin a
standardized XML file. It splits experimental data into XML and spectral data in a binary file.
Both files are linked by a universally unique identifier [13].

2.10 mzDB

mzDB consists of a standardized and portable server-less single-file database. It relies on the
SQLite software library. An optimized 3D indexing approach is adopted, where the LC-MS
coordinates (retention time and m/z), along with the precursor m/z for SWATH-MS data, are
used to query the database for data extraction. In comparison with XML formats, mzDB
saves storage space and improves access times. [14].
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2.11 HDF5

Hierarchical Data Format (HDF) is a set of file formats (HDF4, HDF5) to store and organize
large amounts of data ,developed at the National Center for Supercomputing Applications
[15]. The Hierarchical Data Format version 5 (HDF5), is an open source file format that
supports large, complex, heterogeneous data. HDF5 uses a file directory like structure that
allows you to organization of data within the file in many different structured ways.

2.12 Toffee

Toffee is an open file format for data-independent acquisition mass spectrometry. It
supports HDF5 [16].

2.13 mzMLDb

mzMLDb also uses HDF5 backend for raw data storage. It, however, preserves the mzML
XML data structure and stays compliant to the existing standard [17].

2.14 mz5

It is mzML based format, but uses HDF5 backend for reducing storage space requirements
and improved read/write speed [18].

3. Databases for raw data storage, data submission and analysis

Here, we are providing details of important web resources for MS-based proteomics:

Table 1: Various MS-based proteomics databases.

Database Name | Facilities Link
PRIDE Data storage and data submission | http://www.ebi.ac.uk/pride/archive
Data storage, data submission and | http://www.peptideatlas.org
PeptideAtlas i
data analysis
Human Data storage, data submission and | http://www.humanproteinpedia.org
Proteinpedia data analysis
ProteomicsDB Data submission and data analysis | https://www.proteomicsdb.org/
Access public datasets, reanalyze | https://massive.ucsd.edu
spectra, submit data, results
MassIVE

comparison and search

identifications

3.1 Human Proteinpedia

Human Proteinpedia is a resource to integrate, store, and share proteomic data [19]. It is a platform for
collecting human proteomic data using a distributed annotation system, which allows the research
community to contribute protein annotations. It also provides a panorama of the human proteome.
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3.2 Proteomics IDEntification (PRIDE) database

The PRoteomics IDEntifications (PRIDE) database (https://www.ebi.ac.uk/pride/) is the
world's largest data repository of mass spectrometry-based proteomics data. PRIDE is one of
the founding members of the global ProteomeXchange (PX) consortium and an ELIXIR core
data resource. It has played an important role in the nascent Human Proteome Project (HPP)
[20]. It provides a standardised way for submitting mass spectrometry based proteomics data
to public-domain repositories and provides access to published experimental data [21].

PRIDE resources
PRIDE Archive

User can search Original mass spec projects used by PRIDE Peptidome project in the PRIDE
Archive. The PRIDE PRoteomics IDEntifications (PRIDE) Archive database is a centralized,
standards compliant, public data repository for mass spectrometry proteomics data, including
protein and peptide identifications and the corresponding expression values, post-translational
modifications and supporting mass spectra evidence (both as raw data and peak list files).
Datasets are submitted to ProteomeXchange via PRIDE and are handled by expert bio-
curators. All PRIDE public datasets can also be searched in ProteomeCentral, the portal for
all ProteomeXchange datasets.

PRIDE Archive Spectra

PRIDE Spectra Archive provides direct access to the submitted mass spectra by either
selecting peptide or USI Universal Spectrum Identifiers. The USI is multi-part key identifier
for identifying mass spectra contained in public data repositories, primarily focused on
proteomics).

PRIDE Spectrum Libraries

These spectrum libraries are derived from the PRIDE Cluster results. They contain the
consensus spectra of all reliable clusters generated from the public experiments in PRIDE
Archive. Therefore, they also contain consensus spectra from labelled experiments as well as
a wider array of species. These spectral libaries can be read and processed by most spectral
libary search tools.

PRIDE TOOLS
PRIDE Submission Tool

PRIDE Submission Tool enables the user to submit proteomics datasets to PRIDE Archive.
[21]. Complete Process of Submission of dataset to PRIDE Archive explained in case study.

PRIDE Inspector Tool Suite

The PRIDE Inspector Toolsuite is the main tool used to review and download the proteomics
data from PRIDE Archive. The stand-alone tool provides different panels or view focuses on
a particular aspect of the data [22].
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Dataset search in PRIDE Archive

The search can support dataset identifiers ProteomeXchange dataset (PXD) identifiers or
PRIDE assay/experiment numbers, PubMed identifiers, sample details (e.g. organisms,
organism part, diseases), instruments, post-translational modifications and any word/phrase
included in the title or description of a given dataset.

cance

cancer

List of Datasets (2773) Orderby: = Sortby ~ | Page: | 20 fpage
Accession

EXDpRS620 e Y

Colon cance, cell line, overexpressed CCDC12 Relevance

Sy s Hor

Submission Date
ly discovered potential oncogene by our team, and it is proposed to observe the molecules that have interaction with CCDC12 by the technology ¢
(More) Publication Date

Figure 3. Search results using dataset identifiers, PubMed identifiers, or sample details (Source:
https://www.ebi.ac.uk/pride).

The search terms will be matched against the records in PRIDE Archive and a list of dataset
summaries, if any records match, will be shown as a result. A project summary includes the
following default information:

Project accession (dataset identifier)
Project Title

Project description (shortened)
Organism

Project publication date

RN -

Filtering Search Results

Through filtering we can ensure that some information will be present in our search results.
The available filters types are: Organism, Organism Part, Diseases, Modification, Instrument,
Experiment Type etc.

3.3 ProteomicsDB

ProteomicsDB is an in-memory database that was originally created to explore massive
amounts of quantitative human mass spectrometry-based proteomics data. ProteomicsDB
offers a wide range of data types and use cases across disciplines, including tandem mass
spectra, peptide identifications, and peptide proteotypicity values, which can be used as
starting points for developing focused mass spectrometry assays [23].

It allows the real-time exploration and retrieval of protein abundance values across different
tissues, cell lines, and body fluids via interactive expression heat maps and body maps.
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ProteomicsDB supports multiple use cases across different disciplines and covering a wide
range of data e.g. tandem mass spectra, peptide identifications etc. Both experimental and
reference spectra can be used for assay development and to validate the identification of so
far unobserved proteins [23].

ProteomicsDB Tools

Data upload: Users can temporarily upload their expression profiles and optionally normalize
them to the data stored in ProteomicsDB. Data stored in such sessions are available via
ODATA (https://www.odata.org) services within ProteomicsDB and will ultimately allow the
integration into any existing analytical pipeline. The first use case which can be highlighted is
the comparison of custom expression data to expression data stored in ProteomicsDB. For
this to be successful, the normalization features available upon upload. By uploading an
expression dataset, heat maps will be generated. The heat map allows interactive visualization
of expression patterns of multiple groups of proteins.

Searching Peptides/Proteins

User can enter peptide sequence or mass and will get a list of peptides containing the
sequence. Information such as unique identifier, protein name, protease mass, start position
and end position can be seen.

<« CG @ proteomicsdb.org/proteomicsdb/#peptideSearch a nw

TUTI S4B Proteomics DE powered by SAP HANA 130 | Terms ofUse | Impressumand Copyght | Contact

wome protens PEPTIDES cHRoMOSOMES ANALYTICS API PROJECTS FAQ ABOUTUS NEWS

Reference Pepide

Figure 4. Peptide details (Source: https://www.proteomicsdb.org).

Detailed information can be seen by clicking the protein from the list such as localization,
gene name organism name etc.

e g e e e e e e

VHeterogeneous nuclear ribonucleoprotein U (B3KX72)
Lo 4cc: tran.

o 5 - 245027244 reverse strand

RH RN
.

Ui

Figure 5. Protein summar} details (Source: https://www.proteomicsdb.org).
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Proteins can be searched by name to get the information about accession number, identifier,

woue PROTEINS rerrioes cHROMOSOMES ANALYNICS AP PROJECTS FAQ ABOUTUS NEWS

[ oot [ RS q,
PROTEIN LIST

er  Descripion Length  Evidence  Unique Pepides  Unique PMs  Shared PSMs  Sequence Coweeng . Projects  Ex

(AR B AR BN S A B B B R RE BN B )

description about protein, etc.

Figure 6. Protein details (Source: https://www.proteomicsdb.org).

3.4 MassIVE

MassIVE (Mass Spectrometry Interactive Virtual Environment) is a community resource
developed by the NIH-funded Center for Computational Mass Spectrometry which ease
exchange of mass spectrometry data. Various datasets present in the database can be
downloaded, submitted identifications can be searched and result comparison can be done
[24].

MassIVE Tools
Access Public Datasets

User can Browse publically available datasets or search by dataset metadata (e.g., species, Pl,
etc.). Datasets are available for download as well as for online browsing of submitted
identifications (for complete datasets). Dataset owners can also add missing/requested files,
update metadata and add publications to their datasets. Registered users can comment on
datasets so others in the community can see updates or find pointers to new analyses of the
data.

Submit Data

User can submit data to share with the community as a MassIVE dataset. Reviewer access
credentials and ProteomeXchange identifiers can be requested to meet publication guidelines
of proteomics datasets. Workflows are also available to convert raw files (mass spectrometry
data) to the open mzML format and toconvert from common tab-separated
formats (identifications data) into the open mzTab format.

Search ldentifications

All submitted identifications can be searched in complete datasets and dataset reanalyses.
Over 300 million peptide-spectrum matches submitted with at most 1% false discovery rate
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are accessible through this simple interface to search for peptides, proteins and post-
translational modifications.

Reanalyze Spectra

Online MassIVE workflows can be used to reanalyse public datasets for analysis of mass
spectrometry data: MSGF+ database search, MSPLIT spectral library search, MODa open
modification search, Maestro spectral networks search and MSPLIT-DIA for search of data-
independent acquisition (DIA) spectra.

Result Comparison

User can compare identification results between datasets or against any reanalyses of public
data. Venn diagrams are used to compare results at the level of protein, peptide and spectrum
identifications. Agreements, disagreements and unique identifications can be interactively
inspected for assessment of quality of identifications.

Share Reanalysis

User can share dataset reanalysis results with the community or reveal new identifications
with novel algorithms / analysis pipelines or challenge previously submitted identifications
with alternative interpretations for the same data.

Protein Explorer

Translated evidence and sequence coverage of nearly every human protein, can be explored,
as defined by systematic reanalysis of 31 terabytes of public data from >20,000 LC/MS runs
and including over 1 million synthetic peptide spectra. Interactive exploration of protein
evidence includes coverage maps, functional sites, and full provenance and dataset mapping
of every identified peptide.MassIVE Knowledge Base

Browse the community big data derived MassIVE Knowledge Base (MassIVE-KB) peptide
spectral libraries. Distilled from 31TB of human proteomics HCD data. Users can peak at the
inside of these libraries, browse the source data, and track full provenance of analysis tasks
that created these libraries.

MassIVE quant

MasslVEquant is an extension of the Mass Spectrometry Interactive Virtual Environment
(MassIVE) to provide the opportunity for large-scale deposition of data from quantitative
mass spectrometry-based proteomic experiments. MassIVEquant is compatible with all mass
spectrometry data acquisition types and all computational analysis tools. For each dataset,
MassIVEquant systematically stores the raw experimental data, the annotations of the
experimental design, the scripts (or descriptions) of every step of the quantitative analysis
workflow, and the intermediate input and output files. A branch structure enables
MassIVE.quant to store and view alternative reanalyses of the same dataset with various
combinations of methods and tools in a way which allows the user to inspect, reproduce or
modify any component of the workflow, beginning with well-defined intermediate files.
MasslVEquant supports infrastructure to fully automate analysis workflow, or to store, and to
browse the intermediate results.

CoronaMassKB

CoronaMassKB is an open-data community resource for sharing of mass spectrometry data
and (re)analysis results for all experiments pertinent to the global SARS-CoV-2 pandemic.
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CoronaMassKB is designed for the rapid exchange of data and results among the global
community of scientists working towards understanding the biology of SARS-CoV-
2/COVID19 and thus accelerating the emergence of effective responses to this global
pandemic.

3.5 PeptideAtlas

PeptideAtlas is a database that stores various formats of output files and metadata from MS-
based experiments , it also allows users to submit raw data. These raw data are periodically
analyzed for identification and statistical analysis purposes. The results are made available
back to the researchers by web-based presentation systems. PeptideAtlas can help plan
targeted proteomics experiments, improve genome annotation, and support data mining
projects [25]. PeptideAtlas is a multi-organism, publicly accessible compendium of peptides
identified in a large set of tandem mass spectrometry proteomics experiments [26]. Mass
spectrometer output files are collected for human, mouse, yeast, and several other organisms,
and searched using the latest search engines and protein sequences. All results of sequence
and spectral library searching are subsequently processed through the Trans Proteomic
Pipeline to derive a probability of correct identification for all results in a uniform manner to
insure a high quality database, along with false discovery rates at the whole atlas level.
Results may be queried and browsed at the PeptideAtlas web site. The raw data, search
results, and full builds can also be downloaded for other uses.

PeptideAtlas tools
PeptideAtlas Tiered Human Integrated Search Proteome (THISP)

There is an automated system that integrates all of the major sources of human protein
sequences into a collection of search databases in order to provide well-defined,
comprehensive, and often updated human proteomics MS/MS search databases. These
databases are tiered into several levels (given below) of complexity from which researchers
may choose depending on the goal of the experiment and the data processing resources
available [26]. On the first of every month, all protein lists are pulled down from their
original sources. If any of them have changed, they are integrated and released.

ProteoMapper Online

ProteoMapper is a software which efficiently maps observed sequences to all possible
variants. There are two components to ProteoMapper: an indexer, and a mapper. A protein
sequence database in either FASTA or PEFF format must first be indexed by the indexer.
Once the index is built, the mapper can quickly and efficiently map all locations of the input
peptide sequence(s) to the proteome. Multiple parallel indices are supported, and input can be
in the form of a pepXML file, a simple text file with peptide sequences, or a single sequence
via the command-line. There are also options to map using wildcards as well as fuzzy
mapping (where one or more amino acids and their positions within the peptide sequence are
unknown). User can enter a peptide sequence or list of sequences (maximum upto 5000
sequences) and can select one of the database (All human Peptide Atlas, Yeast, C. elegans
and Mouse database) [26].
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Here, in example below we have taken a peptide sequence i.e.
STHTGSSCIGTDPNRNFDAGWCEIGASR and searched against All human Peptide Atlas
database and found two proteins (NX_P15086-1 and NP_001862.2 ) along with their

positions.
ProteoMapper Online

Enter a peptide sequence or list of sequences to find out where they map to in PeptideAtlas. Click here to auto-paste a demo sequence
More information (including tutorials) on ProteoMapper

Input: single peptide or a peptide list (max 5000 sequences)

Database \AII Human PeptideAtlas v
Peptide Sequence ‘ STHTGSSCIGTDPNRNFDAGWCEIGASR
Fuzzy mapping settings
Number of unknown amino acids

Match mass tolerance D Da

| Search! | Clear All

slumn Descriptions A

Mapping Results :: 2 total results found Download (xls)
Show All Redundant Mappings
Peptide Sequence Protein(s) Position Original Sequence nSubs % original seq
STHTGSSCLGTDPNRNFDAGWCELGASR * > NX_P15086-1 238 R. STHTGSSCLGTDPNRNFDAGWCELGASR. N o
Non-neXtProt mappings
STHTGSSCLGTDPNRNFDAGWCELGASR ~ » NP_001862.2 238 R. STHTGSSCLGTDPNRNFDAGWCELGASR. N o EEEE——

= ENSP00000282957 4

Figure 7. ProteoMapper showing result of mapping of a peptide sequence (Source:
http://www.peptideatlas.org/map/).

CASE STUDY
PRIDE Submission Tool

The stand-alone ProteomeXchange (PX) Submission tool allows the researchers to perform the
data submissions to PRIDE Archive.

Here we are describing all the steps to submit proteomics datasets to PRIDE Archive in brief:

(i) Login Panel

The first step to submit a dataset to PRIDE Archive is to log into PRIDE using an existing
account or register as a new user .

3 - < s - >

Figure 8. Showing login window (Source: https://www.ebi.ac.uk/pride).

(ii) Submission Details

Users are to provide some basic details about the uploaded dataset such as the title, a list of
keywords (in a comma separated format), and a brief description of the dataset (similar to the
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abstract of the corresponding publication), a sample processing and a data processing
protocol. Also, users have to pick a mass spectrometry experiment type from a drop-down
menu (shotgun proteomics, SRM/MRM, CX-MS etc) [24].

a0 0

Dataset Details

Pltase provide some detail abowt your dataser

Project title®

Keywords®*

Project description® (50 w0

Sample processing protocol® (50 w5

Data processing protocol® (50 w5

Figure 9. Basic details about the uploaded dataset (Source: https://www.ebi.ac.uk/pride).

(iii) Adding Files and assigning file types

In this stage, user should choose the files to be submitted. Files can be added by clicking on
the highlighted button.

- Add Files / () what are the file types?

File Name PATH | URL File Type

%)

Figure 10. Showing how to add files (Source: https://www.ebi.ac.uk/pride).

File formats supported in PRIDE Archive:

RESULT: Standard file formats from HUPO-PSI to report peptide/protein identification and
quantification results: mzldentML and mzTab.
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There are two relevant PSI file formats:

mzldentML: mzldentML is a data standard that contains the peptide/protein identification
information of a proteomics experiment, but not the quantification information

mzTab: mzTab files can contain protein, peptide, and small molecule identifications together
with experimental metadata and basic quantitative information.

RAW: These are original proprietary files (e.g. Thermo RAW).
SPECTRUM_LIBRARY: Spectrum libraries used to perform spectrum search.

PEAK: The peak file contains the set of MS/MS peaks used for peptide/protein identification
(e.g. mgf Mascot generic files).

SEARCH: Files from the software analysis tool (e.g. .dat from Mascot).

Submissions that provide RESULT files are called COMPLETE submissions. These files are
the one, PRIDE ecosystem (resources, tools) is able to read, write and transform. When a
Complete submission is performed using mzldentML or files mzTab files (identification
files), the dataset should contains at least one ‘PEAK’ list associated with the identification
file. mzldentML only contain the identified peptides/proteins and the corresponding spectra
For Quantitative Complete experiments, users should use mzTab files. mzTab is a data
standard which represent both identification and quantification data [24].

Add Files

Add the files you want 1o submit

) Add Files 7) Which are the file types?

File Name ? File Type -
AID.dat
AID,mat

AID. m2id

3 % XM KKK KX X|S

0] SPECTRUM_ LIBRARY |»

Figure 11. Showing different supported file formats (Source: https://www.ebi.ac.uk/pride).

(iv) Assign the relationships between the submitted files

This mapping step consists of assigning the relations between the ‘RESULT’ files and the
other types of files included in the submission, for example, which ‘RAW’ (mandatory),
‘PEAK’ (mandatory for mzldentML and mzTab), ‘SEARCH’, ‘QUANT’, ‘FASTA’,
‘SPECTRUM_LIBRARY’, ‘GEL’ or ‘OTHER’ files can be linked to a given ‘RESULT” file
or are associated with it [24].
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fa N

Relationships between files

Specify the files used for producing the results

Result files

File Name PATH / URL Type #Relations | Add Relation
AID.mzid [Users /attlacsordas /Desktop /pxsubmissionte stsets /m. RESULY 3  Relavon
Related files

File Name Type Remaove
AID.dat SEARCH x
AID.mgf PEAK x
sample_1_replicate_1.RAW  Users/atlacsordas/Deskiop/ RAW b4
?

Figure 12. Mapping relation between result file and other files (Source: https://www.ebi.ac.uk/pride)

By default, the tool makes an attempt to generate the mapping between the ‘RESULT’ and
the other, most importantly RAW’ files. If there is one ‘RESULT’ file found then all the
other files will be mapped to this file. But in case if multiple ‘RESULT” files found then the
tool maps other files with the same name prefix, but without the file extension, to the
corresponding ‘RESULT" file.

(v) Additional submission metadata

Additional metadata need to be provided for each ‘RESULT"’ file in the case of a Complete
submission, both for mzTab or mzldentML files.

Experimental Details

Please provide addivonal experimental details for each res

Resuilt files
File Name PATH / URL Type Complete Add annotation
AID.mzid Jusers/ /Deskiop / RESULT No i Annotate

Experimental details
Type

Figure 13. Annotation data is provided in case of complete submission (Source: https://www.ebi.ac.uk/pride).

User need to click ‘Annotate’ button for each ‘RESULT’ file. This information is usually
imported automatically in the case of mzTab file. For mzldentML files, the information
needs to be annotated manually.
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The following additional metadata is Mandatory:

Species: The species of the samples used in a given dataset.

Tissue: Tissue (“not applicable” should be used in case other types of experiments are
performed).

Instrument information (mass spectrometer).

()

Tip: Tik “Apply to 2l If you wart the same vakues apphed across all the experimental result files

Species” Apply o all Tissue* Apply to all
Choose sample species here »| | Choose tissue here
Homo sapiens (Human) x Blood x

Instrument” Appy 1o all Cell type Appdy 1o all
Choose MS instruments here =) Choose cell type here =
Thermo Sientiic Q Exactive x B cell b4

Disease Apply to all Quantification method Appiy to all
Choose disease here M| Choose quantification method here v
Acte levkemia x Spectrum councing ®

Experimental factor (0

Figure 14. Metadata annotation with the drop-down menu (Source: https://www.ebi.ac.uk/pride).

Information should be provided using controlled vocabularies terms from a drop-down menu,
providing information about the cell type, disease and quantification method etc.

In most cases the metadata annotation is available in the drop-down menu, since the elements
of the drop-down menus have been selected based on frequency of these terms in existing
datasets. However, sometimes the annotations you are looking for may not be available from
the drop-down lists. If that’s the case, we need to select the OLS (Ontology Lookup Service)
panel and search for the corresponding annotation we want to provide. In the case of the more
extensive searches we need to click on the “other” options on the bottom of the drop-down
menu. For example, if we have samples coming from e.g. the fish Grayling (Thymallus
thymallus) this species name is not available from the drop-down list menu. We have to click
on other species and search for ‘Thymallus thymallus’ in the OLS panel [24].

Lo Cirdpiogy Loskup Honvice - is-duleg v1.1.13

Lwrmin W] vl T somory Casitue EWT] -

''''''

IaFLumEnT” Aaphy ta 4l

et W nATUmREL have L

P — x —

Eaperimanial aciar "

T

Figure 15. Ontology Lookup Service panel providing search for the corresponding annotation (Source:
https://www.ebi.ac.uk/pride).
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(vi) Providing contact details for the Lab Head

Details of sender are to be provided for further reference.

¢ Cancel & Back Next }

Figure 16. Contact details of the sender (Source: https://www.ebi.ac.uk/pride).

This is the final step before the real file upload begins. Before moving on to the upload phase,
double-check that the submission summary contains all of the essential files. An example of a
mzldentML-based 'Complete’ submission is shown below.

e Tale)

Submission Summary

Piease doubbe-check before STartng your submission

= Toul file coune: 5 « Result files: 1 “ Raw files: 1
Export summary
= Peak files: 1 w Search files: 1 w Other files: 1

File Name PATH / URL Type Sire (Mb) #5aurces
{C QUANTIFICATION o ]

RESULT 4 3

SEARCH o 0

PEAK [

RAW

o
Figure 17. Submission summary mzldentML based complete submission (Source: https://www.ebi.ac.uk/pride).
(vii) Uploading all files

Uploading all files to PRIDE (as part of ProteomeXchange) is the final step. Once the upload
is complete, you will receive an email confirming that all of your files have been successfully
uploaded and are awaiting validation. By default, dataset will be made publicly available
after manuscript has been accepted, or when submitter instructs to do so or there is
acceptance notification from some journals.
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4. Discussion

In this chapter, we have listed some commonly used and important proteomics databases
which have proved to be very useful for molecular biologists. These resources which include
original raw data and the accompanying results have led to high-throughput proteomics
research and large-scale genome annotation efforts. In future, the exchanges of information
and metadata between these repositories will become highly relevant, and therefore, the
proteomics repositories need to evolve a focused approach to data accessibility among
different repositories. Conversely, with the advent of new instruments, new techniques of
sample preparation, data analytics, and new forms of data will be continuously generated. It
is clear that the amount of data in the currently available repositories is just a small fraction
of the actually-generated proteomics data that will eventually become available. Finally in
order to benefit the research community, the resources will have to standardize the process
and simplify the interface for data submission.
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Introduction
Proteins are important large biomolecules or macromolecules performing a wide variety of
functions. The word “proteome” is defined as the entire set of proteins translated and/ or modified
within a living organism. The word “proteome” was coined by Marc Wilkinsin 1994 in a
symposium on “2D Electrophoresis: from protein maps to genomes” held in Siena in Italy while
he was a Ph.D. student at Macquarie University. An organism’s genome is more or less constant
whereas proteome is not constant. Proteomes differs from cell to cell and from time to time. That’s
why proteomics is more complicated when compared to genomics.

Proteomics more generally refers to large-scale liquid chromatography (LC) coupled with
mass spectrometry (MS) [LC-MS] based discovery studies designed to address both quantitative

and qualitative aspects of the proteome research (Figure 1).
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Figure 1. Liquid chromatography coupled with mass spectrometry [LC-MS]

Source: https://upload.wikimedia.org/wikipedia/en/f/f9/Liquid chromatography tandem Mass spectrometry diagram.png

Now proteomics has emerged as a powerful tool across various fields such as biomedicine

mainly applied to diseases, agriculture, and animal sciences. It is important for studying different
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aspects of plant functions such as identification of candidate proteins involved in the defensive
response of plants to biotic and abiotic stresses, effect of global climate changes on crop
production, etc. In animal sciences, proteomics studies play important role in studying physiology,
immunology, reproduction and lactational biology. The practical application of proteomics
includes expression proteomics, structural proteomics, biomarker discovery, interaction

proteomics, protein networks, etc.

Basics Steps of Proteomics Data Analysis

The proteomic abundance (expression) data are usually generated using high throughput
technologies usually involving MS. LC-MS is used in proteomics as a method for identification
and quantification of peptides and proteins in complex mixtures. There are two basic proteomics
approaches, namely bottom-up and top-down. The most common proteomics approach is the
bottom-up in which proteins in a sample are enzymatically digested into peptides and subjected to
chromatographic separation, ionization and mass analysis. Conversely, top-down proteomics
addresses the study of intact proteins and consequently is most often used to address purified or
partially purified proteins. There are various steps involved in quantitative proteomics data
analysis, viz., peptide and protein identification, protein abundance quantification, data cleaning,
data normalization, handling of missing values by using imputation techniques, data visualization

and interpretation, statistical analysis of proteomics data, etc.

Peptide and protein identification
There are two major approaches for determining the sequence of peptides.
(i) Searching against fragmentation spectra databases

(i) de novo peptide sequencing

Some of the software/ tools for peptide and protein identification are listed below:

Category Name Description

Searching against | Andromeda (part of | A peptide search engine based on probabilistic
fragmentation  spectra | Mascot) scoring

databases Mascot Probability-based database searching algorithm
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SEQUEST Identifies collections of tandem mass spectra to
peptide sequences that have been generated from
protein sequence databases

X!Tandem/X!!Tandem | Searches tandem mass spectra with peptide

sequences in database

PEAKS Performs de novo sequencing for each peptide,
confidence scores on individual amino acid
assignments with manually assisted mode and
automated de novo sequencing on an entire LC

de novo peptide run processed data

sequencing SHERENGA Performs de novo peptide sequencing via tandem
mass spectrometry
PECAN Library free peptide detection for data-

independent acquisition of tandem mass

spectrometry data

Quantification of feature abundance
The quantification of features (peptides or proteins) may be either label-free or labelled (metabolic,
enzymatic, or chemical) to detect differences in feature abundances among different conditions. In
label-free quantification, MS ion intensity (peak area) and spectral counting of features are the
major approaches. In this article, we have considered MS ion intensity data obtained from label-
free bottom-up proteomics experiments.
Software/Tools for label-based quantitative proteomics:

e MaxQuant

e Proteome Discoverer (Thermo Scientific)

e XPRESS
Software/Tools for label-free quantitative proteomics:

e MaxLFQ - Label free quantification module available in MaxQuant

e emPAlI - Exponentially modified protein abundance index

e Mascot Distiller (Matrix Science)
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Problem of missing values and heterogeneity in proteomics data

Various approaches exist for proteomics data analysis in which the first step is to summarize the
intensities of all features using a quantitative summary followed by logarithmic transformation to
approximate it to normal distribution. In spite of availability of various tools/methods, there are
various challenges in analyzing proteomics data such as missing value (MV) and data
heterogeneity. There are various drawbacks of the methods which can be studied by examining the
statistical properties of these methods.

The variations in the biological data or technical approaches to data collection lead to
heterogeneity for the samples under study. The data set usually consists of biological replicates
only or both biological and technical replicates. Biological variability arises from genetic and
environmental factors and it is intrinsic to all organisms. The technical approaches include sample

collection and storage, sample preparation, extraction, LC separation and MS detection.

The data set is called balanced when it contains an equal number of subjects/ samples in
each group, and the features have no missing observations. However, this is not always the
condition. Sometimes the data can be unbalanced having unequal number of subjects, or missing
observations, or both. MVs in proteomics data can occur due to biological and/or technical issues.
These are of three types of MVs: (i) missing completely at random (MCAR) in which MVs are
independent of both unobserved and observed data; (ii) missing at random (MAR) if conditional
on the observed data, the MVs are independent of the missing measurements; and (iii) missing not
at random (MNAR) when data is neither MCAR nor MAR. The data with missing observations
can be analyzed either by excluding the features having missing observations, by using statistical
methods that can handle unbalanced data, or by using imputation methods. If the features having
missing observations are excluded, then there is loss of information from the experiment.
Therefore, the use of methods that can handle MVs, such as imputation methods, are generally
preferred. However, the use of imputation methods may lead to wrong interpretation and these

methods are questionable in statistical terms.

Statistical analysis of proteomics abundance data
Differential abundance analysis is carried out to detect significant features in two or more
conditions such as normal versus different disease conditions. However, data normalization is

necessary before performing further analysis. There are various transformation and/ or
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normalization methods such as logarithmic transformation, quantile normalization, variance
stabilizing normalization, median scaling normalization, etc. In case of missing values, the user
has to impute the data using imputation techniques such as singular value decomposition, k-nearest
neighbor, maximum likelihood estimation, etc. The statistical approaches/ tests such as t-test,
moderated t-test, ANOVA, linear mixed model, etc. can be used for detecting significant features.

A general workflow of label-free quantitative proteomics data is given below:

Pre-processing Statistical analysis
w0 . . .
2 | | Summarization to Protein Level * t-test -
@ (mean, median, sum, etc.) « ANOVA &3
s - Linear Fixed/ Mixed s 3
= effect model 2
Normalization Imputation
s | —{ imputation |
-1 * Linear model with 0
& — ‘ Normalization |—~{ Imputation ‘ peptide effects E-E_
o
o

Figure 2. A general workflow of label-free quantitative proteomics data

Various methods of normalizing proteomics expression data are given below:
e Variance stabilizing normalization (VSN)
e Quantile normalization (quantile)
e Median normalization (median)
e EigenMS normalization (EigenMS)

e Local regression normalization (LoessF, LoessCyc)

Various imputation methods can be categorized into the following:
(i) Imputation by a single value:
e Half of global minimum intensity among peptides - the minimal observed intensity value
among all peptides
e Half of minimal intensity of individual peptide
¢ Random tail imputation
(i) Local-similarity-based imputation methods:

e K-nearest neighbors (KNN)

349



e Local least-squares (LLS) imputation

e Regularized expectation maximization (REM) algorithm
(iii) Global-structure-based imputation methods

e Probabilistic principal component analysis (PPCA)

e Bayesian principal component analysis (BPCA) algorithm

There are various tools and packages available for proteomics abundance data analysis such as
DanteR, MSstats, RepExplore, PANDA-view, MSqRob, PANDA, DAPAR, ProStaR etc. Some of
the important tools are discussed below:

(i) DanteR: Taverner et al. (2012) developed DanteR, a graphical R package that features extensive
statistical and diagnostic functions for quantitative proteomics data analysis, including
normalization, imputation, hypothesis testing, interactive visualization and peptide-to-protein
rollup.

(it) MSstats: Choi et al. (2014) developed an R package “MSstats” for statistical relative
quantification of proteins and peptides in MS based proteomics. It (version 2.0) supports label-free
and label-based experimental workflows and data-dependent, targeted and data-independent
spectral acquisition. It performs differentially abundance/ expression analysis of features (peptides
or proteins) based on linear mixed models.

(iii) RepExplore: Glaab and Schneider (2015) developed a web server “RepExplore” to analyse
the proteomics and metabolomics data with technical and biological replicates. The analysis is
based on previously published statistical methods, which have been applied successfully to
biomedical omics.

(iv) PANDA-view: Chang et al. (2018) developed an easy-to-use tool “PANDA-view” for both
statistical analysis and visualization of quantitative proteomics data and other -omics data. There
are various kinds of analysis methods such as normalization, MV imputation, statistical tests,
clustering and principal component analysis, an interactive volcano plot.

(v) MSgRob: Goeminne et al. (2018) provided a tutorial on analysis of quantitative proteomics
data. The tutorial discussed the key statistical concepts to design proteomics experiments and
analyse label-free MS based quantitative proteomics data using their free and open-source R

package MSqRob.
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(vi) PANDA: Chang et al. (2019) developed a comprehensive and flexible tool named PANDA
for proteomics data quantification. The tool supports both label-free and labeled quantifications
and it is compatible with existing peptide identification tools and pipelines with considerable
flexibility.

(vii) DAPAR & ProStaR: Wieczorek et al. (2017) developed software tools, DAPAR and ProStaR
that can perform the statistical analysis of label-free XIC-based quantitative discovery proteomics
experiments. DAPAR is an R package that contains various functions such as filtering,
normalization, imputation of missing values, aggregation of peptide intensities, differential
abundance analysis of proteins, etc. ProStaR is a user-friendly graphical interface that allows

access to the DAPAR functionalities through a web browser.

Conclusion

In this article, we have given the basic introduction of proteomics, various steps of proteomics data
analysis, problem of MVs and heterogeneity in proteomics data and different methods for analysis
of proteomics data. This article will be useful for the researchers working in the field of proteomics
and bioinformatics. Furthermore, the methods for proteomics data analysis can further be used for
analyzing the expression data obtained from similar experiments (e.g., microarray and

metabolomics data).
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Working with Proteomics Data Analysis

Sudhir Srivastava, Sneha Murmu and K. K. Chaturvedi
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In this article, proteomics abundance data analysis has been demonstrated by using an online

web tool “RepExplore” and a shiny app “ProStaR”.

Differential abundance analysis using RepExplore

In this article, we are dealing with the bottom-up approach in which peak area values have been
used in label-free quantification of proteins. An example of proteomics abundance data analysis
using “RepExplore” has been illustrated below. A portion of an example dataset for a case-
control study is shown in Figure 1. The dataset has two biological replicates each having two

technical replicates in each group (case and control).

Control Case
|
1
control_1_1 control_1_2 control_2_1 control_2_2 case_1_1 case_1_2 case_2 1 case_2 2
biomolecule_1 2084 19.93 20.78 19.24 2003 2087 19.65 2007
biomolecule_2 19.18 18.79 18.88 1843 18.97 1888 18.82 1864
biomolecule_3 195 18.84 20.14 19.06 19.58 19.29 191 19.31
biomolecule_4 19.23 18.52 19.67 17.73 19 186 164 18.44
biomolecule_5 19.64 19.25 19.99 18.78 195 19.31 19.16 19.41
biomolecule_6 19.89 19.45 19.93 188 19.46 18.76 18.84 18.94
biomolecule_7 2207 21.72 2326 2135 2274 2185 2097 2217
biomolecule_8 2184 2147 2281 2122 2235 2158 21.18 2201
biomolecule_9 17.56 17.41 17.46 17.7 16.76 18.13 1851 173
biomolecule_10 20.34 19.81 21.02 19.23 20.38 196 19.06 198
biomolecule_11 19.15 18.79 17.98 19.03 17.81 19.55 19.89 1876
biomolecule_12 2464 2412 2321 2438 2331 2477 25.04 2421
biomolecule_13 26.51 26.06 26.74 2523 26.32 2567 2515 2595
biomolecule_14 25 24 42 2327 2479 2348 25.16 2545 2458
biomolecule_15 18.05 18.3 18.51 17.98 18.52 174 18.36 16.85
biomolecule_16 17.82 17.34 1824 17.07 178 17.66 17.45 17.65
biomolecule_17 17.98 17.31 18.28 17.27 17.77 17.37 17.47 17.31
biomolecule_18 19.32 1813 19.33 18.04 18.81 18.64 1866 17.88
biomolecule_19 2489 2443 2482 2374 244 2424 241 2435
biomolecule_20 17.94 17.25 18.39 17.19 17.19 17.08 16.88 16.82

Figure 1. A portion of test dataset for a case-control study
The user has to upload the abundance data as given in Figure 2. The user has to choose various
options after uploading the data (Figure 3). Then, the user has to click on “Run Analysis!”

button.
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A Repbploce - Baploit Techrical B X

& C @ icsb-repexploreunilu/reperplore/indexphp

RE}JEXPJUF (o] Exploit Technical Replicate Variance in Omics Analysis

Home | Tutorial | Contact | Feedback | Terms & Conditions | API| Example data | Related Software| How to dte |

Please choose your prefered option:
"y . Analyze 45 Upload my 5
7 «* example data own dataset Dlisip

+ Click here to upload datasel. .. ) Format Instructions

Figure 2. Upload the data

Please choose your prefered option:

‘,:. Analyze 4% Upload my 3 Hel
‘ 7 .+ example data own dataset Diale

EEITETI ot

File upload successful - please press the Run Analysis bution to continue

! Apply variance-stabilizing normalization [@ngg]
| Apply median scaling normalization [«J) Help]

Create PCA visualization [gJ) Help]

Run Analysis!

Figure 3. Selecting the options

Then, the user will get menus of various results as shown below in Figure 4.

Analysis Results

1.) ;“ = Ranking of 2) Heat map
] 3, ... Diomolecules * visualization
Download "~ Return to main
3.) ! ranking table 4.) web-interface

Figure 4. The menus of various results obtained
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The ranking table of differential abundant/ expressed features is given in Figure 5.

Probability of positive P-like significance eBayes eBayes
likelihood ratio (PPLR) score T-score 2

Biomolecule identifier  Log. fold change
g (min(PPLR,1-PPLR)) . value -+

eBayes
adj. P-value

biomolecule_90
. 1.66 0.287 0.287 in 0.0116
# « generate bar piot

0.542

biomolecule_36
0.8 0633 0.367 -3.27 0.0193
generate bar plot

0.542

biomolecule_20
- 07 0762 0.238 -288 0.0309
¥+ generate bar plot

0542

biomolecule_93
0.858 0.31 0.31 2.85 0.032
generate bar plot

0.542

biomolecule_100
. 0.93 0378 0.378 285 0.0322
¥ . generate bar plot

0.542

biomolecule_40

: 0.843 0.236 0.236 279 0.0345
# + generate bar plot

0.542

biomolecule_94

. -0.943 0.672 0.328 272 0.0379
é . generate bar plot

0.542

biomolecule_73
: -0.517 0.69 0.31 -2.22 0.0718
% + generate bar plot

0.586

Figure 5. The ranking table of differential abundant/expressed features

The user can generate the bar plot of any feature by clicking “generate_bar_plot” button for

which an example is shown below.

biomolecule 36

B case
W conirol

Expression Estimale

Quicome

Figure 6. An example of bar plot of a feature
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Differential Abundance Analysis using ProStaR

Prostar (Proteomics statistical analysis with R) has been used to demonstrate the analysis of
label-free quantitative proteomics data. Various steps involved are given below:

Software and package installation

Download and install the latest version of R.

After installation open R console.

To install Bioconductor package manager run the following commands:

if (!requireNamespace(“BiocManager”, quietly = TRUE))
install. package(“BiocManager”)

BiocManager: :install(versiob="3.14’)

To install Prostar run the following command:

BiocManager: :install(“Prostar”)

To launch Prostar run the following command:

library(Prostar)

Prostar()

The homepage of the web application in the browser as shown in Figure 7 will be opened after
executing the above R codes.

G ® 1270013340 Q% * 0 * @ ¢ ¢ @ &
[ Utomik Games [ Bookingcom (& €Office £ National Center for... RCSB POB: Homepa.. [ [l Plants @ Circa | OMGenomics ] BLAT P LINUX ] Python > | [ Other favorites

Prostar Data manager + Help

Maintaining ProStaR as free software is a heavy and time-consuming duty. If you use it, please cite the following reference:

&. Wieczorek, F. Combes, C. Lazer, Q. Gial-Gianetto, L. Gatto, A. Dorffer, A.-M. Hesse, Y. Coute, M. Ferro, C. Bruley end T. Burger. DAPAR & ProStaR: software e perform statistical analyses in quantitative discovery.
Bioinformatics , 33(1), 136-136, 2017. http://doi.org/10.1083/bicinformatics/btw580

DAPAR and Prostar form a software suite devoted to the differential analysis of guantitative data resulting from discovery proteomics experiments
It is composed of twe distinct R packages:

+ Prostar (version 1.26.0), which proposss a web-based graphical user interface to DAPAR

« DAPAR (version 1.26.0), which contains all the routines to analyze and visualize proteomics data

Data management

« Conversion: To impert a tabulated file containing quantitative data and convert it into an MSnset structure.
= Loading: To open an Msnset structure that has been pravicusly constructed.

« Exporting: To save a partially/completely precessed dataset and to downlead the data analysis results

« Demo data: Toy datasets are available to discover Prostar potential in the simplest way.

Data processing

« Filtering: To prune the protein or peptide list according to varicus criteria (missing values, string matching).
« Normalization: To correct batch or group effects,
« Imputation: By taking into account the very nature of each missing value.
« Aggregation: For peptide-level datasets, it is possible 10 estimate pratein abundances.
testing: T comniia th 5 f aach arninin ahindan

Figure 7. Homepage of Prostar web application.

Data loading

e Click on “Demo data” in the dropdown menu of “Data manager”.
e Select the data named Expl R25 prot provide(% 5%1 the package (shown in Figure 8).



Click on “Load demo dataset”.

G  ©® 1270013340 a w * @ * 6@ C = @ &

[ UtomikGames (3 Bookingcom (D eOffice & National Center for... Rcse PoB: Homepa.. [ [l Plants @ Circa| OMGenomics £ BLAT ) LNUX [ Python > | [ Other favorites
Prostar Data manager ~ Help ~

Demo dataset
Nona - |

None

Exp1_R25_pept

Exp1_R25_prot Jlicked, you will be automatically redirected 1o Prostar home page. The dataset will be accessible within Prostar interface and procassing menus will be enabled. However, all imparting

Expl R2 t » data’ and 'Convert data’) will be disabled (because successive dataset loading can make Prostar unstable). To work on ancther dataset, use first the 'Reload Prostar functionality from the
p1_Re_pep nake Prostar restart with a frash R session whera import functions are enablad

Exp1_R2_prot

Exp2_R100_pept
Exp2_R100_prot

Evn? R0 _nont

Figure 8. Select the dataset.
Descriptive statistics

1. Click on “Descriptive statistics” in the “Data mining” menu to access several tabs generating
various plots.

2. The “Overview” tab provides the quantitative data summary as shown in Figure 9.

G @ 121001:5727/#ab-8705-2 s * @ * 0 8 = & &

m Utomik Games D Booking.com @ eOffice f{. National Center for... RCSB PDB: Homepa... D . Plants .Circa\OMGenomi(s F7 slaT P unux P Python > | [ Other favorites

Prostar Data manager ~ Data processing (protein) ~ Data mining ~ Help ~ Exp1 R25 pmt 7

Original protein =

Qverview Quantification nature Data explorer Corr. matrix Heatmap PCA Intensity distr. CV distr.

Definition Value
Number of samples 6
Number of conditions 2
Number of lines 2384
Number of missing values 1204
% of missing values 8.42
Number of empty lines 42

Figure 9. Brief summary of the quantitative data size.

3. “Missing value” tab depicts the distribution of missing values (MVs) condition and sample-
wise as shown in Figure 10.
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Prostar ~ Data manager ~ Data processing (protein) ~ Data mining ~ Help ~ Exp1_R25_prot 7] ori
= I

ginal.protein -

Quant. metadata
missing -
These barplots display the distribution of missing values in the dataset
Nb of "'missing’ tags by replicate = Nb of lines with x 'missing’ tags = Nb of lines containing x ‘missing’ =
tags (condition-wise)
250 200
2500
200
150 2000
150
1500
100
oo 1000
50
50 500
R . R HE mm =
25fmol  25fmal  25fmol  10fmal  10fmol  10fmal ] 3 q 5 6 o 1 2 3
Replicates Nb of 'missing’ tags in a line Nb of 'missing’ tags in each line (condition-wise)

Figure 10. Information on missing value. The left-hand side barplot represents the number of
MV:s in each sample. The second barplot (in the middle) displays the distribution of MVs. The
last barplot represents the same information as the previous one condition-wise.

4. Click on “Data explorer” tab to view the content of the dataset. It is made of three tables.

v" "Quantitative data" contains quantitative values (Figure 11). The missing values are
represented by empty cells.

v "Protein metadata" contains all the column dataset that are not the quantitative data (Figure
12).

v "Experimental design", summarize the experimental design (Figure 13).

-

Prostar Datamanager ~  Data processing (protein) »  Datamining + ~ Help » Exp1_R25_prot 7] Original protein

Overview Quantification nature Data explorer Corr. matrix Heatmap PCA Intensity distr. CV distr.

Table to display Legend of colors

@® Quantitative data O Proteins metadata O Experimental design

Em

0 0 21.3298094748 21.2945713923 21.36591657 21.3156183761 20.8994749398 213728395508 |-
1 1 32.4961468019 32.4444077758 32.5019698308 32.5176342723 32.4279480264 32.5106487532
2 2 31.3369759915 31.2798541112 31.4193081334 29.8014553941 20.7488240718 29.8084538165
3 3 25.6403076107 26.0486609781 26.2056811071 24.8439789231 25.4769501066 25.4545658821
4 4 29.2977586235 29.3603893258 29.214216868 20.338411324 28.3237142325 29.2381337069
5 5 23.8892046285 224583134858 233021513661 22.5814508959 21.6653567379 22.133265155
6 6 25.5076069081 25.0922467825 257572778886 23140741167 23.2480184622

Figure 11. Quantitative data
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Prostar -  Datamanager ~  Data processing (protein) ~  Data mining ~  Help ~ Exp1_R25_prot 7]

QOriginal.protein

Overview Quantification nature Data explorer Corr. matrix Heatmap PCA Intensity distr. CV distr.

Table to display
O Quantitative data @ Proteins metadata O Experimental design

o CON__A2I7N1 CON__A2I7N1:CON__A2I7NO 111 1 %

1 CON__P00761 CON__P00761 5 5 5

2 P02768 P02768upsedyp|ALBU_HUMAN_upsedyp;CON__P02768-1 21;21;3:1 21;21;311 21:21:3;1
3 CON__Po4264 CON__P04264 921111 9:2:1,1:151 7:1,0:0,0:0
4 CON__PO7477 CON__PO7477 1 1 1

5 CON__P13645 CON__P13645 41 41 41

6 CON__P35527 CON__Pas527 4 4 4

Figure 12. Proteins metadata

Prostar ~ Data manager ~ Data processing (protein) ~ Data mining ~ Help ~ Exp1_R25_prot [7]

Qriginal.protein

Overview Quantification nature Data explorer Corr. matrix Heatmap PCA Intensity distr. CV distr.

Table to display
© Quantitative data O Proteins metadata @ Experimental design

Figure 13. Experimental design

5. Click on fourth tab “Correlation. matrix”, to visualize to what extent the replicate samples
correlate or not as shown in Figure 14.

Prostar ~  Dalamanager ~  Data processing (protem) ~  Data mining Exp1_R25 proti21 Original.protein

P\umpuunso

10fmol &

10fmol 5

Tofmol & 8 0025

Values

25fmol 3
0975

25fmol 2

25fmol 1

Figure 14. Correlation matrix
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6. The fifth tab depicts the heatmap and associated dendrogram as shown in Figure 15. The
dendrogram shows a hierarchical classification of the samples, so as to check that samples are
related according to the experimental design.

Prostar ~  Dalamanager =  Data processig (protein) = Datamining = Help ~ Exp1_R25_prot I7 [y

Figure 15. Heatmap: Red represents high intensities and green is for low intensities. White
colour represents missing values.

Filtering

This aim is to filter out proteins according to their number of missing values, as well as
according to some information stored in the protein metadata.

Click on “Filter data” in the “Data processing” menu.

2. Click on "Missing values” to select among the various options which proteins should be
filtered out or not. In this case we do not filter out the missing values as later will be imputed
later in the stage.

4. Click on "String based filtering", to filter out proteins according to information stored in the
metadata. Among the columns constituting the protein metadata listed in the drop-down menu,
select the one containing the information of interest (“Contaminant” and “Reverse”). Then,
specify in each case the prefix chain of characters that identifies the proteins to filter. In this
case it is plus sign (+) as shown in Figure 16.

Prostar v  Dalamanager v  Dala processing (protein)

Exp1_R25_prot 17) IR e o

- F 7 J J N
e—

Quanti. metadata filering String-based fitering Numerical fitering Summary Validate

Column name Prefix

Potential_contaminant - + -

You are going to delste lines in the column 'Potential_contaminant which begin with '+

o 2384

Figure 16. Remove the contaminants
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6. Click on "Perform " to remove the corresponding proteins. A new line appears in the table
listing all the filters that have been applied as shown in Figure 17.

Prostar ~  Dafamanager =  Data processing (protein) = Dafamining = Help = Exp1_R25_prot (7] SR

E I N S e 9
p—

Quant. metadata fitering String-based fiftering Numerical fitering Summary Validate

Column name Prefix

ene N

Potential_contaminant  + 18 2368

Potential_contaminant + 0 2368

Figure 17. The table shows that 16 potential contaminants have been removed

7. If another filter must be applied, go back to Step 4, as shown in Figure 18.

Prostar ~  Dalamanager -  Dala processing (protein) ~  Datamining = Help = Exp1_R25 prot (7] Orlginal protein

- § 7 8 § &
e—

Quanti. metadata filtering  String-based fitering Numerical filtering Summary Validate

Column name Prefix

fene N -

o 2384
Polential_contaminant  + 16 2368
Potential_contaminant  + o 2368
Reverse + 18 2350
Reverse ¥ o 2350

Figure 18. Apply another filter on Reverse column.

8. Once all the filters have been applied, click on “Validate" tab to check the set of filtered out
proteins.

9. Click on "Save filtered dataset".

10. The filtered dataset now appears as “Filtered.protein” below “Original.protein” on the
upper right corner of the homepage as shown in Figure 19.

Prostar +  Datamanager ~  Data processing (protein) ~ Data mining ~ Help ~ Exp1_R25_prot 7] Filtered t
= iltered.protein

B S B S S Original protein
— Filtered.protein
Quanti, metadala filtering String-based filtering Numerical filtering Summary Validate

Save filtered dataset

Figure 19. Save tl}% 1ﬁl‘[ered dataset



Normalization

The next processing step proposed by ProStaR is data normalization. The objective is to reduce
the biases introduced at any preliminary stage, for example, batch effects.

1. Prostar provides several methods of normalization as briefly described below. In this
example, we have chosen quantile method for normalizing the dataset.

a. None: No normalization is applied
b. Global quantile alignment

c. Column sums

d. Quantile Centering

e. Mean Centering

f. Variance Stabilizing Normalization.
g. Loess normalization

2. Select “within conditions” as the “normalization type”. This will normalize each condition
independently of the others as shown in Figure 20.

3. Click on “Perform normalization”. Three types of plots are generated as shown in Figure 20.

Prostar »  Datamanager »  Data processing (protein) - Datamining = Help +

Expi_R25_prot [7] e protein ¥

Type of selection
Normalization method Normall type quantile [

None -
Quantile Centering : within conditions = 015 Perform normalization N

[J Synchronise with selection above

These methods propase to shift the sample distributions (either all of them at once, or within each condition at a time) to align a specific quantile: the median (under the assumption that up-regulations and down-
regulations are equally frequent), the 15% quantile {(under the assumption that the signalinoise ratio is roughly the same in all the samples), or any other user's choice,

Density plot

Y WY YYWY VY TY WYY W YWY Y

. . . . . ® o ¢ 00 50 0w EEED S8 N S0 W= (
i - o 4
0.1 A AMMAAAAA A AL LA A8 A
9975
> 10
> = 10 -+
= = "-.pnM
7 o ] -e ¥ ——
a B 99
: g—" u—
0.05
9925 — s
0 1
20 25 30 35 = =
0.99
log(intensity) 20 22 2 %6 28
— 25fmol  — 25fmol  — 25fmol  — 10fmol infensity €A1 Intensity € K2 Intensity € &3 Intensity. D R1 Intensity.0.R2 infnintensity CR1 ¢ Intensity CR2 W Intensity C_R3
— 10fmol  — 10fmol Samples ¥ Intensity D.-R2 @ Intensity_D_R3

Figure 20. Normalization-within conditions
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Density plot
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Figure 20. c) It shows the extent of change the dataset has to undergo in order to be normalized
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6. Click on “Save normalization”.
7. Normalized Protein” appears in the dataset version drop-down menu as the new version.
Imputation

ProStaR allows us to have separate processing for two different types of M Vs, in protein-level
datasets: POV (Partially Observed Value) and MEC (Missing in the Entire Condition). All the
missing values for a given protein in a given condition are considered POV if and only if there
is at least one observed value for this protein in this condition. And if all the intensity values
are missing for this protein in this condition, the missing values are considered MEC.

On the first tab, select the algorithm to impute POV missing values. Here, we have selected the
KNN and “neighbours” parameter as 10 which is also the default value but other methods are
also of interest in specific situations as shown in Figure 21.

S | U PRt Gy e e A ot SR RR] \ommalized protein +

Partially Observes jes Missing on Entre Condition Save

Algorithm for POV Neighbors
KNN b4 10

‘ Perform POV imputation POV i

Updatas

Missing on the Entire Condition'

POV distribution Calor Key

]

= 25fmol
= 10fmol

MEC heatmap

|

Mean of imensities

] g o ° ) S
£ £ c c £

Figure 21. POV imputation

2. Tune the parameters of the chosen imputation method and the corresponding change in the
plot will be visible as we change the algorithm and its associated parameters.

3. Click on “Perform Imputation”. It will enable the next tab, on which the result of the
imputation is shown. In this example, 713 missing values were imputed.

4. Next, select appropriate method for MOV imputation. In this example we selected
detQuantile algorithm.

6. Click on “Perform Imputation”. The result showed that 459 values were imputed as shown
in Figure 22.
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Figure 22. MOV imputation

8. The combined result showed that no more missing values are left to be imputed. Click on
“Save imputation”.

9. “Imputed - Protein” appears in the dataset version dropdown menu as the updated version.
Hypothesis testing

Once all the missing values have been imputed, the next step is to perform hypothesis testing
in order to test whether each protein is significantly differentially abundant between the
conditions. To do so, click on “Hypothesis testing” in the “Data processing” menu.

1. Choose the test contrasts. In this example since there are only two conditions, we selected
one vs one.

2. Then, choose the type of statistical test, between limma or t-test (either Welch or Student).

3. Tune the log(FC) threshold value. In this example, we selected it to be 2 (FC=4) as shown
in Figure 23.

Prostar »  Dala manager - Dala processing (proten) = Dalamining »  Help ~ - ;
Expi_R29_prot ] Imputed protein ~ ~
-
—
HypothesisTest Sava
Contrast Statistical test tests options log(FC) threshold

@ Studsnt FC=1) = "
OnevsOne = Hests - @S p) (FC=1) o log FC plot
0 Weich 4

Figure 23. Parameters for hypothesis testing

4. Run the tests. This will generate density plot representing fold-change (FC) as shown in
Figure 24. Save the dataset to preserve the results (i.e. all the computed p-values).
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(99.1 1%)

ninf = 5 nsup = 16
(0.21)% {0.68)%

16g(FC)
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Figure 24. Density plot

5. “Hypothesized protein” will now appear as the new version of dataset. Then, this new
dataset, contains the p-values and FC cut-off for the desired contrasts, which now can be
explored in the “Differential analysis” tabs available in the “Data mining” menu.

Differential Analysis

Click on “Differential analysis” in the “Data mining” menu to analyze the results of all
statistical tests.

Select a pairwise comparison of interest from the dropdown menu. In this example it is “25fmol
vs 10fmol”. The corresponding volcano plot is displayed as shown in Figure 25.

Prostsr - Datimamoger - Dolaprocessng Geokss) - Datamiog < Help = Exp1_R25_prot 7 [
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Push p-value
Nature of cata 1o ifer ™

Hone:
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=3

25fmol_vs_10fmel

|

Figure 25. Volcano plot
Click on the next tab for adjusting the FDR threshold.
Save the result which is shown in Figure 26.
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Figure 26. Result highlighting the proteins which have FC equal to 4 after adjusting FDR.

The list of differentially expressed proteins can be downloaded in excel format as shown in
Figure 27.
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Figure 27. List of differentially expressed protein.
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Overview of Post-Translational Modifications
Monendra Grover

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Posttranslational modifications (PTMs) of proteins greatly expand proteome diversity,
increase functionality, and allow for rapid responses, all at relatively low costs for the
cell. PTMs play key roles in plants through their impact on signaling, gene expression,
protein stability and interactions, and enzyme kinetics. Following a brief discussion of the
experimental and bioinformatics challenges of PTM identification, localization, and
quantification (occupancy), a concise overview is provided of the major PTMs and their
(potential) functional consequences in plants, with emphasis on plant metabolism. Classic
examples that illustrate the regulation of plant metabolic enzymes and pathways by PTMs
and their cross talk are summarized. Recent large-scale proteomics studies mapped
many PTMs to a wide range of metabolic functions. Unraveling of the PTM code, i.e. a
predictive understanding of the (combinatorial) consequences of PTMs, is needed to convert
this growing wealth of data into an understanding of plant metabolic regulation.

The primary amino acid sequence of proteins is defined by the translated mRNA, often
followed by N- or C-terminal cleavages for preprocessing, maturation, and/or activation.
Proteins can undergo further reversible or irreversible posttranslational modifications (PTMs)
of specific amino acid residues. Proteins are directly responsible for the production of plant
metabolites because they act as enzymes or as regulators of enzymes. Ultimately, most
proteins in a plant cell can affect plant metabolism (e.g. through effects on plant gene
expression, cell fate and development, structural support, transport, etc.). Many metabolic
enzymes and their regulators undergo a variety of PTMs, possibly resulting in changes in
oligomeric state, stabilization/degradation, and (de)activation (Huber and Hardin, 2004),
and PTMs can facilitate the optimization of metabolic flux. However, the direct in vivo
consequence of a PTM on a metabolic enzyme or pathway is frequently not very clear, in part
because it requires measurements of input and output of the reactions, including flux through

the enzyme or pathway.

PTMs can occur spontaneously (nonenzymatically) due to the physical-chemical
properties of reactive amino acids and the cellular environment (e.g. pH, oxygen, reactive

oxygen species [ROS], and metabolites) or through the action of specific modifying enzymes
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PTMs are also determined by neighboring residues and their exposure to the surface. The 20
amino acids differ strongly in their general chemical reactivity and their observed PTMs . In
particular, Cys and Lys can each carry many types of PTMs, whereas the N-terminal residue
of proteins is also prone to multiple PTMs, ranging from N-terminal cleavage to N-terminal
lipid modifications (acylation), acetylation, and ubiquitination . In addition to these PTMs
that occur in vivo and presumably have physiological significance, several PTMs are often
generated during sample preparation due to exposure to organic solvents (e.g. formic acid
leading to the formylation of Ser, Thr, and N termini), (thio) urea (N-terminal or Lys
carbamylation), reducing agents and oxygen, unpolymerized acrylamide (Cys propionamide),
and low or high pH (cyclization of N-terminal GIn or Glu into pyro-Glu;). A large-scale
proteomics study of Arabidopsis (Arabidopsis thaliana) leaf extracts did address the
frequency of PTMs that do not require specific affinity enrichment based on a data set of 1.5
million tandem mass spectrometry (MS/MS) spectra acquired at 100,000 resolution on an
LTQ-Orbitrap instrument followed by error-tolerant searches and systematic validation by
liquid chromatography retention time . This revealed, for example, that modification of Met
and N-terminal GlIn into oxidized Met and pyro-Glu, respectively, showed by far the highest
modification frequencies, followed by N-terminal formylation, most likely induced during
sample analysis, as well as deamidation of Asn/GIn (approximately 1.2% of all observed
Asn/GIn). Several of these nonenzymatic PTMs (in particular deamidation, oxidation, and
formylation) can also occur in vivo and, therefore, cannot be simply dismissed as artifacts but

need to be considered as potential regulators.

Since many PTMs are reversible, specific residues can also alternate between PTMs
(e.g. dependent on cellular conditions, protein configuration [folding], or protein-protein
interactions), and one PTM can influence the generation of other PTMs. This can result in an
explosion of possible proteoforms and in cross talk between PTMs occurring on the same
protein. Cross talk between PTMs on the same protein can coordinately determine the
activity, function, and/or interactions of a protein. Finally, cross talk also exists between
PTMs located on interacting proteins. Time-resolved and quantitative determination of
combinatorial PTMs is challenging, and understanding of the biological outcomes is only in
its infancy. Prominent examples of PTM cross talk are Lys ubiquitination and acetylation or
Lys ubiquitination and phosphorylation . Phosphorylation can also directly promote substrate
proteolysis by caspase (peptidase) during apoptosis. Recent biochemical and proteomics

studies suggested that most if not all enzymes of the Calvin-Benson cycle undergo redox
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regulation through selective redox PTMs, including reversible disulfide bond formation,
glutathionylation, and nitrosylation, with an interplay between these PTMs dependent on
(sub)cellular conditions . Moreover, the regulators carrying out these PTMs (e.g.
thioredoxins, glutaredoxins, etc.) themselves can also undergo some of these PTMs, making

for a complex network of PTMs

The identification, localization, and quantification of different combinations of PTMs
on the same protein can sometimes be better solved by so-called top-down or middle-down
proteomics, as opposed to the more common bottom-up proteomics (. or chemical cleavage)
prior to MS analysis. In contrast, in top-down proteomics, proteins are not digested into
smaller fragments but rather injected and analyzed by a specialized mass spectrometer in its
entirety. In middle-down proteomics, the intact proteins are cleaved into just a few fragments
by limited proteolysis prior to injection into the mass spectrometer. Top-down and middle-
down proteomics are not high throughput and are best carried out on either purified proteins
or protein mixtures of low complexity. Classic examples of studies using top-down, middle-
down, but also bottom-up proteomics on proteins with different PTMs involve histones) and

the p53 tumor suppression protein.
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Genomics Approaches to Investigate Plant Structure and Function:
Case Studies with Photosynthesis and Environmental Signaling

Aashish Ranjan

National Institute of Plant Genome Research, New Delhi

Omics approaches, such as next-generation sequencing in combination with genomics,
transcriptomics, and bioinformatics, have facilitated global insights into the genome and
transcriptome to address specific biological questions relating to structure and function in
different model and non-model plant species. The lecture will involve a detailed
presentation on usage of usage of integrated transcriptomics and genomics approaches
to understand the genetic insights of plant development and physiology of both non-model
as well as model organisms.

Transcriptomics approach was used to decipher the genetic basis of plant
parasitism of an obligate stem plant parasite Cuscuta pentagona (Dodder). Parasitic
plants, one of the most destructive agricultural pests, penetrate and establish vascular
connections through specialized organs called haustoria to steal nutrients and water from
host plants. Dodder transcriptome was de novo assembled using RNAseq reads from
multiple tissues and stages. Subsequent gene expression analysis and dissection of
transcriptional dynamics across the stages identified key genes and gene categories, such
as plant defense and transporter genes, involved in the process of plant parasitism
(Ranjan et al., 2014). Similarly, transcriptomics deciphered the molecular and genetic
basis of patterning in one of the largest unicellular coenocytic alga, Caulerpa taxifolia, with
distinct functional pseudo-organs. The study not only revealed a global, apical-basal
pattern of the transcript distribution across the algal body but also demonstrated the
contribution of transcript partitioning to morphology in plants (Ranjan et al., 2015). In
addition, the genetical genomics approach to investigate the genetic architecture of gene
expression in a model plant tomato will also be briefly discussed. Using an introgression
population developed from a wild and a domesticated tomato, more than 7000 expression
QTL (eQTL) regulating global gene expression patterns in tomato were identified.
Moreover, several genetic hotspots regulating gene expression patterns relating to diverse
biological processes such as plant development, photosynthesis, and defense were also
identified (Ranjan et al., 2016).

The current trends of population growth and the availability of limited agricultural
land and resources have raised serious concerns regarding food security. The exponential
increase in population and rapid global environmental changes observed in recent years
are serious threats to sustainable food production for the planet (Lobell et al, 2012).
Reducing agricultural land and environmental changes further compound the requirement
for increasing crop yield and productivity. Developing crop varieties in order to achieve
greater yields has been a major focus of plant biologists and breeders with a view to
ensuring food availability for an increasing world population under changing environmental
conditions (Long et al., 2015; Zhu et al., 2010). Innovative genomics approaches could be
instrumental in achieving sustainable increases in crop yield and productivity in the wake
of climate change. During the talk, the basic concepts of genomics as well as their usage
for investigating plant structure and function and in crop improvement programs will be
discussed. Moreover, large-scale data analysis to investigate the effects of environmental
effects on crop developmental features will be discussed. The utilization of the natural
variation in leaf features and photochemical and biochemical traits for increasing crop
photosynthetic efficiency will also be discussed.

Developing crop varieties in order to achieve greater yields has been a major focus
of plant biologists and breeders with a view to ensure sustainable food availability for an
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increasing world population under changing environmental conditions. The optimization of
plant developmental traits has great potential for a sustainable increase in crop yield, as
plant performance is strongly associated with, and dependent on, plant development and
growth (Mathan et al., 2016). Increasing photosynthetic efficiency has now been realized
as one of the promising strategies for improving crop yield and productivity. Knowing that
leaves are the primary site of photosynthesis, optimizing leaf morphological and
anatomical features could be instrumental in increasing crop photosynthetic efficiency. We
are using genomics and transcriptomics approaches to harness the natural variation in
rice photosynthesis to identify the genetic loci, genes, and gene-regulatory networks that
could be used for improving photosynthetic efficiency, and thus yield, in crop improvement
programs.

The natural genetic variation in leaf photosynthesis, and underlying developmental,
biochemical, and genetic basis is an overlooked and untapped resource. The genus
Oryza, which includes cultivated rice and more than 20 wild relatives, offers tremendous
genetic variability to explore photosynthetic differences and underlying biochemical and
developmental differences. Photosynthetically efficient wild rice accessions had specific
developmental features, such as larger mesophyll cells with more chloroplasts, distribution
of chloroplasts along the mesophyll cell wall, larger and closer veins, and a smaller
number of mesophyll cells between two consecutive veins (Mathan et al., 2021). The wild
species with higher photosynthesis also exhibited striking differences in leaf shape and
size, as well as differences in Shoot Apical Meristem (SAM) size and leaf initiation rate.
We are, currently, investigating the genetic basis of leaf developmental and biochemical
differences that could be attributed to differences in photosynthesis. Leaf morphological
traits, such as wider and thicker leaves, and anatomical features, such as mesophyll
features and chloroplast surface area contribute to higher photosynthetic efficiency in wild
rice accessions. The comparative transcriptomics approach has dissected the genetic
basis of rice leaf size regulation. Differential gene expression analysis followed by
Principal Component Analysis and a Self-organizing map identified the group of genes
that may contribute to leaf size regulation (Jathar et al., 2022). The gene-expressions
network analysis then identified the major regulators and downstream signals that control
rice leaf size. The signalling module involves Gibberelic Acid, GRF transcription factors,
and downstream cell-cycle components. A more comprehensive comparative
transcriptomic comparison is being used to identify the genetic regulators of the transition
from development to photosynthesis. A detailed biological as well as technical
presentation of the usage of integrated transcriptomic analyses to dissect the genetic
underpinnings of leaf development and photosynthesis will be discussed.

The usage of genomic approaches, complementary to transcriptomic approaches,
strengthens the pursuit of the identification of genes and genetic loci regulating a trait.
large-scale field phenotyping exhibited remarkable variation in leaf photosynthesis and
related leaf physiological and developmental traits among cultivated Indian rice
accessions. While comparative transcriptomics involving wild and cultivated rice identified
genetic regulators of rice leaf size and transition from development to photosynthesis,
GWAS with cultivated landraces identified the genetic loci regulating the desirable leaf
developmental and physiological features. The GWAS results were analyzed to identify
the relevant haploblocks and haplotypes contributing to the leaf photosynthesis and
developmental differences across the rice accessions. These regulators could be
targeted for increasing the photosynthetic efficiency of cultivated rice varieties.

In the last part of the lecture, comparative transcriptomic insights to understand the
plant responses to changing light and temperature conditions will be discussed. Optimum
light and temperature conditions are required to maximize the fitness of the plants. Shade
and small rises in temperature are the inevitable threats to the fitness of the plant under
changing climatic conditions. While shade- and temperature-induced elongation in
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Arabidopsis via Phytochrome Interacting Factors (PIFs), members of bHLH-family
transcription factors, is extensively studied, there is a limited understanding of
comprehensive tissue-specific gene-regulatory networks involved in light and temperature
responses in plants. Moreover, the genetic understanding of signaling and responses to
shade and high temperature in crop plants is scarce. Therefore, we aimed not only to
identify novel regulators of shade and high temperature signalling in Arabidopsis but also
a comparative investigation of signaling and response across Arabidopsis, tomato, and
rice. Organ-specific comparative transcriptome profiling revealed a more pronounced
impact of high temperature on gene expression dynamics than the shade in all three
species. Transcription, development, cell cycle, and hormonal responses were the major
conserved biological pathways affected by shade and high temperature in all three
species. Orthology overlap of shade- and high-temperature-regulated genes were used to
identify conserved molecular networks and regulators for environmental signaling across
the species. Detailed analyses of transcription factors suggested the involvement of novel
regulators belonging to bZIP, NF-Y, CO-like, MYB, NAC, GATA, and Dof-family in the
shade and high-temperature signaling in all the three species along with bHLH, HD-ZIP
and TCP family previously reported for these signaling pathways. In summary, the
comparative transcriptome analysis for shade and high temperature provides
comprehensive information on shade and high temperature signaling across the three
plant species and posits these as key transcriptional regulators mediating cell division,
phytohormone signaling, cell wall and growth responses across evolutionarily different
plant species that could be used to optimize plant growth in a changing environment.

Together, the lecture would underscore the importance of omics approaches and
large-scale data analysis for not only establishing the comprehensive gene-regulatory
modules and their interactions but also for identifying the key genetic regulators for
informed usage in targeted crop improvement programs for increasing yield and
productivity under changing climatic conditions.

References:

- Jathar V, Saini K, Chauhan A, Rani R, Ichihashi Y, Ranjan A (2022). Spatial control of cell division by
GA-OsGRF7/8 module in a leaf explaining the leaf length variation between cultivated and wild rice.
New Phytologist 234(3):867-883.

- Lobell, D. B. and Gourdji, S. M. (2012). The influence of climate change on global crop productivity.
Plant Physiology 160, 1686-1697.

- Long, S. P., Marshall-Colon, A. and Zhu, X.-G. (2015). Meeting the global food demand of the future
by engineering crop photosynthesis and yield potential. Cell 161: 56-66.

- Mathan J, Bhattacharya J, Ranjan A (2016). Enhancing crop yield via the optimization of plant
developmental features. Development 143: 3283-3294.

- Mathan, J., Singh, A., Jathar, V. and Ranjan, A. (2021). High photosynthesis rate in two wild rice
species is driven by leaf anatomy mediating high Rubisco activity and electron transport rate. Journal
of Experimental Botany, 72: 7119-7135.

- Ranjan A, Ichihashi Y, Farhi M, Zumstein K, Townsley BT, David-Schwrtz R, Sinha NR (2014). De
novo assembly and characterization of the transcriptome of the parasitic weed Cuscuta pentagona
identifies genes associated with plant parasitism. Plant Physiology. 166: 1186-1199.

- Ranjan A, Townsley BT, Ichihashi Y, Sinha NR, Chitwood DH (2015). An intracellular transcriptomic
atlas of the giant coenocyte Caulerpa taxifolia. PLoS Genetics. 11(1): e1004900.

- Ranjan A, Budke JM, Rowland SD, Chitwood DH, Kumar R, Carriedo L, Ichihashi Y, Zumstein K,
Maloof JN, Sinha NR (2016). eQTL in a Precisely Defined Tomato Introgression Population Reveal
Genetic Regulation of Gene Expression Patterns Related to Physiological and Developmental
Pathways. Plant Physiology. 172: 328-340.

- Zhu, X.-G., Long, S. P. and Ort, D. R. (2010). Improving photosynthetic efficiency for greater yield.
Annual Review of Plant Biology 61: 235-261.

379



@ Disclaimer

The information contained in this reference manual has been taken from various web resources.
The information is provided by “ICAR-IASRI” and whilst we endeavour to keep the
information up-to-date and correct, we make no representations or warranties of any kind,
express or implied, about the completeness, accuracy, reliability, suitability, or availability with
respect to the website or the information, products, services, or related graphics contained in
the reference manual for any purpose. Any reliance you place on such information is therefore
strictly at your own risk.

In no event we will be liable for any loss or damage including without limitation, indirect or
consequential loss or damage, or any loss or damage whatsoever arising from loss of data or
profits arise out of or in connection with the use of this manual. We have no control over the
nature, content and availability of those sites. The inclusion of any links does not necessarily
imply a recommendation or endorse the views expressed within them.

@ Citation

Rajender Parsad, Girish Kumar Jha, Sudhir Srivastava and Neeraj Budhlakoti (2024).
Statistical and Computational Advances for Bioinformatics Data Analysis in Agriculture:
Practical Aspects, Centre for Advanced Faculty Training, Reference Manual, ICAR-Indian
Agricultural Statistics Research Institute, New Delhi.



	1. IntroBioinfo_16102023
	2. kkc_ASHOKA Super-Computing Facility
	3. sbl_Linux Overview_f
	4. kkc_Biological Databases_f
	5. sbl_Sequence Analysis_f
	6. Sarika_MOLECULAR PHYLOGENY
	7. Asif_DNA signature based SNP and STR marker analysis
	8. DCM_NGS Data Pre-processing, Assembly and Quantification
	9. Sanjeevk_Genome Annotation of RNA-Seq Data _f
	10. GenomeAnnotPractical_SM
	11. Intro_R_Stat_Bioinf_Sudhir-Srivastava
	12. soumya_GWAS
	13. soumya_GWAS_practical
	14. QTL_Mapping
	15. Neeraj_GS_Lecture
	16. Samir_TranscriptomicDataAnalysis
	17. soumya_DEG_Analysis
	18. Intro_Python
	19. Sanjeevk_Machine Learning Tech. in Bionfo_f
	20. sarika_lecture_sardar_patel_university (1)
	21. kkc_Perl Programming_f
	22. Samir_Metagenomics Data Analysis
	23. Statistical Aspects on Analysis of Metagenomics Data
	24. QIIME_AnuMam
	25. Ritwika_Statistical Analysis of Metagenomic Data_CAFT (1)
	26. Protein Structure Prediction
	27. Protein- Ligand Interaction by Performing Docking Studies
	28. MolecularDynamics&Simulation_SM
	29. Proteomics  resourses
	30. Overview of Proteomics Data Analysis_Sudhir Srivastava
	31. Working with Proteomics Data Analysis
	32. Protein Modifications_Dr. M. Grover
	33. AAshish CAFT_Training_IASRI



