
Division of Agricultural Bioinformatics

ICAR-Indian Agricultural Statistics Research Institute

Library Avenue, PUSA, New Delhi - 110012
https://iasri.icar.gov.in/

उच्च संकाय प्रशिक्षण कें द्र
Centre for Advanced Faculty Training

संदर्भ संहिता
Reference Manual

कृषि में जैव सचूना षवज्ञान डटेा षवश्लेिण के शलए

सांख्ययकीय और कम्प्यूटेिनल प्रगतत: प्रायोगगक स्वरूप

Statistical and Computational Advances for

Bioinformatics Data Analysis in Agriculture: Practical Aspects

CAFT Director: Dr. Rajender Parsad

Course Coordinator: Dr. Girish Kumar Jha

Course Co-Coordinator: Dr. Sudhir Srivastava

Course Co-Coordinator: Dr. Neeraj Budhlakoti

काफ्ट तनदेिक: डॉ. राजेन्द्द्र प्रसाद
पाठ्यक्रम समन्द्वयक: डॉ. गगरीि कुमार झा
पाठ्यक्रम सि-समन्द्वयक: डॉ. सुधीर श्रीवास्तव
पाठ्यक्रम सि-समन्द्वयक: डॉ. नीरज बुढ़लाकोटी

https://iasri.icar.gov.in/

AIE, .F.Z4,-4T.F.A0.A.A. 01 GH, 2024

ICAR-IASRI is a premier Institute of relevance in Statistical Sciences (Statistics, Computer
Applications and Bioinformatics) and their judicious fusion in agricultural sciences for enriching
quality of agricultural research and informed policy decision making. Ever since its inception in 1930,
as a small Statistical Section of the then Imperial Council of Agricultural Research, the Institute has
grown in stature and made its presence felt both nationally and internationally. The Institute has been
very actively pursuing advisory service that has enabled the institute to make its presence felt both in
National Agricultural Research and Education System (NARES) and National Agricultural Statistics
System (NASS). The lInstitute has taken a lead in creatinga high-end statistical computing environment
in NARES.

FOREWORD

Bioinformatics is an interdisciplinary field comprising of biology, statistics and computer science.
During the last two decades enormous sequence data have been generated in biological science, firstly
with the onset of sequencing the genomes of living organisms and, secondly, rapid application of high
throughput experimental techniques in laboratory research. Application of various bioinformatics tools
in biological research enables storage, retrieval, analysis, annotation and visualization of results, and
promotes better understanding of biological systems in their entirety. This will further lead to
development of tools and techniques for sustainable agriculture. The training programmes organized
by the Institute are very useful in understanding the advances in agricultural bioinformatics and
computational biology to the researchers.

The training programme Statistical and Computational Advances for Bioinformatics Data
Analysis in Agriculture: Practical Aspects has been especially designed to derive the maximum
academic advantage through interaction with faculty members and fellow participants. I am sure that
the knowledge assimilated from this training programme will enable the participants to have better
understanding of bioinformatics and computational biology, which will also benefit them in handling
and analyzing the bioinformatics data by using appropriate tools and software.
The course contents are intertwining of theory and application. The topics are covered under different
modules: (1) Basics of Computational Tools and Techniques [Introduction to Linux; R/Python/Perl
Programming Languages; Methods/Tools/Software/Databases relevant to Bioinformatics], (2) NGS
Data Analysis [NGS Data Pre-processing; Genome Assembly and Annotation; Analysis of
Transcriptomics, Metagenomics and Non-coding RNA Data; Genome-Wide Association Studies and
Genomic Selection], and (3) Proteomics Data Analysis [Protein Structure Prediction; Molecular
Docking; Protein-Protein Interaction Network; Molecular Dynamics and Simulation; Proteomics
Expression Data Analysis].

The faculty for this course comprises of eminent scientists well established in the field of
Bioinformatics/ Computational Biology/ Agricultural Statistics/ Computer Applications/
Genomics and other disciplines. The lecture notes given in the reference manual provide an exposition
of the subject. I hope that the reference manual will be quite useful to the participants. I take this
opportunity to thank the entire faculty for doing a wonderful job. I wish to complement Course
Coordinator & Head, Division of Agricultural Bioinformatics, Dr. Girish K. Jha and Course Co
coordinators, Dr. Sudhir Srivastava and Dr. Neeraj Budhlakoti of this training programme, for bringing
out this valuable document in time. We look forward to suggestions from every corner in improving
this reference manual.

New Delhi

January 01, 2024
(Rajender Parsad)

Director, ICAR-IASRI

I..H.4,-41.4.40.H.A.

qroHE-HH-4U#

The ICAR-Indian Agricultural Statistics Research Institute is a premier Institute in the disciplines of
Agricultural Statistics, Computer Applications and Bioinformatics in the country. The Institute has been
engaged in conducting research, teaching and organizing training programmes in Agricultural Statistics
with special emphasis on Experimental Designs, Sampling Techniques, Statistical Genetics, Forecasting
Techniques, Bioinformatics and Computer Applications. The Institute has been very actively pursuing
advisory service that has enabled the institute to make its presence felt both in National Agricultural
Research and Education System (NARES) and National Agricultural Statistics System (NASS). The
Institute has taken a lead in developing Statistical Software Packages useful for Agricultural Research.

PREFACE

During the last two decades enormous sequence data have been generated in biological science,
firstly with the onset of sequencing the genomes of living organisms and, secondly, rapid application of
high throughput experimental techniques in laboratory research. Application of various bioinformatics
tools in biological research enables storage, retrieval, analysis, annotation and visualization of results, and
promotes better understanding of biological systems in their entirety. This will further lead to
development of tools and techniques for sustainable agriculture. The aim of the training programme is to
familiarize the participants to statistical and computational approaches for bioinformatics data analysis in
agriculture and in upgrading their capabilities in research, teaching and training.

The training focus on the basics of computational tools & techniques, statistical and
computational approaches involved in the analysis of genomics, transcriptomics, metagenomics, and
proteomics data. Special emphasis has been laid on concepts, issues and solutions related to
agricultural bioinformatics. Various lectures were included in this training programme: Super
Computing Facility ASHOKA; Basics of Linux and R/Python/Perl Programming Languages:
Biological Databases: Sequence and Phylogenetic Analysis; SNP and SSR Mining: Introduction to
NGS Data Analysis; Genome Assembly and Annotation; Analysis of Transcriptomics, Metagenomics
and Non-coding RNA Data; Genome-Wide Association Studies and Genomic Selection; Protein
Structure Prediction; Molecular Docking: Molecular Dynamics and Simulation; Proteomics
Expression Data Analysis; Post-Translational Modifications.

We would like to take this opportunity to thank the faculty of the Institute who spared their
valuable time in making this course meaningful and successful that helped in bringing out this
manual in time. We are also thankful to the various ICAR Institutes, State Agricultural Universities
and Bureaus for deputing their employees in this training programme. We are grateful to Dr. Rajender
Parsad, Director, ICAR-IASRI for his valuable guidance and making all necessary facilities available
for smooth conduct of the course. We are thankful to each one who supported directly or indirectly
for preparing this training manual.

(Girish K. Jha)
Course Coordinator &
Head, Division of Bioinformatics
ICAR-IASRI

(Sudhir Srivastava)
Course Co-Coordinator

(Neeraj Budhlakoti)
Course Co-Coordinator

CONTENTS

S. No. Topic Page No.

1 Introduction to Bioinformatics 1-22

2 ASHOKA: Functioning and Activities 23-29

3 Introduction to Linux Basics 30-40

4 Biological Databases: An Overview 41-48

5 Sequence Analysis 49-66

6 Phylogenetic Analysis 67-77

7 DNA Signature based SNP and SSR Mining 78-87

8 Genome Assembly 88-94

9 Genome Annotation 95-106

10 Hands-on Session for Genome Annotation 107-118

11 Introduction to R for Bioinformatics 119-151

12 Genome-Wide Association Studies 152-158

13 Hands-on Session for GWAS 159-171

14 An Introduction to Quantitative Trait Loci (QTL)
Mapping

172-180

15 Genomic Selection: Concept, Methods and Challenges 181-191

16 Transcriptomic Data Analysis 192-197

17 Hands-on Session for Transcriptomic Data Analysis 198-203

18 Introduction to Python Programming 204-227

19 Role of Machine Learning Techniques in Bioinformatics 228-237

20 Analysis of Non-coding Sequencing Data 238-242

21 Perl Programming for Bioinformatics 243-253

22 Overview of Metagenomics Data Analysis 254-260

23 Statistical Aspects of Metagenomics Data Analysis 261-269

24 Metagenomics Data Analysis using QIIME 2 270-273

25 Statistical Analysis of Metagenomics Data 274-289

26 Protein Structure Prediction 290-298

27 Molecular Docking 299-313

28 Molecular Dynamics and Simulation 314-325

29 Online Resources of Proteomics Data 326-344

30 Overview of Proteomics Data Analysis 345-352

31 Working with Proteomics Data Analysis 353-367

32 Overview of Post-Translational Modifications 368-376

33 Genomics Approaches to Investigate Plant Structure
and Function: Case Studies with Photosynthesis and
Environmental Signaling

377-379

Introduction to Bioinformatics

Girish Kumar Jha, Sneha Murmu, Soumya Sharma and Ritwika Das

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

History

 1950-70s:

In the early 1950s, there was still controversy surrounding DNA's role as the carrier of

genetic information. DNA's genetic role was firmly established in 1952 through the Hershey-

Chase experiment. While the double-helix structure of DNA was revealed in 1953, it took

more years to decipher the genetic code and develop DNA sequencing methods. Meanwhile,

significant progress was made in protein analysis, especially with the publication of insulin's

amino acid sequence in the late 1950s. This achievement spurred the development of protein

sequencing methods, like the Edman degradation method, which allowed for automated

sequencing of more than 15 protein families. However, a challenge with protein sequencing

was assembling the complete sequence for large proteins, leading to the early development of

bioinformatics software to address this issue.

Margaret Dayhoff, often referred to as the "mother and father of bioinformatics," was a

physical chemist who recognized the potential of applying computational methods to biology

and medicine. She collaborated with physicist Robert S. Ledley and together, in the late

1950s, they developed COMPROTEIN, one of the earliest bioinformatics software, for

determining protein primary structure using Edman peptide sequencing data. They used this

software to tackle the challenge of assembling complete sequences for large proteins, which

was a significant computational problem. Dayhoff contributed to simplifying the handling of

protein sequence data by developing the one-letter amino acid code, which is still in use

today.

➢ The Birth of Sequence Databases:

Dayhoff and Eck's 1965 "Atlas of Protein Sequence and Structure" was the first biological

sequence database. It contained 65 protein sequences, providing a basis for early

computational analysis. Researchers began to consider the idea that protein sequences might

reveal evolutionary history, similar to how language evolves, where the arrangement of letters

conveys meaning.

➢ The Concept of Orthology:

Emile Zuckerkandl and Linus Pauling introduced the term "Paleogenetics" in 1963 to explore

the evolutionary aspects of biomolecular sequences. They observed that orthologous proteins

from different species showed varying degrees of similarity, correlating with their

evolutionary divergence. Orthology, defined by Walter M. Fitch in 1970, described homology

resulting from speciation events. This observation led to the hypothesis that orthologous

proteins evolved from a common ancestor, and their sequences could be used to predict

ancestral sequences and trace evolutionary history.

➢ Challenges in Sequence Alignment:

Initial efforts in sequence-based phylogenetic studies focused on closely related proteins that

could be assessed visually for homology. However, for more distant or unequal-length protein

sequences, visual comparison was impractical and often led to errors.

1

In 1970, Needleman and Wunsch developed the first dynamic programming algorithm for

pairwise protein sequence alignments. Multiple sequence alignment (MSA) algorithms

emerged in the early 1980s, addressing the challenge of aligning numerous sequences of

different lengths more efficiently. In 1987, Da-Fei Feng and Russell F. Doolitle developed a

practical approach to multiple sequence alignment (MSA) known as "progressive sequence

alignment." Their method involved several steps:

• Performing a Needleman–Wunsch alignment for all possible sequence pairs.

• Extracting pairwise similarity scores from each of these pairwise alignments.

• Using these similarity scores to construct a guide tree, which represents the

relationships between sequences.

• Aligning the sequences in a stepwise manner, starting with the two most similar

sequences and then progressively adding the next most similar sequences according to

the guide tree.

In 1988, the popular MSA software CLUSTAL was developed as a simplification of the

Feng–Doolittle algorithm. CLUSTAL has remained in use and continued to be maintained up

to the present day. This software made MSA more accessible and efficient, allowing

researchers to align multiple sequences effectively.

➢ A Mathematical Framework for Amino Acid Substitutions (1978):

Margaret Dayhoff, Schwartz, and Orcutt developed the first probabilistic model of amino

acid substitutions. The model was based on 1572 point accepted mutations (PAMs) in the

phylogenetic trees of 71 protein families. They created a 20x20 asymmetric substitution

matrix containing probability values based on observed amino acid mutations. This matrix

introduced the concept of substitutions as a measurement of evolutionary change, shifting

from the previous concept of evolutionary distance based on the least number of changes.

 Paradigm Shift from Protein to DNA Analysis (1970-1980):

Francis Crick's sequence hypothesis confirmed that DNA encodes information for proteins.

DNA sequencing methods, including Maxam-Gilbert (1976) and Sanger's "plus and minus"

method (1977), made DNA sequencing more accessible. The Sanger chain termination

method (1977) remains in use today. DNA sequences could potentially provide information

about all proteins in an organism. Manual tasks like comparisons, calculations, and pattern

matching were more efficiently performed by computers.

➢ Development of Sequence Analysis Software (1979):

Roger Staden's software (1979) was one of the first to analyze Sanger sequencing reads. The

software could search for overlaps, verify, edit, and join sequence reads, and annotate and

manipulate sequence files. It introduced additional characters ("uncertainty codes") to record

basecalling uncertainties in sequence reads. Staden's Package is still developed and

maintained today.

➢ Using DNA Sequences in Phylogenetic Inference:

Early phylogenetic trees were reconstructed from protein sequences with a focus on

maximum parsimony. Parsimony methods assumed minimal evolutionary changes but could

fail with moderate to large changes. DNA sequences provided additional information, such as

synonymous mutations. Joseph Felsenstein introduced maximum likelihood (ML) methods

for phylogenetic tree inference from DNA sequences. ML estimation involved finding the

tree with the highest probability of evolving the observed data. Bioinformatics tools and

2

statistical methods based on ML and Bayesian statistics have been developed and are still in

use today.

➢ Overcoming Technical Limitations in the Late 1970s:

The late 1970s faced technical limitations that needed addressing to broaden computer use in

DNA analysis. The subsequent decade played a pivotal role in addressing these issues and

advancing the field.

➢ Molecular Methods for Targeting and Amplifying Specific Genes:

Genes are less abundant and cannot be individually sequenced, as they are contiguous on

DNA molecules and present in low copies per cell. A solution emerged when Jackson,

Symons, and Berg (1972) used restriction endonucleases and DNA ligase to cut and insert

circular SV40 viral DNA into lambda DNA. E. coli cells were transformed with this

construct, and the inserted DNA was replicated and amplified in the host organism. This

experiment pioneered the isolation and amplification of genes independently from their

source organism. Concerns about ethical issues led to a moratorium on the use of

recombinant DNA, and guidelines were established during the 1975 Asilomar conference.

➢ Invention of Polymerase Chain Reaction (PCR):

The polymerase chain reaction (PCR) was a significant development that allows DNA

amplification without cloning procedures. The first description of "repair synthesis" using

DNA polymerase was in 1971 by Kjell Kleppe et al. The invention of PCR is credited to Kary

Mullis for his substantial optimizations, including the use of thermostable Taq polymerase

and the development of the thermal cycler. Mullis patented the process and gained

recognition for inventing PCR. Both gene cloning and PCR are widely used in DNA library

preparation, critical for obtaining sequence data.

 DNA Sequencing and Bioinformatics in the 1980s:

The late 1970s saw the emergence of DNA sequencing, along with enhanced DNA

manipulation techniques. DNA sequencing and manipulation led to increased availability of

sequence data. Access to computers and bioinformatics software also grew during the 1980s,

facilitating the analysis of sequence data.

 1990-2000: Genomics, Structural Bioinformatics, and the Information Superhighway

➢ Dawn of the Genomics Era:

In 1995, the first complete genome sequencing of a free-living organism (Haemophilus

influenzae) was achieved by The Institute for Genomic Research (TIGR), led by J. Craig

Venter. The Human Genome Project, initiated in 1991 by the U.S. National Institutes of

Health, aimed to sequence the human genome and cost $2.7 billion over 13 years. Celera

Genomics led a private effort to sequence the human genome in competition with the publicly

funded Human Genome Project, achieving it at one-tenth of the cost due to different

experimental strategies.

➢ Challenges in Early Genomics:

Sequencing genomes was costly and time-consuming; for example, sequencing a human

genome with 2018 technology would cost $1000 and take less than a week, but older methods

were much slower. Specialized software was needed to handle the massive amount of

3

sequencing data. Several Perl-based software tools were developed in the mid to late 1990s

for assembling whole-genome sequencing reads.

➢ Emergence of the Internet:

The rise of the World Wide Web (WWW) in the mid-1990s revolutionized communication

and enabled the creation of online bioinformatics resources. Nucleotide sequence databases

like EMBL and GenBank became accessible online in the early 1990s. The National Center

for Biotechnology Information (NCBI) made its website and tools, including BLAST,

available online in 1994. Major databases such as Genomes (1995), PubMed (1997), and

Human Genome (1999) were established and are still in use today.

➢ Structural Bioinformatics:

Advances allowed computers to predict protein secondary and tertiary structures with varying

degrees of certainty. Molecular dynamics simulations became possible, although they

required significant computational resources. The use of graphics processing units (GPUs)

and supercomputers aided in making molecular dynamics simulations more accessible.

 2000-2010: High-Throughput Bioinformatics

➢ Second-Generation Sequencing:

Second-generation sequencing (next-generation sequencing or NGS) began with the '454'

pyrosequencing technology. These technologies enabled the sequencing of thousands to

millions of DNA molecules in a single machine run.

➢ Biological Big Data:

The drop in DNA sequencing costs and the adoption of massively parallel sequencing

resulted in exponential growth in sequence data in public databases. Sequencing data has

exceeded the exabyte (10^18) level. New repository infrastructure for model organisms and

general genomic databases emerged to store, organize, and make data accessible. The

Genomic Standards Consortium was established in 2005 to define the minimum information

required for genomic sequences.

Aim

▪ Data acquisition and database development

To organize data in a way that allows researchers to access existing information and to

submit new entries as they are produced.

▪ Tool development

To develop tools and resources that aid in the analysis of data.

▪ Data analysis

To use different tools to analyze the data and interpret the results in a biologically

meaningful manner

Branches

There are several branches of Bioinformatics (Figure 1). Some of them are explained below.

4

Figure 1: Branches of Bioinformatics

 Genomics

Genomics is a fundamental field in bioinformatics that focuses on the study of an

organism's entire genetic material, which is stored in its DNA (or RNA for some viruses).

This genetic material, often referred to as the genome, contains all the information needed

to build and maintain an organism. Genomics aims to understand and analyze the

structure, function, evolution, and variations in the genome. Here are the key components

of genomics in bioinformatics:

▪ Sequencing: Genomic research often begins with DNA sequencing. This process

involves determining the order of nucleotides (A, T, C, G) in a DNA molecule. There

are various sequencing technologies, such as Sanger sequencing and next-generation

sequencing (NGS), which allow scientists to read and decode the genetic information.

▪ Genome Assembly: The raw sequencing data obtained is fragmented into smaller

pieces, and the bioinformatics part of genomics involves assembling these pieces to

create a complete genome. Genome assembly algorithms help organize and connect

these sequences to form a coherent picture of the genome.

▪ Functional Annotation: Once the genome is assembled, the next step is to identify and

annotate the functional elements. This includes finding genes (coding regions),

regulatory sequences, non-coding regions, and other structural components.

Bioinformatics tools predict the locations of genes and their functions based on

sequence similarity, conserved motifs, and other features.

▪ Comparative Genomics: Genomic sequences of different organisms, both within the

same species and across species, are compared to identify similarities and differences.

Comparative genomics helps in understanding evolutionary relationships, studying

gene conservation, and discovering genes responsible for specific traits or diseases.

▪ Structural Genomics: Structural genomics focuses on determining the three-

dimensional structures of proteins and other macromolecules encoded by the genome.

This is crucial for understanding protein functions and interactions. Techniques like

X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy are used

in structural genomics.

5

▪ Functional Genomics: This field aims to understand the functions of genes and their

products. Functional genomics methods, such as transcriptomics (studying gene

expression), proteomics (studying proteins), and metabolomics (studying

metabolites), provide insights into how genes are expressed and how they influence

an organism's biology.

▪ Phylogenomics: Phylogenomics combines genomics and phylogenetics to study

evolutionary relationships among species. It uses genomic data to reconstruct

phylogenetic trees and understand the evolutionary history of different organisms.

▪ Genomic Variation: Genomic variation studies focus on identifying variations in the

genome, such as single nucleotide polymorphisms (SNPs), insertions, deletions, and

copy number variations. These variations can be associated with diseases and traits.

 Transcriptomics

Transcriptomics is a branch of bioinformatics and genomics that focuses on the study of

transcriptomes, which are the complete sets of RNA transcripts produced in a cell, tissue,

or organism. These RNA transcripts, often referred to as messenger RNA (mRNA),

provide critical information about which genes are actively being expressed and to what

extent in a specific biological sample. Understanding transcriptomes is vital for

unraveling the molecular mechanisms underlying various biological processes and

diseases. Here are the key components of transcriptomics in bioinformatics:

▪ Data Generation: Transcriptomics begins with the generation of RNA sequencing

(RNA-Seq) data. RNA-Seq is a high-throughput technology that allows researchers to

identify and quantify the RNA molecules present in a biological sample. It provides

information about gene expression levels, alternative splicing, and the presence of

non-coding RNAs, among other things.

▪ Data Preprocessing: The raw RNA-Seq data typically contains errors, biases, and

artifacts. Preprocessing involves cleaning and quality-checking the data to ensure its

reliability. This step includes tasks like adapter removal, read alignment to the

reference genome or transcriptome, and removal of duplicate reads.

▪ Gene Expression Quantification: After preprocessing, bioinformaticians quantify gene

expression levels. This step involves determining the number of RNA fragments that

map to each gene, which serves as a measure of the gene's activity. Different

algorithms and tools are available for this purpose.

▪ Differential Expression Analysis: One of the key objectives in transcriptomics is to

identify genes that are differentially expressed under different experimental

conditions. This analysis helps researchers understand how gene expression is altered

in response to various stimuli, diseases, or genetic mutations. Statistical methods are

used to compare expression levels between conditions.

▪ Functional Analysis: Transcriptomics data can be further analyzed to gain insights

into the biological functions and pathways affected by changes in gene expression.

Tools and databases, such as gene ontology (GO) analysis and pathway enrichment

analysis, help in understanding the roles of differentially expressed genes.

6

▪ Alternative Splicing Analysis: In addition to quantifying gene expression,

transcriptomics also allows for the study of alternative splicing events. Alternative

splicing can generate multiple mRNA isoforms from a single gene, expanding the

functional diversity of the proteome.

▪ Long Non-Coding RNA (lncRNA) Analysis: Transcriptomics can reveal the presence

and differential expression of long non-coding RNAs, which play crucial roles in gene

regulation and various cellular processes.

 Proteomics

Proteomics is a branch of bioinformatics and biology that focuses on the large-scale study

of proteins. It involves the comprehensive analysis of the structure, function, and

expression of all the proteins in a biological system, such as a cell, tissue, or organism.

Proteins are crucial molecules in living organisms, responsible for performing various

biological functions, and understanding their properties and behaviors is essential for

gaining insights into complex biological processes. Here are some key aspects of

proteomics in bioinformatics:

▪ Protein Identification and Characterization: Proteomics involves identifying and

characterizing proteins. This can include determining the amino acid sequence, post-

translational modifications (e.g., phosphorylation, glycosylation), and three-

dimensional structures of proteins.

▪ Protein Expression and Quantification: Proteomic studies aim to measure the relative

abundance of proteins in different biological conditions. This can help researchers

understand how proteins are regulated and expressed under various circumstances,

such as disease states or drug treatments.

▪ Protein-Protein Interactions: Proteins rarely function in isolation; they often work

together in complexes. Proteomics helps in identifying protein-protein interactions,

which are crucial for understanding cellular processes and signaling pathways.

▪ Functional Annotation: Assigning biological functions to proteins is a fundamental

goal of proteomics. This may involve studying the role of proteins in specific

pathways, cellular processes, and disease mechanisms.

▪ Biomarker Discovery: Proteomics plays a vital role in biomarker discovery for

diseases. By comparing protein profiles in healthy and diseased samples, researchers

can identify potential biomarkers for early disease diagnosis or monitoring treatment

responses.

▪ Mass Spectrometry and Other Techniques: Mass spectrometry is a common

technology used in proteomics. It allows the precise measurement of protein masses

and has the capability to identify and quantify thousands of proteins simultaneously.

Other techniques, like gel electrophoresis and antibody-based assays, are also used in

proteomic studies.

7

 Metabolomics

Metabolomics is a subfield of bioinformatics that focuses on the comprehensive analysis

of small molecules, known as metabolites, in biological systems. Metabolites include a

wide range of compounds such as sugars, amino acids, lipids, organic acids, and other

small molecules that play crucial roles in various biochemical processes within living

organisms. Metabolomics aims to identify, quantify, and analyze these metabolites to gain

insights into an organism's metabolism and understand its biochemical pathways, which

can be essential for both basic research and practical applications. Following are the key

concepts of metabolomics in bioinformatics:

▪ Data Generation: Metabolomics data is generated through various analytical

techniques, such as mass spectrometry (MS), nuclear magnetic resonance

spectroscopy (NMR), and liquid or gas chromatography. These techniques allow

researchers to detect and quantify a wide range of metabolites present in a biological

sample.

▪ Data Preprocessing: Metabolomics datasets can be large and complex, and

preprocessing is a crucial step in data analysis. It involves data cleaning, alignment,

normalization, and the removal of any technical variation or noise. This step ensures

that the data is suitable for subsequent analysis.

▪ Metabolite Identification: One of the primary goals of metabolomics is to identify the

metabolites detected in the sample. Bioinformatics tools and databases play a critical

role in matching experimental data to known metabolite profiles. This process often

involves spectral databases, reference libraries, and computational algorithms to make

accurate identifications.

▪ Quantitative Analysis: Metabolomics data also provides quantitative information

about the abundance of metabolites in a sample. Researchers can compare the

concentration of specific metabolites across different samples or conditions to

understand the metabolic changes.

▪ Statistical and Multivariate Analysis: Bioinformatics tools are used to analyze

metabolomics data statistically. Techniques like principal component analysis (PCA),

partial least squares-discriminant analysis (PLS-DA), and hierarchical clustering can

reveal patterns and trends in the data, helping researchers identify biomarkers or

distinguish between sample groups.

▪ Pathway Analysis: Metabolomics data can be integrated with other omics data, such

as genomics and proteomics, to gain a more comprehensive understanding of the

biological systems. Pathway analysis tools help researchers map metabolites onto

known metabolic pathways, identifying key pathways and their interactions.

▪ Biomarker Discovery: Metabolomics is often applied to discover biomarkers, which

are specific metabolites associated with a particular disease or condition. Identifying

biomarkers can be valuable in disease diagnosis, prognosis, and treatment monitoring.

 System Biology

Systems biology is an interdisciplinary field in bioinformatics that focuses on

understanding complex biological systems by studying how individual components, such

8

as genes, proteins, and metabolites, interact and function as a whole. It aims to provide a

comprehensive and integrated view of biological processes to better explain and predict

the behavior of living organisms. Following are the key aspects of systems biology in

bioinformatics:

▪ Holistic Approach: Systems biology takes a holistic approach to biology, looking

beyond the individual components. It considers the interactions, feedback loops, and

dependencies among genes, proteins, and other molecules in biological systems.

▪ Data Integration: It involves integrating data from various sources, such as genomics,

transcriptomics, proteomics, and metabolomics, to create a comprehensive picture of

biological processes. This integration is often achieved through computational

methods.

▪ Mathematical and Computational Modeling: Systems biology heavily relies on

mathematical and computational modeling techniques. These models simulate

biological processes and provide a framework for understanding and predicting

system behavior. Examples of modeling techniques include differential equations,

agent-based models, and network analysis.

▪ Network Analysis: Biological networks, such as protein-protein interaction networks

and metabolic pathways, are a central focus of systems biology. Network analysis

helps uncover relationships and patterns within complex biological systems.

▪ Dynamic Processes: Systems biology often deals with dynamic processes. It explores

how biological systems change over time in response to various stimuli,

environmental conditions, or genetic variations.

▪ Hypothesis Generation and Testing: Systems biology generates hypotheses about how

biological systems work. These hypotheses can then be tested through experiments,

helping to refine the models and improve our understanding of the system.

▪ Biomedical Applications: Systems biology has practical applications in medicine and

drug discovery. It can be used to study complex diseases, identify potential drug

targets, and optimize treatment strategies.

▪ Quantitative Biology: A quantitative approach is a hallmark of systems biology. It

involves measuring and quantifying various biological components and processes,

often using high-throughput technologies.

 Nutritional Genomics

Nutritional genomics, often referred to as nutrigenomics, is a branch of genomics that

focuses on the interaction between nutrition and genes. It aims to understand how an

individual's genetic makeup influences their response to specific nutrients, foods, and

dietary patterns. Nutritional genomics plays a significant role in agriculture by helping

improve crop production and the nutritional quality of food. Following are the key points

how it applies to agriculture in the context of bioinformatics:

▪ Genomic Sequencing of Crops: One of the key aspects of nutritional genomics in

agriculture is the genomic sequencing of crop plants. Advances in bioinformatics and

9

genomics have made it possible to sequence the entire genomes of various crops, such

as rice, wheat, and maize. This provides a comprehensive understanding of the genes

and genetic variations present in these crops.

▪ Identification of Nutritional Genes: Bioinformatics tools are used to identify genes

related to the nutritional content of crops. This includes genes that influence the levels

of essential nutrients like vitamins, minerals, and proteins. By identifying these genes,

researchers can target specific genetic traits for crop improvement.

▪ Marker-Assisted Breeding: Nutritional genomics, coupled with bioinformatics,

facilitates marker-assisted breeding programs. Researchers can identify genetic

markers associated with desirable nutritional traits in crops. This helps in the selection

and breeding of crop varieties with improved nutritional content.

▪ Customized Diets for Livestock: Nutritional genomics also plays a role in livestock

agriculture. By understanding the genetic makeup of animals, farmers can tailor their

diets to optimize growth, health, and the nutritional quality of animal products, such

as meat and dairy.

▪ Optimizing Soil and Crop Interactions: Understanding the genetic factors that

influence a crop's ability to absorb nutrients from the soil is crucial for sustainable

agriculture. Bioinformatics helps in studying these interactions and optimizing

nutrient uptake for crop growth.

▪ Resilience to Environmental Stress: Nutritional genomics can help in developing crop

varieties that are resilient to environmental stress, such as drought or nutrient-poor

soil. By understanding the genetic basis of stress responses, crops can be engineered

to thrive under challenging conditions.

▪ Personalized Nutrition: In the context of agriculture, personalized nutrition refers to

tailoring crop choices and farming practices based on the nutritional needs of specific

regions or populations. Nutritional genomics can help identify which crops are best

suited for a particular area, taking into account genetic factors.

 Metagenomics

Metagenomics is a powerful field within bioinformatics that has significant implications

for agriculture. It involves the study of genetic material collected directly from

environmental samples, such as soil, water, or plant tissues. In the context of agriculture,

metagenomics has several applications:

▪ Soil Health and Microbiome Analysis: Metagenomics is used to analyze the soil

microbiome, which includes bacteria, fungi, and other microorganisms.

Understanding the diversity and functional potential of these microorganisms is

crucial for assessing soil health. Healthy soils are essential for crop growth and

productivity. Metagenomics helps in identifying beneficial microbes, understanding

their roles in nutrient cycling and disease suppression, and designing strategies for

sustainable agriculture.

▪ Plant-Microbe Interactions: Metagenomics enables the study of interactions between

plants and the microorganisms in the rhizosphere (the soil zone around plant roots).

10

These interactions play a vital role in nutrient uptake, disease resistance, and overall

plant health. By analyzing the metagenome of the rhizosphere, researchers can gain

insights into the beneficial or pathogenic microorganisms present and their impact on

crop growth.

▪ Crop Pathogen Detection: Metagenomics can be used to identify and characterize

pathogens in agricultural environments. By analyzing metagenomic data from

infected plant samples, researchers can detect the presence of harmful pathogens, such

as viruses, bacteria, or fungi. This information is valuable for disease management

and quarantine measures.

▪ Biological Control: Metagenomics can assist in identifying natural enemies of

agricultural pests. Beneficial microorganisms or nematodes can be detected and used

for biological pest control strategies, reducing the reliance on chemical pesticides.

▪ Microbial-Based Crop Enhancements: Metagenomics helps in the discovery and

development of microbial-based products that can enhance crop growth, nutrient

uptake, and stress resistance. These products, such as biofertilizers or biostimulants,

are environmentally friendly alternatives to traditional agricultural inputs.

▪ Monitoring Ecosystem Changes: Metagenomics can be used to monitor changes in

agricultural ecosystems over time. This includes tracking shifts in microbial

populations due to changes in land use, cropping systems, or climate conditions.

Understanding these changes can guide more sustainable agricultural practices.

▪ Resilience to Climate Change: As climate change impacts agriculture, metagenomics

can provide insights into how plant-microbe interactions may be affected. This

information is essential for developing crop varieties and management strategies that

can adapt to changing environmental conditions.

▪ Waste Management: In livestock farming, metagenomics can be used to manage

waste, such as manure. By understanding the microbial communities in waste,

strategies for reducing environmental contamination and converting waste into

bioenergy or other valuable products can be developed.

 Cheminformatics

Cheminformatics is a specialized field within bioinformatics that deals with the storage,

retrieval, and analysis of chemical information and data, particularly in the context of

biological and agricultural applications. In the context of agriculture, cheminformatics

plays a crucial role in various aspects of crop management, agricultural research, and

biotechnology. Here's how cheminformatics is applied in bioinformatics to benefit

agriculture:

▪ Pesticide and Fertilizer Development: Cheminformatics is used to design and develop

new pesticides and fertilizers. Researchers can use databases of chemical structures

and properties to predict the effectiveness and safety of these agrochemicals. This

helps in reducing the environmental impact and improving crop yields.

11

▪ Chemical Safety: Cheminformatics tools are used to assess the safety of chemicals

used in agriculture. This includes predicting the toxicity of pesticides and assessing

their impact on non-target organisms, such as beneficial insects and pollinators.

▪ Drug Discovery for Plant Health: Bioinformatics and cheminformatics can be used to

discover compounds that protect plants from diseases. This is essential in reducing the

need for chemical pesticides. Identifying compounds that enhance plant immunity or

inhibit pathogens is a common application.

▪ Plant Breeding: In modern agriculture, cheminformatics plays a role in crop

improvement. For instance, researchers can use chemical profiling to identify

compounds responsible for desirable traits in crops, such as nutritional content or

disease resistance. This information can guide traditional breeding programs or

genetic engineering efforts.

▪ Metabolomics: Cheminformatics tools are crucial in metabolomics, which involves

studying the chemical processes occurring within organisms, including plants.

Metabolomics data can be used to understand how plants respond to environmental

changes, stress, and disease, helping in crop management and breeding.

▪ Herbicide Design: Cheminformatics assists in designing herbicides that selectively

target weeds while sparing crop plants. Understanding the chemical properties and

interactions of herbicides with plant biology is key to developing effective and

environmentally friendly weed control solutions.

▪ Molecular Docking: Cheminformatics and molecular docking techniques are used to

study how chemicals interact with biological molecules like plant proteins and

enzymes. This information is valuable in understanding how chemicals can influence

plant processes and can be used in the development of targeted agrochemicals.

▪ Environmental Impact Assessment: Cheminformatics can be used to assess the

environmental impact of agricultural chemicals. This includes predicting their

persistence in soil and water, their potential to leach into groundwater, and their

impact on non-target organisms.

Computational resources

Databases and algorithms are essential components of bioinformatics, a multidisciplinary

field that combines biology, computer science, and data analysis. They play a crucial role in

managing, analyzing, and interpreting biological data, making it easier for researchers to

extract meaningful information from large datasets. An overview of databases and algorithms

commonly used in bioinformatics are as follows:

 Databases in Bioinformatics:

Genomic Databases: These contain DNA and RNA sequences from various species.

Examples include GenBank, Ensembl, and RefSeq. Genomic databases provide a wealth of

genetic information used in sequence analysis, gene annotation, and comparative genomics.

Protein Databases: These store information about proteins, including sequences, structures,

and functional annotations. Popular protein databases include UniProt, Protein Data Bank

12

(PDB), and Pfam. Researchers use these databases to study protein structure, function, and

evolution.

Gene Expression Databases: These house data related to gene expression levels in different

tissues, conditions, or experimental settings. The Gene Expression Omnibus (GEO) and

ArrayExpress are examples of repositories for gene expression data.

Metabolic Pathway Databases: These contain information about biochemical pathways and

the interactions between molecules in metabolic processes. KEGG and Reactome are widely

used for pathway analysis.

 Algorithms

In bioinformatics, several key algorithms and methods are used for tasks related to sequence

analysis and phylogenetics. These algorithms are fundamental for understanding the

relationships between biological sequences, such as DNA, RNA, and proteins. Here, I'll

provide an overview of pairwise and multiple sequence alignment, substitution matrices, and

phylogenetic tree reconstruction algorithms:

1. Pairwise Sequence Alignment:

Pairwise sequence alignment is used to identify regions of similarity between two biological

sequences. This can be helpful for comparing sequences for structural and functional

analysis.

Needleman-Wunsch Algorithm: This algorithm performs global alignment, meaning it

compares the entire sequences and finds the optimal alignment by maximizing a similarity

score.

Smith-Waterman Algorithm: It's used for local sequence alignment, which finds the best-

matching subsequence within the sequences.

2. Substitution Matrices:

Substitution matrices are used to score the substitution of one amino acid or nucleotide with

another in sequence alignments. They provide a measure of evolutionary relatedness between

sequences.

PAM (Point Accepted Mutation) Matrices: Developed by Margaret Dayhoff, PAM matrices

describe the probability of specific amino acid substitutions over a fixed evolutionary

distance.

BLOSUM (Blocks Substitution Matrix) Matrices: These matrices are used in protein

sequence alignment and are based on observed substitutions within closely related sequences.

3. Phylogenetic Tree Reconstruction:

Phylogenetic tree reconstruction is used to infer evolutionary relationships and construct a

tree that represents the divergence of species or sequences over time.

Neighbor-Joining (NJ): A distance-based method that constructs a tree by iteratively joining

the closest neighbors.

Maximum Parsimony: This method seeks the tree that requires the fewest evolutionary

changes (mutations) to explain the observed sequence data.

Maximum Likelihood: A likelihood-based approach that estimates the probability of

observing the given sequences under different tree topologies.

Bayesian Inference: Uses a Bayesian framework to estimate the posterior distribution of tree

topologies and model parameters.

13

Challenges

▪ Traditional bioinformatics methods heavily rely on reference databases, limiting

analysis to known sequences and structures.

▪ These methods struggle to predict novel patterns, making them less effective in

underexplored biological areas.

▪ Rapid improvements in high throughput sequencing technologies have given rise to

heterogeneous and enormous amounts of omics data making it a big data problem.

▪ Moreover, there has been a shift in data types, transitioning from conventional

structured data to a more diverse range of architectures, including unstructured, semi-

structured, and heterogeneous formats, each with distinct characteristics.

▪ There is a need for advanced computational techniques such as Artificial Intelligence

(AI) to leverage various data types, including sequences, images, and unstructured

text, facilitating the integration of diverse biological information.

Big Data

In bioinformatics, as in other fields, the concept of "Big Data" is characterized by the "5

Vs," which describe key aspects of the data challenges faced. These Vs are Volume,

Velocity, Variety, Veracity, and Value.

 Volume: Big data in bioinformatics originates from various sources, including genomics

(DNA sequencing), transcriptomics (RNA sequencing), proteomics (protein data),

metabolomics (small molecule data), structural biology (protein structures), and more.

Additionally, data sources include literature, and data from high-throughput experiments.

Genomic data, in particular, has seen a dramatic increase in the form of DNA and RNA

sequences, with millions of sequences available in public databases. This volume

continues to expand rapidly.

 Variety: Biological data comes in diverse formats, such as sequences, alignments, 3D

structures, images, clinical records, and omics data. Integrating and analyzing these

various data types poses challenges.

 Velocity: The speed at which new biological data is generated is incredibly high,

especially with the advent of high-throughput sequencing technologies. Keeping up with

the pace of data generation is a significant challenge for bioinformaticians.

 Veracity: Veracity relates to the accuracy, quality, and reliability of data. In

bioinformatics, ensuring the veracity of data is crucial since errors or inaccuracies can

lead to incorrect scientific conclusions.

 Value: The value of big data in bioinformatics is the benefit that can be derived from it. It

involves extracting meaningful insights, making discoveries, and ultimately improving

healthcare, agriculture, and various biological research fields.

Artificial Intelligence in Bioinformatics

Artificial intelligence (AI) was formally defined at the Dartmouth conference in 1956. It

quickly entered a period of rapid development and innovation, becoming known as the

"golden age" of AI. The field of AI encompasses a wide array of content, and one of its

crucial branches is machine learning (ML). ML is a methodology for achieving AI and

includes a range of mathematical tools and algorithms. Although ML initially achieved

remarkable progress, it faced a significant setback in the 1960s due to theoretical limitations.

14

It wasn't until the introduction of the backpropagation algorithm in the 1980s that ML

experienced a resurgence in activity and widespread application. Subsequently, deep learning

(DL) emerged from artificial neural networks (ANN) within the realm of machine learning

and has been a driving force behind the current era of deep learning since 2006.

Over the last decade, AI has found extensive use in omics studies, thanks to the accumulation

of large-scale omics data and the growing need for big data analysis. Machine learning, as a

subset of AI, focuses on acquiring insights and establishing patterns from data through

computational models and algorithms. Its goal is to enhance system performance through

computation and learning from experiences. Machine learning has diverse applications,

spanning natural language processing, computer vision, data mining, and more. Various

machine learning algorithms serve distinct purposes, including clustering, classification,

regression, association rule mining, dimension reduction, and others. Based on the nature of

the data and training strategies, machine learning is categorized into three primary types:

supervised, unsupervised, and reinforcement learning.

Supervised learning deals primarily with regression and classification problems, while

unsupervised learning focuses on clustering. Reinforcement learning, on the other hand,

involves learning from new experiences through trial-and-error. The field boasts a variety of

traditional machine learning algorithms such as generalized regression, decision trees, naive

Bayes, support vector machines (SVM), K-means clustering, and more.

Deep learning, a critical branch of machine learning, originated from artificial neural

networks and was formally introduced in 2006. It has since experienced rapid and substantial

development. Deep learning encompasses a multidisciplinary approach, merging elements of

statistics, optimization, algorithms, programming, distributed computing, and other fields. By

constructing models with multiple hidden layers, deep learning allows for the discovery of

intricate relationships within data, improving the accuracy of classification and prediction.

This evolution has had a significant impact on various fields, making it a fundamental

component of the broader AI landscape.

In the forthcoming sections, various applications of ML in different omics have been

discussed.

 Machine learning in genomics:

In the field of genomics and genome research, machine learning has become a crucial tool

for various applications. These applications encompass diverse aspects of genomics, from

predicting 3D genome structures to genome annotation, transcription regulation, effects of

genetic variants, and even genome editing (Figure 2).

1. Reconstruction of 3D Genome Structure:

Understanding the spatial organization of the eukaryotic genome is essential for

elucidating chromosomal activities within the cell. Experimental techniques, such as

chromosome conformation capture (3C)-based technologies, provide insights into 3D

genome organization but have limitations in resolution and cost. Therefore, machine

learning methods have been developed to complement experimental studies. These

methods are categorized based on their training data, including genomic sequences, 3C-

based interactions, chromatin states derived from epigenetic modifications, or hybrid

data. They aim to predict various aspects of 3D genome structure, including

reconstruction, compartmentalization, topologically associating domains (TADs), and

chromatin loops.

15

2. Computational Modeling of Epigenomic and Chromatin States:

Epigenomic modifications play a crucial role in genome regulation. Machine learning

approaches have been employed to interpret and predict the effects of epigenetic

modifications, DNA methylation, histone modifications, and chromatin states. These

methods generate features from epigenetic data and leverage deep learning techniques to

understand and predict epigenomic changes.

3. Genome Annotation and Transcription Regulation:

Machine learning is applied to the annotation of the genome, including the identification

of protein-coding genes, non-coding RNAs, microRNAs, transcript splicing isoforms,

regulatory elements, protein-binding sites, and cis-regulatory binding modules. It goes

beyond simple identification to elucidate their functions and interactions. This is essential

for understanding the roles of different genomic elements in gene regulation.

4. Identifying the Effects of Genetic Variants:

Genetic variants, especially those in non-coding regions, can significantly impact gene

expression and phenotypes. Machine learning models have been developed to classify and

predict the pathogenicity of genetic variants. These models help identify functional

effects of non-coding variants and their contributions to diseases.

5. Machine Learning in Genome Editing:

The advent of genome editing technologies, such as CRISPR, has opened new

possibilities in genome engineering. Machine learning is applied to design guide RNAs

for CRISPR-based editing, predict cleavage tendencies, evaluate off-target effects, and

identify optimal editing locations. These methods contribute to more precise and efficient

genome editing.

16

Figure 2: Schematics representation of the application of AI in genomics (Li et al., 2022)

 Machine learning in transcriptomics

Machine learning, particularly deep learning, has made significant contributions to

various aspects of transcriptomics, including the prediction and understanding of gene

expression, splicing patterns, and transcription factor binding sites (Figure 3).

1. Prediction of Gene Expression:

Machine learning, especially deep learning, has proven highly effective in predicting gene

expression levels based on genetic and epigenetic information. For instance, deep neural

networks (DNNs) have been used to build models like D-GEX, which can predict target

gene expression based on landmark genes. Histone modifications, which play a vital role

in gene regulation, have also been leveraged for gene expression prediction using models

like DeepChrome, demonstrating the superior performance of deep learning compared to

traditional machine learning methods.

2. Prediction and Classification of Splicing:

Splicing, which determines how the genome is transcribed, influences the diversity of

transcriptomes and proteomes. Aberrant splicing can lead to diseases, making it a crucial

17

area of study. Deep learning methods, including deep neural networks, are employed to

predict and classify splicing patterns based on RNA-seq data, genomic sequences, and

epigenetic features. These models accurately predict splicing outcomes in different

biological contexts and contribute to our understanding of splicing regulation.

3. Prediction of Transcription Factor Binding Sites:

Transcription factors (TFs) are central to gene regulation, and their binding sites on DNA

are essential for controlling gene expression. Machine learning, particularly deep

learning, has been applied to identify TF-binding sites more accurately and efficiently.

Models like PIQ and DeepBind have demonstrated the ability of deep learning to predict

TF-binding sites. These models improve the accuracy of prediction, especially in

comparison to traditional methods based on position weight matrices (PWMs).

4. Auxiliary Diagnosis Using Transcriptomics:

Machine learning plays a significant role in aiding disease diagnosis, particularly in the

medical field. Artificial neural networks (ANNs) can analyze gene expression data to

enhance the accuracy and efficiency of disease classification and diagnosis. Machine

learning models combined with gene expression data are used for various medical

applications, including predicting myopathy subtypes, drug-induced liver injury, and

diagnoses related to mental and neurological diseases. In the context of cancer, machine

learning assists in cancer classification, predicting molecular subtypes, early diagnosis,

prognosis, and recurrence prediction. The integration of multiple cohort datasets is a

promising avenue for improving auxiliary diagnosis, although the challenge of limited

data remains.

Figure 3: Schematics representation of the application of AI in transcriptomics (Li et al.,

2022)

18

 Machine learning in proteomics

Machine learning is playing a pivotal role in the field of proteomics, where it aids in

efficiently processing and analyzing vast amounts of proteomic data (Figure 4).

Specifically, machine learning methods are significantly impacting proteomics in various

areas, as outlined below.

1. Biomass Spectrometry

Mass spectrometry (MS) is an indispensable tool for studying protein structures and

components. However, the processing of MS data has often lagged behind the

development of MS instruments. Machine learning, particularly deep learning, is stepping

in to address the challenges posed by high-dimensional and sparse proteomic data. Deep

learning models are being harnessed for tasks like de novo sequencing, peptide property

prediction, and mass spectrometry imaging analysis. For instance, DeepNovo, a deep

learning-based model, is enhancing the accuracy of de novo peptide sequencing.

Moreover, DeepRT employs deep learning to predict peptide retention times, a critical

factor in liquid chromatography-mass spectrometry tandem analysis. Machine learning

has the potential to significantly enhance the retrieval and analysis of peptide data,

thereby advancing our understanding of proteome characterization.

2. Screening of Protein Biomarkers

Biomarkers are vital for disease screening, diagnosis, and therapy guidance. Traditional

statistical methods often face limitations in biomarker discovery due to classification

boundaries and variable correlations. Machine learning methods, both supervised and

unsupervised, offer more flexibility in this context. Researchers have been combining

machine learning with proteomic techniques, such as mass spectrometry, to identify

disease-specific protein markers. For example, a study utilized a deep belief network

(DBN) to screen for protein diagnostic markers in Alzheimer's disease, yielding a marker

group with high diagnostic accuracy. While machine learning holds immense promise in

biomarker discovery, challenges like overfitting and model interpretability need to be

addressed.

3. Nucleic Acid–Binding Protein Prediction

Identifying proteins that bind to nucleic acids is essential for understanding various

biological processes. Traditionally, this identification has been hampered by accuracy and

scalability issues. However, with the availability of high-throughput measurements, such

as protein binding microarrays and SELEX, machine learning has emerged as a highly

accurate predictor of nucleic acid–binding properties in proteins. Tasks include DNA-

binding domain recognition and predicting protein-DNA/RNA docking interactions.

Despite the success, challenges remain, particularly in reducing cross-prediction between

DNA and RNA-binding residues.

4. Predicting Protein–Protein Interactions (PPIs)

PPIs are a critical domain where machine learning is revolutionizing our understanding of

protein functions. While public databases offer some PPI data, they often lack specificity

and comprehensiveness. Combining experimental methods with machine learning is

proving effective in predicting PPIs accurately. Various machine learning algorithms,

including random forests, support vector machines, and Bayesian probabilistic inference,

are being used for PPI prediction. Deep learning has also found application in predicting

PPIs through methods like domain-based ensemble models. Accurate identification of

PPIs is instrumental in comprehending a wide range of physiological activities.

19

5. Protein Post-Translational Modification (PTM)

PTM prediction is yet another area significantly benefiting from machine learning

methods. PTMs, such as phosphorylation and glycosylation, play vital roles in regulating

protein function. Machine learning models have been developed to predict PTM sites

with high accuracy. For example, Musite predicts phosphorylation sites, while GlycoEP

identifies N-, O-, and C-linked glycosylation sites. Additionally, web servers like

MusiteDeep employ convolutional neural networks (CNNs) for predicting multiple PTM

sites simultaneously, offering advantages in accuracy and speed. Furthermore, tools like

SAPH-ire TFx assist in the identification of functional PTM sites from large-scale

datasets.

Figure 4: Schematics representation of the application of AI in proteomics (Li et al., 2022)

 Machine learning in metabolomics

Metabolomics, akin to genomics and proteomics, focuses on quantitatively analyzing all

metabolites in organisms to uncover their relationships with physiological and

pathological changes. It's a valuable technology for diagnosing diverse diseases

characterized by metabolic variations. Traditional methods often struggle with the

20

sparsity of large-scale metabolomic data obtained through mass spectrometry,

chromatography, and nuclear magnetic resonance. This challenge has led to an increased

interest in machine learning algorithms. In the field of metabolomics, various machine

learning techniques are being employed, contributing to advancements in data processing,

metabolic phenotype stratification, and metabolic modeling (Figure 5).

1. Data Processing and Analysis:

Machine learning has significantly enhanced the processing and analysis of metabolomic

data. These algorithms excel in pattern recognition and multivariate classification,

assisting in classifying data based on complex patterns. Traditional methods like partial

least squares discriminant analysis (PLS-DA), as well as support vector machines (SVM),

have been employed for this purpose. SVM has gained prominence in metabolomics due

to its high prediction and classification accuracy. Deep learning, a subset of machine

learning, has also been applied in metabolomics for processes like estimating the

detection probability of specific peaks. Deep learning, through methods like deep neural

networks (DNNs), aids in eliminating false-positive peaks, enhancing the quality of

metabolomic data. Tandem mass spectrometry (MS/MS) is used to identify unknown

metabolites. The application of deep learning, such as the DeepMASS framework, helps

effectively identify these unknown metabolites. Additionally, machine learning methods

are being used to automate quality control and quality assurance processes in data

processing.

2. Stratification of Metabolic Phenotypes:

Machine learning, particularly deep learning, is revolutionizing the stratification of

metabolic phenotypes. This approach characterizes the metabolic profiles and processes

of individuals based on the presence, content, and ratios of specific metabolites. Deep

learning techniques have demonstrated success in capturing the intricate metabolic

characteristics present in the data. For example, deep neural networks combined with t-

distribution random neighborhood embedding have revealed the metabolic heterogeneity

in human colorectal cancer. Deep learning frameworks are also employed in classifying

the estrogen receptor status of breast cancer, surpassing other machine learning methods

in prediction accuracy. Novel methods combining deep neural networks enhance

metabolic phenotype stratification and metabolite selection, offering high classification

accuracy.

3. Genome-Scale Construction of Metabolic Models:

Machine learning is also playing a vital role in constructing genome-scale metabolic

models (GEMs). GEMs encompass the metabolic reactions of a specific organism's

genome and serve as a platform for metabolic flux modeling. The modeling process

involves constraint-based quantitative modeling, integrating biochemical and genetic

information. Machine learning optimizes model parameters, tests various input

conditions, and enhances biomarker recognition, quantifying metabolite flux, and

predicting metabolic genes. Applications extend to determining predictors of metabolic-

related drug side effects, generating collision cross-section values of small molecules, and

identifying early metabolic disease markers. Despite these advancements, challenges

persist, including experimental limitations, small sample sizes, interpretability issues, and

a lack of comprehensive reference data.

21

Figure 5: Schematics representation of the application of AI in metabolomics (Li et al., 2022)

References

Gauthier, J., Vincent, A. T., Charette, S. J., & Derome, N. (2019). A brief history of

bioinformatics. Briefings in bioinformatics, 20(6), 1981-1996.

Jawdat, D. (2006, April). The era of bioinformatics. In 2006 2nd International Conference on

Information & Communication Technologies (Vol. 1, pp. 1860-1865). IEEE.

Li, R., Li, L., Xu, Y., & Yang, J. (2022). Machine learning meets omics: applications and

perspectives. Briefings in Bioinformatics, 23(1), bbab460.

Mochida, K., & Shinozaki, K. (2011). Advances in omics and bioinformatics tools for

systems analyses of plant functions. Plant and Cell Physiology, 52(12), 2017-2038.

22

ASHOKA: Functioning and Activities

K.K. Chaturvedi, U.B. Angadi and Jai Bhagwan

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Introduction

First HPC systems were vector-based systems (e.g. Cray) named ‘supercomputers’ because

they were an order of magnitude more powerful than commercial systems. The

‘supercomputer’, a large systems are just scaled up versions of smaller systems. High

performance computing can mean high flop count per processor and totalled over many

processors working on the same or related problems. This can have faster turnaround time,

more powerful system, scheduled to first available system(s) and using multiple systems

simultaneously. The HPC is any computational technique that solves a large problem faster

than possible using single, commodity systems, Custom-designed, high-performance

processors, Parallel computing, Distributed computing and Grid computing.

Parallel computing is a single system with many processors working on the common task. The

Distributed computing is configured as many systems loosely coupled by a scheduler to work

on related problems and Grid Computing is defined as many systems tightly coupled by

software and networks to work together on single problems or on related problems.

Parallel computer is a computer that contains multiple processors where each processor works

on its section of the problem and allowed to exchange information with other processors.

Two big advantages of parallel computers are performance and memory. Parallel computers

enable us to solve problems that benefit from or require, fast solution, require large amounts of

memory and both.

As per the Moore’s Law ‘predicts’ that single processor performance doubles every 18 months,

eventually physical limits on manufacturing technology will be reached as in figure 1.

Fig. 1: Moore’s Law towards performance of the system

There are two types of parallel computers by their memory model namely shared memory and

distributed memory. All processors have access to a pool of shared memory (Figure 2-A) while

each processor has its own local memory in distributed memory (Figure 2-B).

23

Fig. 2: Shared Memory and distributed memory system

Shared memory have two types of architecture i.e., Uniform memory access (UMA) and Non-

uniform memory access (NUMA). Each processor has uniform access to memory in UMA and

also called as symmetric multiprocessors, or SMPs (Figure 3-A). Time for memory access

depends on location of data in NUMA as local access is faster than non-local access but it is

easy to scale up than SMPs (Figure 3-B).

Fig. 3: Shared Memory with UMA and NUMA

The distributed memory is two types namely Massively Parallel Processor (MPP) and cluster.

MPP is tightly integrated, single system image and cluster is an individual computers connected

by specialized software and connected using interconnect network. Distributed memory is

shown in figure 4.

Fig. 4: Distributed Memory

Both types of memory systems have processors, memory and network/interconnect.

(A) (B)

(B) (A)

24

Terminology

Clock period (cp): The minimum time interval between successive actions in the processor. It

is measured in nanoseconds (~1-5 for fastest processors) which is inverse of frequency (MHz).

Instruction: An action executed by a processor, such as a mathematical operation or a memory

operation.

Register: A small and extremely fast location for storing data or instructions in the processor.

Functional Unit (FU): A hardware element that performs an operation on an operand or pair of

operations. Common FUs are ADD, MULT, INV, SQRT, etc.

Pipeline: A Technique enables multiple instructions to be overlapped during execution.

Superscalar: Multiple instructions are possible per clock period.

Flops: Floating point operations per second.

Cache: A Fast memory in the processor which keep instructions and data close to functional

units so processor can execute more instructions more rapidly.

SRAM: Static Random Access Memory (RAM). Very fast (~10 nanoseconds), made using the

same kind of circuitry as the processors, so speed is comparable.

DRAM: Dynamic RAM. Longer access times (~100 nanoseconds), but hold more bits and are

much less expensive (10x cheaper).

Memory hierarchy: The hierarchy of memory in a parallel system, from registers to cache to

local memory to remote memory.

Networks Latency: How long does it take to start sending a "message"? Measured in

microseconds.

Networks Processors: How long does it take to output results of some operations, such as

floating point add, divide etc., which are pipelined?)

Networks Bandwidth: What data rate can be sustained once the message is started? Measured

in Mbytes/sec or Gbytes/sec

Types of Clusters/Processors

Symmetric Multiprocessors (SMPs) connect processors to global shared memory using either

bus or crossbar. It provides simple programming model, but has problems with buses can

become saturated and crossbar size must increase with number of processors. Problem grows

with number of processors, limiting maximum size of SMPs. Programming models are easier

since message passing is not necessary. The techniques are auto-parallelization via compiler

options, loop-level parallelism via compiler directives, OpenMP, and pthreads.

In MPP, each processor has its own memory and is not shared globally but the processors adds

another layer to memory hierarchy (remote memory). The processor/memory nodes are

connected by interconnect network using many possible topologies. The processors must pass

data via messages so the communication overhead can be minimized. Many vendors have

custom interconnects that provide high performance for their MPP system such as Gigabit

Ethernet, Fast Ethernet, etc.

25

Clusters are similar to MPPs with processors and memory. The processor performance must

be maximized and memory hierarchy needs remote memory as no shared memory for message

passing to avoid the communication overhead.

Clusters are different from MPPs as commodity processors including interconnect and OS with

multiple independent systems and separate I/O systems. The advantages of clusters are

inexpensive, fastest processors first, potential for true parallel I/O and high availability while

the disadvantages are less mature software (programming and system), more difficult to

manage (changing slowly), lower performance interconnects (not as scalable to large number).

Distributed Memory Programming provides message passing using MPI, MPI-2 and

active/one-sided messages.

There are two types of parallelism i.e., data and task. Each processor performs the same task

on different sets or sub-regions of data in data parallelism. Each processor performs a different

task in task parallelism. Most parallel applications fall somewhere on the continuum between

these two extremes.

Example of data parallelism in a bottling plant, there are several ‘processors’, or bottle cappers,

applying bottle caps concurrently on rows of bottles.

Example of task parallelism in a restaurant kitchen, there are several chefs, or ‘processors’,

working simultaneously on different parts of different meals. A good restaurant kitchen also

demonstrates load balancing and synchronization--more on those topics later.

A common form of parallelism used in developing applications was Master-Worker parallelism

where a single processor is responsible for distributing data and collecting results (task

parallelism) and all other processors perform same task on their portion of data (data

parallelism).

According to Flynn’s Taxonomy, the computing systems are classified into the following broad

categories:

• SISD: Single Instruction and Single Data

• SIMD: Single Instruction and Multiple Data

• MISD: Multiple Instruction and Single Data

• MIMD: Multiple Instruction and Multiple Data

The purpose of High-performance computing (HPC) platform is to provide the access to the

compute resources remotely. The user can login remotely and submit compute their jobs either

from the command line or through the GUI based interface provided to them. The computing

systems are connected together through a high bandwidth data transfer and made available to

the users in a queue-based job submission system. There are many open-source and commercial

software packages installed.

At IASRI, New Delhi

The National Agricultural Bioinformatics Grid in ICAR consists of an advanced HPC

infrastructure at IASRI, New Delhi and moderate HPC facilities at the domain centres for

undertaking research in the field of agricultural bioinformatics. Clusters are collections of

computers that are connected together. The special sets of software are used to configure HPC

environment. This set up has been named as Advanced Supercomputing Hub for Omics

Knowledge in Agriculture (ASHOKA). The importance of HPC is rapidly growing because

more and more scientific and technical problems are being studied on the huge data sets which

require very high computational power as well. HPC offers environment for biologists,

26

scientists, analysts, engineers and students to utilize the computing resources in making vital

decisions, to speed up research and development, by reducing the execution time.

The following HPC infrastructure are set up under NAIP project NABG which are as follows

in the form of clusters, network and storage.

Types of Clusters

a. 256 Nodes Linux Based Cluster with two masters

b. 16 Nodes Windows Based Cluster with one master

c. 16 Nodes GPGPU Based Linux Cluster with one master

d. 16 Nodes Linux based SMP system

e. 16 Nodes Linux Based Cluster at each of the five domains with one master

Types of Networks

a. High bandwidth network with low latency (Q-logic QDR InfiniBand switch)

b. Gigabit network for cluster administration and management

c. ILO3 Management Network

Types of Storage

a. Parallel File System (PFS) for computational purpose

b. Network Attached Storage (NAS) for user Home Directory

c. Archival Storage for back up.

The hardware configuration of the Head/Master node is as follows

Server Name : HP ProLiant DL380-G7 Server

Type of Processor : Intel Xeon X5675 3.07Ghz

Number of Processors : 2

Core per Processor : 6

Total memory (RAM) : 96GB

Memory per Core : 8GB

Hard Disk : 6*600GB SAS

OS : RHEL 6.2 (Linux)

The hardware configuration of each compute node is as follows

Server Name : HP ProLiant SL390-G7 Server

Type of Processor : Intel Xeon X5675 3.07 Ghz

Number of Processors : 2

Core per Processor : 6

Total memory (RAM) : 96G

Memory per Core : 8GB

Hard Disk : 300GB SAS

OS : RHEL 6.2 (Linux)

Measuring Performance

The memory is measured in terms of bytes i.e., Kilo (210 or 103), Mega (220 or 106) , Giga (230

or 109) – Tera (240 or 1012), Peta (250 or 1015) , Exa (260 or 1018)

The computational performance is measured in Flop/s (Flop/s = floating point operations per

second) i.e., Mega Flops, Tera Flops, Peta Flops etc.

27

One can calculate peak performance of the cluster using standard formula i.e. Cluster

Performance = (Number of nodes) * (number of CPUs per node) * (number of cores per CPU)

* (CPU speed in GHz) * (CPU instruction per cycle)

The grid has been established using the following network diagram as in figure 5.

Fig. 5: Network diagram of NABG Grid

The hardware and software specifications of the SMP is as follows

Server Name : HP ProLiant DL 980 G7

Type of Processor : Intel Xeon E7- 2830 2.13GHz

Number of Processors : 8

Core per Processor : 8

Total memory (RAM) : 1.5 TB

Hard Disk : 396 GB

OS : RHEL 6.2

A switched fabric computer network communications link, is being used in HPC and enterprise

data centre with InfiniBand interconnect switch. The InfiniBand architecture specification

defines a connection between processor nodes and high performance I/O nodes such as storage

devices as in figure 6.

28

Fig. 6: InfiniBand interconnect switch

Main purpose of Ethernet network in the cluster is to provide services like cluster management,

cluster monitoring, compute node deployment and many other things in figure 7.

Fig. 7: InfiniBand interconnect switch

Different types of file system are configured for storing user’s data, running parallel jobs and

archiving the important data. There are three types of storage (i) Network Attached Storage

(NAS), (ii) Parallel File System (PFS) and (iii) Archival Storage.

The following challenges in bioinformatics are exists which essentially require the grid based

architecture.

• Protein folding & structure prediction

• Homology search

• Multiple alignment

• Genomic sequence analysis

• Gene finding

• Gene expression data analysis

• Drug discovery

• Phylogenetic inference

• Computational genomics, proteomics

• Computational evolutionary biology

29

Introduction to Linux Basics

S. B. Lal

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

The Linux operating system is basically a variant of the UNIX operating system, and

Linux has probably all that UNIX offers and more. It is a multi-user, multitasking,

network operating system which also has a user friendly Graphical User Interface

(GUI).

Every desktop computer uses an operating system. The most popular operating systems

are Windows, Mac OS, UNIX, Linux.

What is an Operating System?

An operating system is the first piece of software that the computer executes when a

system is turned on. The operating system loads itself into memory and begins

managing the resources available in the computer. It provides those resources to other

applications that the user wants to run. Typical services that an operating system

provides include:

A task scheduler - The task scheduler is able to allocate the execution of the CPU to a

number of different tasks. Some of those tasks are the different applications that the

user is running, and some of them are operating system tasks.

A memory manager - The memory manager controls the system’s RAM and normally

creates a larger virtual memory space using a file on the hard disk.

A disk manager - The disk manager creates and maintains the directories and files on

the disk. When a file is needed, the disk manager makes it available from the disk.

A network manager - The network manager controls all data moving between the

computer and the network.

Other I/O services manager - The OS manages the keyboard, mouse, video display,

printers, etc.

Security manager - The OS maintains the security of the information in the computer’s

files and controls who can access the computer.

An operating system normally also provides the default user interface for the system.

The standard “look” of Windows 98 includes the Start button, the task bar, etc. The

Mac OS provides a completely different look and feel for Macintosh computers.

To understand why Linux has become so popular, it is helpful to know a little bit about

its history.

Background on Linux

Linux, a UNIX-like operating system, is based on Minix and has been invented by Linus

Benedict Torvalds in 1991. The following is an excerpt of a newsgroup, called

“comp.os.minix” where Linus posted this text on 08/01/91: “...As I mentioned a month

ago, I’m working on a free version of a Minix-look-alike for AT-386 computers. It has

finally reached the stage where it’s even usable (though may not be, depending on what

you want), and I am willing to put out the sources for wider distribution. It is just version

0.02... but I’ve successfully run bash, gcc, gnu-make, gnu-sed, compress, etc. under it.”

30

http://computer.howstuffworks.com/computer-memory.htm
http://computer.howstuffworks.com/microprocessor.htm
http://computer.howstuffworks.com/ram.htm
http://computer.howstuffworks.com/virtual-memory.htm
http://computer.howstuffworks.com/hard-disk.htm
http://computer.howstuffworks.com/home-network.htm
http://computer.howstuffworks.com/keyboard.htm
http://computer.howstuffworks.com/mouse.htm
http://computer.howstuffworks.com/monitor.htm
http://computer.howstuffworks.com/inkjet-printer.htm

Linux is a free version of UNIX that continues to be developed by the cooperative

efforts of volunteer groups of programmers, primarily on the Internet, who exchange

code, report bug, and fix problems in an open-ended environment. As a result, the world

now has a powerful, robust, and full-featured operating system that continues to change

and grow.

In other words, Linux is little bit harder to manage than something like Windows, but

offers more flexibility and configuration options.

Linux is licensed under the GPL (General Public license) from the GNU organization,

under which the kernel is provided with the source code, and is available for free. As a

result, Linux is considered to be more secure and stable than closed source or

proprietary systems like Windows because anyone can analyse the source code written

in the C language and find bugs or add new features. One important point that should

be noted is that even though the source is free, anyone is allowed to sell it for profit.

Linux is known as an open source operating system and also called free software

because everything about Linux is accessible to the public and is freely available to

anyone. Since the Linux source code is available, anyone can copy, modify, and

distribute this software. This allows for various companies such as SuSE, Red Hat,

Caldera and others to sell and distribute Linux; however, at the same time, these

companies must keep their Linux distribution code open for public inspection,

comment, and changes. Despite of the command-line origins of Linux, these

distributing companies are working to make the Graphical User Interface (GUI).

The GNU General Public License

To make software free, you need a license that defines the rights and the limits, that

have to be regarded by the open source developer that wants to obtain, edit and

eventually redistribute your source code. Because of that exists the GNU GPL (General

Public License). Of course, there are also other licenses, but today’s most open source

programs are distributed under this popular license.

The GNU project was started in 1984 and “GNU is recursive acronym for “GNU’s Not

Unix”; The Free Software Foundation, which stands for the freedom, the security and

the protection of free source code therefore founded this kind of license, designed to

protect open source code. GNU is also founder and maintainer of many software

packages for the Linux operating system, such as basic tools and file system software.

Is Linux Right for you?

It depends on you and what you would like to do. Linux is not an all-purpose operating

system and it would probably be more suited for some people and not so pleasing for

others. If you are a person using your computer for some entertainment at home and are

satisfied with your Windows system there are no compelling reasons for switching over

to Linux, but you do have a choice now. There are several other reasons to consider

Linux. Linux is not just a simple operating system. It is an entire server and desktop

environment, equipped with add-ons, GUI tools and interfaces, and supplementary

programs.

You can use Linux at home and even in college to understand the commands and even

the internal workings of UNIX systems.

31

Distributions

When people use the name Linux they are probably referring to a particular distribution

of Linux. There are several software packages provided for Linux over the Internet but

selecting and downloading one is a complicated task not necessarily manageable for

new users who want to try out Linux. This is exactly where a distribution kicks in.

A distribution is a set of software packages that are tested and provided on CD by a

company for a small fee just like Windows. The advantages of using distributions are

the support and manuals, as well as the fact that Linux can be specialized for use in a

particular area. For example, if you would like using Linux for embedded systems a

distribution may offer just the right amount of required software, leaving out optional

things like the graphical user interface. So you get what you want instead of a general

package for all users.

The mainstream distributions, which are seemingly popular, are RedHat, SuSE, Caldera

and Debian. Among these distributions RedHat seems to be most widespread.

Caldera is probably more suited for those who are already using Windows. SuSE is a

German based distribution known for its large number of bundled packages and

support. Debian is unique because its not owned by a company and it’s a non-profit

volunteer-based distribution developed solely by users.

Getting Started with Linux

Once the installation is complete, the system will reboot and start up with Linux. There

are a series of messages on the screen while booting of the system regarding the

hardware enabled, services started etc. After a while, the system will display a login:

prompt. You can now log in.

Some systems are configured to start graphical mode with a box in the middle

containing both login: and Password: prompts. Press [CTRL]-[ALT]-[F1] to switch to

the virtual console (text login screen), where you can log in to the system in the usual

way.

Accounts and Privileges

Linux is a multi-user system, meaning that many users can use one Linux system

simultaneously, from different terminals. So to avoid confusion, each user's workspace

must be kept separate from the others.

Even if a particular Linux system is a stand-alone personal computer with no other

terminals physically connected to it, it can be shared by different people at different

times, making the separation of user workspace is important.

This separation is accomplished by giving each individual user an account on the

system. You need an account in order to use the system; with an account you are issued

an individual workspace to use, and a unique username that identifies you to the system

and to other users. It is the name along with the password by which the system will

recognize the user.

Logging into the System

To begin a session on a Linux system, you need to log in. Do this by entering your

username at the login: prompt on your terminal, and then entering your password when

asked.

32

Every Linux system has its own name, called the system's hostname; a Linux system is

sometimes called a host, and it identifies itself with its hostname at the login: prompt.

It's important to name your system -- like a username for a user account, a hostname

gives name to the system you are using (and it becomes especially important when

putting the system on a network). The system administrator usually names the system

when it is being initially configured (the hostname can be changed later; its name is

kept in the file `/etc/hostname'). The name of the terminal you are connecting from is

displayed just after the hostname.

To log in to the system, type your username (followed by) at the login: prompt, and

then type your password when asked (also followed by); for security purposes, your

password is not displayed on the screen when you type it.

Once you've entered your username and password, you are "logged in" to the system.

You can then use the system and run commands.

As soon as you log in, the system displays the contents of `/etc/motd', the "Message of

the Day" file. The system then displays the time and date of your last login, and reports

whether or not you have electronic mail waiting for you. Finally, the system puts you

in a shell---the environment in which you interact with the system and give it

commands. Bash is the default shell on most Linux systems.

The dollar sign (`$') displayed to the left of the cursor is called the shell prompt; it

means that the system is ready and waiting for input. By default, the shell prompt

includes the name of the current directory.

Logging Out of the System

To end your session on the system, type logout at the shell prompt. This command logs

you out of the system, and a new login: prompt appears on your terminal.

• To log out of the system

$ logout

You can also logout by just pressing Ctrl+d.

Logging out of the system frees the terminal you were using and ensures that nobody

can access your account from this terminal.

Console Basics

A Linux terminal is a place to put input and get output from the system, and usually has

at least a keyboard and monitor.

When you access a Linux system by the keyboard and monitor that are directly

connected to it, you are said to be using the console terminal.

Linux systems feature virtual consoles, which act as separate console displays that can

run separate login sessions, but are accessed from the same physical console terminal.

Linux systems are configured to have seven virtual consoles by default. When you are

at the console terminal, you can switch between virtual consoles at any time, and you

can log in and use the system from several virtual consoles at once.

Switching Between Consoles

To switch to a different virtual console, press [ALT]-[Fn], where n is the number of

the console to switch to.

• To switch to the fourth virtual console, press [ALT]-[F4].

33

You can also cycle through the different virtual consoles with the left and right arrow

keys. To switch to the next-lowest virtual console, press [ALT]-[←]and to the next-

highest virtual console, press [ALT]-[→].

• To switch from the fourth to the third virtual console, press [ALT]-[←]

The seventh virtual console is reserved for the X Window System. If X is installed, this

virtual terminal will never show a login: prompt, but when you are using X, this is

where your X session appears. If your system is configured to start X immediately, this

virtual console will show an X login screen.

You can switch to a virtual console from the X Window System using [CTRL] in

conjunction with the usual [ALT] and function keys. This is the only console

manipulation keystroke that works in X.

• To switch from X to the first virtual console, press: [CTRL]-[ALT]-[F1]

Running a Command

A command is the name of a tool that performs a certain function along with the options

and arguments. Commands are case sensitive.

To run the hostname command just type the command in front of prompt ($)

$ hostname

Options always begin with a hyphen character, `-', which is usually followed by one

alphanumeric character. Always separate the command, each option, and each

argument with a space character.

Long-style options begin with two hyphen characters (`--').

For example, many commands have an option, `--version', to output the version number

of the hostname.

$ hostname --version

Sometimes, an option itself may take an argument. For example, hostname has an

option for specifying a file name to use to read the hostname from, `-F'; it takes as an

argument the name of the file that hostname should read from. To run hostname and

specify that the file `host.info' is the file to read from

$ hostname -F host.info

Changing Your Password

To change your password, use the passwd command. It prompts you for your current

password and a new password to replace it with. You must type it exactly the same way

both times, or passwd will not change your password.

$ passwd username

Listing Your Username

Use whoami to output the username of the user that is logged in at your terminal.

$ whoami

Listing Who Is on the System

Use who to output a list of all the users currently logged in to the system. It outputs a

minimum of three columns, listing the username, terminal location, and time of login

34

for all users on the system. A fourth column is displayed if a user is using the X Window

System.

$ who

abc tty1 Oct 20 20:09

def tty2 Oct 21 14:37

def ttyp1 Oct 21 15:04 (:0.0)

$

The output in this example shows that the user abc is logged in on tty1 (the first virtual

console on the system), and has been on since 20:09 on 20 October. The user def is

logged in twice -- on tty2 (the second virtual console), and ttyp1, which is an X session

with a window location of `(:0.0)'.

Listing the Last Times a User Logged In

Use last to find out who has recently used the system, which terminals they used, and

when they logged in and out.

$ last abc

Listing System Activity

When you run a command, you are starting a process on the system, which is a program

that is currently executing. Every process is given a unique number, called its process

ID, or "PID."

Use ps to list processes on the system. By default, ps outputs 5 columns: process ID,

the name of the terminal from which the process was started, the current status of the

process (including `S' for sleeping, meaning that it is on hold at the moment, `R'

meaning that it is running, and `Z' meaning that it is a process that has already died),

the total amount of time the CPU has spent on the process since the process started, and

finally the name of the command being run.

Listing Your Current Processes

Type ps with no arguments to list the processes you have running in your current shell

session.

$ ps

 PID TTY STAT TIME COMMAND

 193 1 S 0:01 -bash

 204 1 S 0:00 ps

$

Listing All of a User's Processes

To list all the running processes of a specific user, use ps and give the username to list

as an argument with the `-u' option.

$ ps -u abc

Listing All Processes on the System

To list all processes running by all users on the system, use the `aux' options.

$ ps aux

35

Listing Processes by Name or Number

To list processes whose output contains a name or other text to match, list all processes

and pipe the output to grep. This is useful for when you want to see which users are

running a particular program or command.

To list all the processes whose commands contain reference to an `sbin' directory in

them

$ ps aux | grep sbin

To list any processes whose process IDs contain a 13 in them

$ ps aux | grep 13

To list the process, which corresponds to a process ID, give that PID as an argument to

the `-p' option (PID is 344)

$ ps -p 344

Finding the System Manual of a Command

Use the man command to view a page in the system manual. As an argument to man,

give the name of the program whose manual page you want to view.

$ man ps

Use the up and down arrow keys to move through the text. Press [Q] to stop viewing

the manual page and exit man.

Working with Shell

Shell is a program that reads your command input and runs the specified commands.

The shell environment is the most fundamental way to interact with the system -- you

are said to be in a shell from the very moment you've successfully logged in to the

system.

The `$' character preceding the cursor is called the shell prompt; it tells you that the

system is ready and waiting for input.

If your shell prompt shows a number sign (`#') instead of a `$', this means that you're

logged in with the superuser, or root, account. Beware: the root account has complete

control over the system; one wrong keystroke and you might accidentally break it

something awful. You need to have a different user account for yourself, and use that

account for your regular use.

Every Linux system has at least one shell program, and most have several. The standard

shell on most Linux systems is bash("Bourne again shell").

Running a List of Commands

To run more than one command on the input line, type each command in the order you

want them to run, separating each command from the next with a semicolon (`;'). For

example, to clear the screen and then log out of the system

$ clear; logout

Redirecting Input and Output

The shell moves text in designated "streams." The standard output is where the shell

streams the text output of commands -- the screen on your terminal, by default. The

36

standard input, typically the keyboard, is where you input data for commands. You can

redirect these streams -- to a file, or even another command -- with redirection.

Redirecting Input to a File

To redirect standard input to a file, use the `<' operator. To do so, follow a command

with < and the name of the file it should take input from. For example, to redirect

standard input for ls -l to file `listing'

$ ls -l < listing

Redirecting Output to a File

Use the `>' operator to redirect standard output to a file. If you redirect standard output

to an existing file, it will overwrite the file, unless you use the `>>' operator to append

the standard output to the contents of the existing file. For example, to append the

standard output of ls -l to an existing file `commands'

$ ls -l>> commands

Redirecting Output to another Command's Input

Piping is to connect the standard output of one command to the standard input of

another. You do this by specifying the two commands in order, separated by a vertical

bar character, `|' (also called as a "pipe"). Commands built in this fashion are called

pipelines.

For example, it's often useful to pipe commands that display a lot of text output to more

for perusing text.To pipe the output of apropos bash shell shells to less

$ ls –l | more

Managing Jobs

The processes you have running in a particular shell are called your jobs. You can have

more than one job running from a shell at once, but only one job can be active at the

terminal, reading standard input and writing standard output. This job is the foreground

job, while any other jobs are said to be running in the background.

The shell assigns each job a unique job number. Use the job number as an argument to

specify the job to commands. Do this by giving the job number preceded by a `%'

character.

Suspending a Job

Type Ctrl+z to suspend or stop the foreground job. This is useful when you want to do

something else in the shell and return to the current job later. The job stops until you

either bring it back to the foreground or make it run in the background.

For example, if you are finding a file at Linux partition from root (/), typing Ctrl+z will

suspend the find program and return you to a shell prompt where you can do something

else. The shell outputs a line giving the job number (in brackets) of the suspended job,

the text `Stopped' to indicate that the job has stopped, and the command line itself, as

shown here:

[1]+ Stopped find / -name abc

In this example, the job number is 1 and the command that has stopped is `find / -name

abc'. The `+' character next to the job number indicates that this is the most recent job.

37

If you have any stopped jobs when you log out, the shell will tell you this instead of

logging you out:

$ logout

There are stopped jobs.

$

At this point you can list your jobs, stop any jobs you have running and then log out.

Putting a Job in the Background

New jobs run in the foreground unless you specify otherwise. To run a job in the

background, end the input line with an ampersand (`&'). This is useful for running non-

interactive programs that perform a lot of calculations. To run the command find / -

name abc > shell-commands as a background job

$ find / -name abc > shell-commands &

[1] 6575

$

The shell outputs the job number (in this case, 1) and process ID (in this case, 6575),

and then returns to a shell prompt. When the background job finishes, the shell will list

the job number, the command, and the text ̀ Done', indicating that the job has completed

successfully:

[1]+ Done find / -name abc >shell-commands

To move a job from the foreground to the background, first suspend it and then type

bg (for "background").

• For example, to start the command find / -name abc > shell-commands in the

foreground, suspend it, and then specify that it finish in the background, you would

type:

$ find / -name abc > shell-commands

Ctrl+z

[1]+ Stopped find / -name abc >shell-commands

$ bg

[1]+ find / -name abc &

$

If you have suspended multiple jobs, specify the job to be put in the background by

giving its job number as an argument. TFor example, to run job 4 in the background

$ bg %4

Putting a Job in the Foreground

Type fg to move a background job to the foreground. By default, fg works on the most

recent background job. For example, to bring the most recent background job to the

foreground

$ fg

38

To move a specific job to the foreground when you have multiple jobs in the

background, specify the job number as an option to fg. To bring job 3 to the foreground

$ fg %3

Listing Your Jobs

To list the jobs running in the current shell, type jobs.

$ jobs

[1]- Stopped find / -name abc >shell-commands

[2]+ Stopped find / -name abc >bash-commands

$

This example shows two jobs--- find / -name abc > shell-commands and find / -name

abc > bash-commands. The `+' character next to a job number indicates that it's the

most recent job, and the `-' character indicates that it's the job previous to the most

recent job. If you have no current jobs, jobs returns nothing.

Stopping a Job

Typing Ctrl+c interrupts the foreground job before it completes, exiting the program.

To interrupt cat, a job running in the foreground

$ cat

Ctrl+c

$

Use kill to interrupt ("kill") a background job, specifying the job number as an

argument. To kill job number 2

$ kill %2

Command History

Your command history is the sequential list of commands you have typed, in the current

or previous shell sessions. The commands in this history list are called events.

By default, bash remembers the last 500 events, but this number is configurable.

Your command history is stored in a text file in your home directory called

`.bash_history'; you can view this file or edit it like you would any other text file.

Viewing Your Command History

Use history to view your command history. To view your command history

$ history

1 who

2 apropos shell >shell-commands

3 apropos bash >bash-commands

4 history

$

39

This command shows the contents of your command history file, listing one command

per line prefaced by its event number. Use an event number to specify that event in your

history. To search your history for the text `find'

$ history | grep find

Specifying a Command from Your History

You can specify a past event from your history on the input line, in order to run it again.

The simplest way to specify a history event is to use the up and down arrow keys at the

shell prompt to browse your history. The up arrow key takes you back through past

events, and the down arrow key moves you forward into recent history. When a history

event is on the input line, you can edit it as normal, and type to run it as a command; it

will then become the newest event in your history.

To run a history event by its event number, enter an exclamation mark (`!') followed by

the event number (1).

$!1

40

Biological Databases: An Overview

K. K. Chaturvedi

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Introduction

Bioinformatics is the field of science in which biology, physics, chemistry, mathematics.

Statistical and computer science, information and communication technology become a single

discipline. It is emerging field that application of computer to collection, organization, storing,

maintaining, accessing, sharing, analysis, interpretation and presentation of biological data

(nucleotide and amino acids sequences, protein domains, protein structures) which helps to

accomplishing life science research.

The potential flood of sequence data and the rapidly evolving database technologies

empowered researchers to establish international DNA data banks in the early 1980s. Today,

we have massive sequence data in the public biological databases due to concerted effort at a

number of molecular biology laboratories throughout the world, and the internet and computer

technologies. At the beginning, the main concern of bioinformatics was the creation and

maintenance of database to store nucleotide and amino acid sequences with wen based

interfaces user can access existing data and submitting new data to the database. Hence,

database creation and maintenance is major components in bioinformatics. Now, emphasis has

shifted to decipher the functional, structural and evolutionary clues encoded in the languages

of biology, in which sequences is represented by as sentence, motifs and patterns are by words

and nucleotides and amino acids are by letters. However, database design and management is

core area in bioinformatics.

Data represents facts or value of results and relations between them have the capacity to

represent information (Figure 1). Patterns of relationship between information have the

capacity to represent knowledge. Each data is assigned to one data type, which indicates

possible relationship with other data. For example; text, integer, float/double, character, time,

date and binary.

A database is a collection of data organized in the way which can be easily, stored, accessed

and managed. Database system is amalgamation of database, database management system and

users. (Fig. 1)

Types of Database models

In mid of 1960 the “database” word was first introduced with direct-access-storage. Charles

Bachman has introduced Integrated Data Store (IDS), founded, the group “Database Task

Group” responsible for the creation and standardization of COBOL. In 1971 the DTG within

CODASYL (Conference on Data Systems Languages) delivered standard for database, which

generally became known as the "Codasyl approach”, this led to network database. Same period

IBM was developed IMS (Information Management System), which is similar to Codasyl

approach and used hierarchical model of data. Edgar Codd worked at IBM in San Jose,

California and he was unhappy with the above two models. He wrote a number of papers those

illustrated a new approach based on relational algebra for construction of database that led to a

well accepted Relational Model of Data for Large Shared Data Banks. This based on concept

relational algebra. There are three main types of database models; 1) Network Model, 2)

Hierarchy Model, and 3) Relational Model. Main objective of these models is integration of

data, which is process of combining data of different sources under single query interface.

41

Data to Knowledge

Data

Information

Knowledge

Physical value related to facts/things

Dharwad 1.2

Paddy 123.45

prod.

FSF

Pr
oc

es
s

A
pp

lic
at

io
n

Meaning of data (relationship)

Put in use

Categorized, classified, condensed, organized, tabulated

160.48

Fig. 1: Data to knowledge

Network Database Model

This model visualizes data in a flexible way of representing objects and their relationships. Its

distinguishing feature is that the schema, viewed as a graph in which object types are nodes

and relationship types are arcs, is not restricted to being a hierarchy or lattice.

Hierarchical database model

This model is a data model in which the data is organized into a reverse tree-like structure. In

this data can be represented as parent and child relationships by 1 to many relationships that

each parent can have many children, but each child has only one parent. All attributes of a

specific record are listed under an entity type.

Relational Database Model

In this model, database structure is represented in terms of tuples (rows), grouped into relations

(tables) and values in each columns of tuple are represented as attributes values (data) and

identified solely by the attribute name (Field).

Major Components and Architecture of Database System

42

Fig. 2: Architecture of Database

• Users: DB Administrator, Developer and end-user.

• Application: Application software to any specific domain.

• DBMS: Software for creation, insertion, deletion and modification.

• Database: Collection of data

Database architecture logically divided in to two types

• 2 - tier: End-user < -- > DBMS; Here end-user/client can directly communicate with

database server.

• 3- tier: End-user < -- > Application Software < -- > DBMS; Here end-user/client will

communicate with database server through application tools.

Basic Concept of DataBase Management System (DBMS)

Database Management Systems (DBMS) is specially designed applications software that

designed to interact with the user, other applications and database(s) to capture and analyse

data. The DBMS have facilities to allow the definition, creation, querying, update, and

administration of databases. Well-known DBMSs include MySQL, PostgreSQL, Microsoft

SQL Server, Oracle, SAP, MS Access, FoxPro, IBM DB2/TeraByte, etc. Now database have

generally portable across different DBMS by using standards such as SQL and ODBC or JDBC

to allow a single application to work with more than one database.

Major functions of DBMS

Users

Application software

DBMS

Database

3-tier

2-tier

43

• Data definition: Defining new data structures, removing and modifying the

existing structure.

• Update: Inserting, modifying, and deleting data.

• Retrieval: Obtaining information for end-user queries or for applications.

• Administration: Registering and monitoring users, enforcing data security,

monitoring performance, maintaining data integrity, dealing with concurrency

control, and recovering information if the system fails.

Benefits of DBMS

• Segregation of work to end-users

• Easy editing, maintenance and retrieval

• Minimizing data duplication

• Reducing time in development and maintenance

• Data security

• Multiple user accessing

• Backup and recovery

Relational Database Management System (RDBMS)

A Relational database Management System (RDBMS) is a database management system to

manage relational database based on relation database model as discussed above, which is

introduced by E. F. Codd. In this data is represented in terms of tuples (rows) Relational

database is collection of tables, table is consist of rows usually called as records and columns

called as field or attributes, and columns are identified by unique name. Table is most simplest

and fundamental unit of data storage. Each table has its own primary key (one or more fields),

which ensures that uniqueness of each record with set of fields. The keys are very important

part of relational database. They are used to establish and identify relationship between tables.

The RDBMS supports Structured Query Language (SQL).

Normalization

Normalization is a systematics pre-process of decomposing tables to eliminate data

redundancy. This will help to easy insertion, updation and deletion. Normalization rule are

divided into following form

• First Normal Form: Row cannot contain repeating group of data.

• Second Normal Form: Remove partial dependency between columns

• Remove transitive functional dependency

• Boyce and Codd Normal Form: This deals with certain anomaly that is not handled

by3NF.

Entity-Relationship (E-R) Diagram

ER diagram is visual diagrammatic representation of data with standard symbols and notation,

which describes how data is related to each other (Fig. 3).

44

Major symbols and notations

Fig. 3: Symbols and Notations

Entity may be any object, person, place and etc. Attributes are features or characteristics. For

Example livestock census statistics is shown in table 1.

Table 1: Livestock data before normalization

State State

Capital

Dist Dist

Head

Qrts

Year Animal Category Population Population

(000)

Karnataka Bangalore Dharwad Dharwad 2007 Cattle < 1 year 14355 14.356

Karnataka Bangalore Dharwad Dharwad 2007 Cattle 1-2.5

year

24675 24.675

Karnataka Bangalore Dharwad Dharwad 2007 Cattle >2.5 year 44355 44.355

Karnataka Bangalore Uttar

Kannada

Karwar 2007 Cattle < 1 year 45255 45.255

Karnataka Bangalore Uttar

Kannada

Karwar 2007 Cattle 1-2.5

year

56555 56.555

Karnataka Bangalore Uttar

Kannada

Karwar 2007 Cattle >2.5 year 1836 1.836

The ER diagram for the table 1 is shown in Fig. 4.

Entity Relationship Attributes
Joining

45

Fig. 4: ER-Diagram

The relationships of the tables are shown in Fig. 5.

Fig. 5: Relationship diagram from MS Access

Structured Query Language (SQL)

SQL is a tool for communicate with database. SQL is a plat form independent common

language is used to perform all types of data operation such as data defining, storing and

managing in RDBMS database concept. Now, all RDBMS software employs this language as

standard database language. Some of the sample commands are mentioned in table 2.

Table 2: Sample of SQL commands

Animals Category

Census Dists

Year

States

Regions

Ani_Code

S_Code

R_Code

D_Code

Y_Code

Ani_Code

46

Command Description Syntax

Data Definition

create To create new table

or database

CREATE TABLE "tablename" ("column1_name" "data

type",

 "column2_name" "data type", “. . . ")

alter For alteration ALTER TABLE table_name ADD column_name datatype;

ALTER TABLE table_name DROP COLUMN

column_name;

ALTER TABLE table_name MODIFY COLUMN

column_name datatype;

drop To drop a table DROP TABLE "tablename"

rename To rename a table RENAME TABLE tbl_name TO new_tbl_name;

Data Manipulation

Insert To insert a new row INSERT INTO tablename" (column1,... column_last)

 VALUES (value1, ... value_last);

update To update existing

row

UPDATE "tablename" SET "columnname" = "newvalue"

[,"nextcolumn" = "newvalue2"...] WHERE "columnname"

 OPERATOR "value" [AND|OR "column"

 OPERATOR "value"];

delete To delete a row DELETE FROM "tablename" WHERE "columnname"

OPERATOR "value" [AND|OR "column" OPERATOR

"value"];

Transaction control

commit To permanently

save

COMMIT;

rollback To undo change ROLLBACK;

savepoint To save temporarly SAVEPOINT SAVEPOINT_NAME;

Data query

select SELECT[ALL| DISTINCT] column1 [,column2]

FROM table1 [,table2] [WHERE "conditions"] [GROUP BY

"column-list"] [HAVING "conditions] [ORDER BY

"column-list" [ASC | DESC]]

Biological Database

Life science is a field which generates an enormous amount of un-integrated data. Biological

databases are collection of life sciences data, information and knowledge collected from

different sources such as scientific experiments, published literature, high-throughput

experiment, and computational & statistical analyses in form text, numbers, videos, images and

diagrams. These data are broadly classified into four categories based type of data such as

47

literature, sequences, structures and micro-array data. Also area wise classified into Genomics,

Proteomics, Metabolomics, and Micro-array (gene expression) and Phylogenetics.

Primary Genomic Databases

• GenBank (National Center for Biotechnology Information) url:

http://www.ncbi.nlm.nih.gov/genome

• DNA Data Bank of Japan (National Institute of Genetics) url:

http://www.ddbj.nig.ac.jp/

• European Nucleotide Archive (European Bioinformatics Institute) url:

http://www.ebi.ac.uk/ena/

Primary Protein Databases

• Uniprot (Universal Protein Resources) url:www.uniprot.org

• PDB url: www.rcsb.org/pdb/

Metabolomics databases

• META Cyc url: http://metacyc.org/

• KEGG: url : http://www.genome.jp/kegg/pathway.html

• Plant Metabolic Network (PMN) url: http://www.plantcyc.org/

Phylogenetics databases

• PhylomeDB url: http://phylomedb.org

• TreeBASE url: http://treebase.org

Microarray Database

• EMBL-EBI microarray database array express url: http://www.ebi.ac.uk/arrayexpress/

• Stanford University database url: http://smd.princeton.edu/

• Gene expression Omnibus (GEO) (NLM) url: http://www.ncbi.nlm.nih.gov/geo/

• ExpressDB - Harvard url: http://arep.med.harvard.edu/ExpressDB/

Similarly many bioinformatics databases such as Compound-Specific Databases,

Comprehensive Metabolomic Database, drug database, RNA database, SNP database,

Microsatellites, Literature database, Crystallographic database, NMR spectra database,

Carbohydrate structure databases, Protein-protein interactions database, Signal transduction

pathway databases, primer databases, Taxonomic databases and etc.

48

http://www.ncbi.nlm.nih.gov/genome
http://www.ddbj.nig.ac.jp/
http://www.ebi.ac.uk/ena/
http://www.rcsb.org/pdb/
http://metacyc.org/
http://www.genome.jp/kegg/pathway.html
http://www.plantcyc.org/
http://phylomedb.org/
http://treebase.org/
http://www.ebi.ac.uk/arrayexpress/
http://smd.princeton.edu/
http://www.ncbi.nlm.nih.gov/geo/
http://arep.med.harvard.edu/ExpressDB/

Sequence Analysis

S. B. Lal

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

1. Introduction

Since the development of high-throughput methods for production of gene and protein

sequences during 90s, the rate of addition of new sequences to the databases increases

very rapidly. However, comparing sequences with known functions with these new

sequences is one way of understanding the biology of that organism from which the

new sequence comes. Thus, sequence analysis can be used to study of the similarities

between the compared sequences. Now a days, there are many tools and techniques that

provide the sequence comparisons (sequence alignment) and analyze the alignment to

understand the biology.

Sequence analysis in molecular biology and bioinformatics is an automated, computer-

based examination of characteristic fragments, e.g. of a DNA strand. It basically

includes relevant topics:

1. The comparison of sequences in order to find similarity and dissimilarity in

compared sequences (sequence alignment)

2. Identification of gene-structures, reading frames, distributions of introns, exons

and regulatory elements

3. Finding and comparing point mutations or the single nucleotide polymorphism

(SNP) in organism in order to get the genetic marker.

4. Revealing the evolution and genetic diversity of organisms.

5. Functional annotation of genes.

Sequence alignment is a way to identify regions of similarity in DNA, RNA, or protein

sequences that may be a consequence of functional, structural, or evolutionary

relationships between the sequences. Aligned sequences of nucleotide or amino acid

residues are typically represented as rows within a matrix. If two sequences share a

common ancestor for the alignment, mismatches can be interpreted as point mutations

and gaps as indels (that is, insertion or deletion mutations). Thus, a letter or a stretch of

letters may be paired up with dashes in the other sequence to signify such an insertion

or deletion. Homologous sequences may have different length, which is generally

explained through insertions or deletions in sequences. Since an insertion in one

sequence can always be seen as a deletion in the other one frequently uses the term

"indel". In sequence alignments of proteins, the degree of similarity between amino

acids sequence can be interpreted as a rough measure of how conserved a particular

region or sequence motif is among lineages. The absence of substitutions, or the

presence of only very conservative substitutions (that is, the substitution of amino acids

whose side chains have similar biochemical properties) in a particular region of the

sequence, suggest that this region has structural or functional importance. Although

DNA and RNA nucleotide bases are more similar to each other than are amino acids,

the conservation of base pairs can indicate a similar functional or structural role.

Very short or very similar sequences can be aligned by hand. However, most interesting

problems require the alignment of lengthy, highly variable or extremely numerous

49

sequences that cannot be aligned solely by human effort. Computational methods need

to be developed for the alignment of a large pair of sequences. Computational

approaches are of two categories: global alignments and local alignments. Global

alignment is a form of global optimization that "forces" the alignment to span the entire

length of all query sequences. Global alignment will be applied when the sequences

are of similar lengths. Local alignments identify regions of similarity within long

sequences. Local alignments are often preferable, but it consumes more time to

calculate because of the additional challenge of identifying the regions of similarity in

the local regions. Number of algorithms is being applied for the sequence alignment,

including optimizing methods like dynamic programming, and heuristic algorithms or

probabilistic methods designed for large-scale database search.

Fig. 1 Sample of sequence Alignment text based representations

In sequence alignment of graphical representations, sequences are written in rows so

that aligned residues appear in successive columns. While in text formats, aligned

columns containing identical or similar characters are indicated with a system of

conservation symbols. An asterisk or pipe symbol is used to represent the similarity of

these two columns, a colon for conservative substitutions and a period for semi-

conservative substitutions.

Many sequence visualization techniques use a color coding scheme to display

information about the properties of the individual sequence elements. In DNA and RNA

sequences, each nucleotide is represented by a specific color. In protein alignments,

color is used to indicate amino acid properties in determining the conservation of a

given amino acid substitution.

2. Pair-wise Alignment

Pair-wise sequence alignment methods are used to find the best-matching pairs of two

sequences. The three primary methods of pair-wise alignments are dot-matrix, dynamic

programming and word methods. One way of quantifying the utility of a pair-wise

alignment is the 'maximum unique match', or the longest subsequence that occurs in

both query sequence.

a) Dot-Matrix Method: The two sequences are written along the top row and leftmost

column of a two-dimensional matrix and a dot is placed at any point where the

characters in the appropriate columns match. We try to draw lines diagonally. The dot

plots of very closely related sequences will appear as a single line along the matrix's

main diagonal (Fig. 2). The dot-matrix approach produces a simple way of alignments

for small sequences with the similar regions but time-consuming to analyze large

sequences.

50

Fig. 2: The dot matrix technique for sequence alignment

There are many problems with dot plots such as noise, lack of clarity, difficulty

extracting match summary statistics. Dot-plots are limited to two sequences only.

b) Dynamic Programming: Dynamic programming can be applied to produce global

and local alignments. This can be done by applying Needleman-Wunsch algorithm for

global alignment and Smith-Waterman algorithm for the local alignments. In general,

alignments use a substitution matrix to assign scores for matches or mismatches, and a

gap penalty for matching an in one sequence with a gap in the other.

DNA and RNA alignments may use a different scoring matrix, but in practice often

simply assign a positive match score, a negative mismatch score, and a negative gap

penalty. Dynamic programming can be useful in aligning nucleotide to protein

sequences. The framesearch method produces a series of global or local pair-wise

alignments between a query nucleotide sequence and a search set of protein sequences,

or vice versa. The BLAST and EMBOSS provide basic tools for creating alignments of

the sequences.

c) Word Method: Word or k-tuple methods are heuristic methods but are not guaranteed

to find an optimal alignment solution. These methods are especially useful in large-

scale database searches Word methods are best known for their implementation in the

database search tools FASTA and BLAST family. Word methods identify a series of

short, non-overlapping subsequences ("words") that are matched to candidate database

sequences. The relative positions of the word in the two sequences being compared are

subtracted to obtain an offset; this will indicate a region of alignment if multiple distinct

words produce the same offset.

In the FASTA method, the user defines a value k to use as the word length with which

to search the database. The method is slower but more sensitive for lower values of k,

which are preferred for searching a very short query sequence. The BLAST family of

search methods provides a number of algorithms optimized for particular types of

queries. BLAST was developed to provide a faster alternative to FASTA without

sacrificing accuracy. BLAST uses a word search of length k, but evaluates only the

most significant word matches. Most BLAST implementations use a fixed default word

length that is optimized for the query and database. Web based implementations are

available such as EMBL FASTA and NCBI BLAST.

51

3. Global and Local Alignment

Global Alignment

Global alignments, which attempt to align every residue of each sequence, when the

size of the sequences are similar or of equal size. A general global alignment technique

is based on dynamic programming i.e., Needleman-Wunsch algorithm. This can be

easily understood with the following two sequences aligned globally as follows

G A A T T C A G T T A (sequence #1)

G G A T C G A (sequence #2)

In simple dynamic programming principle, we construct a matrix. The matrix will be

filled by inserting 0 or 1 where ever there is a mismatch or match. We also penalize the

gaps with 0 as a simple case. Following steps are needed for construction of the matrix

i. Initialization

ii. Matrix fill (scoring)

iii. Traceback (alignment)

i. Initialization

The first step is to create a matrix with M + 1 columns and N + 1 rows where M and N

are the sizes of the sequences to be aligned.

With the given sequences, length of sequence #1 = 11 and length of sequence #2 is 7.

The size of the matrix will be 12*8 (11+1 * 7+1). The first row and first column of the

matrix can be initially filled with 0 because we assume assumes there is no gap opening

or gap extension penalty as shown in fig. 3.

Fig. 3. Initial matrix with two sequences

ii. Matrix Fill

One possible way of filling the matrix is to find the maximum global alignment score

by starting from the upper left hand corner of the matrix and find the maximal score

Mi,j for each position in the matrix.

For each position, Mi,j is defined to be the maximum score at position i,j i.e.,

Mi,j = MAXIMUM[

 Mi-1, j-1 + Si,j (match/mismatch in the diagonal),

 Mi,j-1 + w (gap in sequence #1),

 Mi-1,j + w (gap in sequence #2)]

52

In fig. 4, Mi-1,j-1 will be red, Mi,j-1 will be blue and Mi-1,j will be green. The score at

position 1,1 in the matrix can be calculated. Since the first residue in both sequences is

a G i.e., a match, so score S1,1 = 1. We assumed the gap penalty as 0.

Thus, M1,1 = MAX[M0,0 + 1, M1, 0 + 0, M0,1 + 0] = MAX [1, 0, 0] = 1.

A value of 1 is then placed in position 1,1 of the scoring matrix.

Fig. 4. Sample fill of the entry M1,1

Now the element M1,2, the value is the max of 0 (for a mismatch), 0 (for a vertical gap)

or 1 (horizontal gap). The rest of element of first row can be filled up similarly. At this

point, there is a G in both sequences (light blue). Thus, the value for the cell at row 1

column 8 is the maximum of 1 (for a match), 0 (for a vertical gap) or 1 (horizontal gap).

The value will again be 1 as in fig. 5

Fig. 5. Sample fill of the entry whene there is a collosion of two cells for M1,8

Now similarly at column 2. The location at row 2 will be assigned the value of the

maximum of 1(mismatch), 1(horizontal gap) or 1 (vertical gap). So its value is 1.

After filling in all of the values the score matrix is shown in fig. 6:

53

Fig. 6. Final filled matrix

iii. Traceback Step

After the matrix fill step, find the the maximum alignment score for the two test

sequences. The traceback step determines the actual alignment(s) that result in the

maximum score. Note that with a simple scoring algorithm such as one that is used here,

there are likely to be multiple maximal alignments.

The traceback step begins in the matrix that leads to the maximal score. In this case,

there is a 6 in that location. Traceback takes the current cell and looks to the neighbor

cells that could be direct predecessors. This means that it looks to the neighbor to the

left (gap in sequence #2), the diagonal neighbor (match/mismatch), and the neighbor

above it (gap in sequence #1). The algorithm for traceback chooses as the next cell in

the sequence one of the possible predacessors. In this case, the neighbors are marked in

red. They are all also equal to 5 as in fig 7.

Fig. 7. Traceback process start where the score is maximum

Since the current cell has a value of 6 and the scores are 1 for a match and 0 for anything

else, the only possible predecessor is the diagonal match/mismatch neighbor. If more

than one possible predecessor exists, any can be chosen. The corresponding row and

column can be crossed out as in fig. 8. This gives us a current alignment of

 (Seq #1) A

 |

 (Seq #2) A

Fig. 8. Traceback steps and crossing of the row and column

54

Now, look at the current cell and determine which cell is its direct predecessor. In this

case, it is the cell with the red 5 as in fig. 9. The alignment as described in the above

step adds a gap to sequence #2 , so the current alignment is

 (Seq #1) T A

 |

 (Seq #2) _ A

Once again, the direct predecessor produces a gap in sequence #2.

Fig. 9. Traceback steps and crossing of the row and column

After this step, the current alignment is

 (Seq #1) T T A

 |

 _ _ A

Continuing on with the traceback step, we eventually get to a position in row 0 and

column 0, which tells us that traceback is completed as in fig. 10.

Fig. 10. Final matrix with the traceback steps

One possible maximum alignment is

 G A A T T C A G T T A

 | | | | | |

 G G A _ T C _ G _ _ A

55

Local Alignment

Local alignments are more useful for dissimilar sequences that may contains regions of

similarity or similar sequence motifs within their larger sequence context. The Smith-

Waterman algorithm is a general local alignment method based on dynamic

programming. A local alignment searches for regions of local similarity between two

sequences and need not include the entire length of the sequences. This can be done by

reading a scoring matrix that contains values for every possible residue or nucleotide

match or mismatch. The Smith-Waterman algorithm is a member of the class of

algorithms that can calculate the best score and local alignment in the order of m*n

steps, where 'm' and 'n' are the lengths of the two sequences. Local alignment methods

only report the best matching areas between two sequences while there may be a large

number of alternative local alignments which do not score as highly as the best

alignment done by this algorithm.

Consider the two DNA sequences to be globally aligned are:

 ACACACT (x=7, length of sequence 1)

 AGCACAC (y=7, length of sequence 2)

It also follows three steps

i. Initialization

ii. Matrix fill (scoring)

iii. Traceback (alignment)

 Let us assume the simple scoring scheme as

• Si,j = 2 if there is a match

• Si,j = -1 if there is a mismatch

• w = -1 as gap penalty

i. Initialization

The first step in the global alignment dynamic programming approach is to create a

matrix with M + 1 columns and N + 1 rows where M and N correspond to the size of

the sequences to be aligned. In this example, we assume that there is no gap opening or

gap extension penalty. The first row and first column of the matrix can be initially filled

with 0 as in fig. 11.

56

Fig. 11. Initial matrix with first row and first column element as 0

ii. Matrix Fill

One way to fill the matrix is to find the maximum global alignment score by starting

from the upper left hand corner in the matrix and get the maximal score Mi,j for each

position in the matrix. In order to find Mi,j for any i,j it is minimal to know the score for

the matrix positions to the left, above and diagonal to i, j. In terms of matrix positions,

it is necessary to know Mi-1,j, Mi,j-1 and Mi-1, j-1.

For each position, Mi,j is defined to be the maximum score at position i,j; i.e.

Mi,j = MAXIMUM[

 Mi-1, j-1 + Si,j (match/mismatch in the diagonal),

 Mi,j-1 + w (gap in sequence #1),

 Mi-1,j + w (gap in sequence #2)]

Using this information, the score at position 1,1 in the matrix can be calculated. Since the

first residue in both sequences is A, S1,1 = 2, and by the assumptions stated at the

beginning, w = 0. Thus, M1,1 = MAX[M0,0 + 2, M1, 0 -1, M0,1 -1] = MAX [2, -1, -1] = 2.

A value of 2 is then placed in position 1,1 of the scoring matrix as in fig. 12. And

subsequently the whole matrix is filled in the same way.

Fig. 12. Final filled matrix

iii. Traceback

After the matrix fill step, the maximum alignment score for these two test sequences is

11. The traceback step determines the actual alignment(s) for the maximum score. It is

not mandatory that the last cell has the maximum alignment score.

The traceback step begins with the position that leads to the maximal score. In this case,

there is 11 in that location.

Trace back takes the current cell and looks to the neighbor cells that could be direct

predecessors. This means it looks to the neighbor to the left (gap in sequence #2), the

diagonal neighbor (match/mismatch), and the neighbor above it (gap in sequence #1)

as in fig. 13. The algorithm for trace back chooses as the next cell in the sequence one

of the possible predecessors. This continues till cell with value 0 is reached.

57

Fig. 13. Traceback Step

The only possible predecessor is the diagonal match/mismatch neighbor. If more than

one possible predecessor exists, any can be chosen. This gives us a current alignment

of

 (Seq #1) C

 |

 (Seq #2) C

So now we look at the current cell and determine which cell is its direct predecessor. In

this case, it is the cell with the red 9 as in fig. 14.

 (Seq #1) C A

 | |

 (Seq #2) C A

Fig. 14. Traceback step with the correct arrows

Continuing with the traceback step, we eventually get a position in column 0 or row 0

which tells us that traceback is completed as in fig. 15.

58

Fig. 15. Final Traceback Matrix

The possible maximum alignment is:

 AG C A C A C

 | | | | | |

 A _ C A C A C

There is a combination of these two methods which is called hybrid methods, also

known as semiglobal or "glocal" methods. This method attempts to find the best

possible alignment that includes the start and end of one or the other sequence. This can

be especially useful when the downstream part of one sequence overlaps with the

upstream part of the other sequence. In this case, neither global nor local alignment is

entirely appropriate.

4. Significance of Sequence Alignment

Sequence alignments are useful in bioinformatics for identifying sequence similarity,

producing phylogenetic trees, and developing homology models of protein structures.

However, the biological relevance of sequence alignments is not always clear.

Alignments are often assumed to reflect a degree of evolutionary change between

sequences descended from a common ancestor; however, it is formally possible that

convergent evolution can occur to produce apparent similarity between proteins that are

evolutionarily unrelated but perform similar functions and have similar structures.

In database searches such as BLAST, statistical methods can determine the likelihood

of a particular alignment between sequences or sequence regions arising by chance with

the given the size and composition of the database being searched. These values can

vary significantly depending on the search space. In particular, the likelihood of finding

a given alignment by chance increases, if the database consists only of sequences from

the same organism as the query sequence. Repetitive sequences in the database or query

can also distort both the search results and the assessment of statistical significance.

BLAST automatically filters such repetitive sequences in the query to avoid apparent

hits that are statistical artifacts.

The choice of a scoring function that reflects biological or statistical observations

about known sequences is important to producing good alignments. Protein sequences

are frequently aligned using substitution matrices that reflect the probabilities of given

character-to-character substitutions. A series of matrices called PAM matrices (Point

59

Accepted Mutation matrices, originally defined by Margaret Dayhoff and sometimes

referred to as "Dayhoff matrices") explicitly encode evolutionary approximations

regarding the rates and probabilities of particular amino acid mutations. Another

common series of scoring matrices, known as BLOSUM (Blocks Substitution Matrix),

encodes empirically derived substitution probabilities. Variants of both types of

matrices are used to detect sequences with differing levels of divergence, thus allowing

users of BLAST or FASTA to restrict searches to more closely related matches or

expand to detect more divergent sequences. Gap penalties account for the introduction

of a gap - on the evolutionary model, an insertion or deletion mutation - in both

nucleotide and protein sequences, and therefore the penalty values should be

proportional to the expected rate of such mutations. The quality of the alignments

produced therefore depends on the quality of the scoring function.

5. Sequence Databases

The repositories for the genomic sequences are

National Center for Biotechnology Information (NCBI) is part of the United States

National Library of Medicine (NLM), a branch of the National Institutes of Health. The

NCBI is located in Bethesda, Maryland and was founded in 1988 through legislation

sponsored by Senator Claude Pepper. The NCBI houses genome sequencing data in

GenBank and an index of biomedical research articles in PubMed Central and PubMed,

as well as other information relevant to biotechnology. All these databases are available

online through the Entrez search engine. The NCBI is directed by David Lipman, one

of the original authors of the BLAST sequence alignment program and a widely

respected figure in Bioinformatics. The NCBI has had responsibility for making

available the GenBank DNA sequence database since 1992 as shown in fig. 16.

GenBank coordinates with individual laboratories and other sequence databases such

as those of the European Molecular Biology Laboratory (EMBL) and the DNA Data

Bank of Japan (DDBJ). Since 1992, NCBI has grown to provide other databases in

addition to GenBank. NCBI provides Online Mendelian Inheritance in Man, the

Molecular Modeling Database (3D protein structures), dbSNP a database of single-

nucleotide polymorphisms, the Unique Human Gene Sequence Collection, a Gene Map

of the human genome, a Taxonomy Browser, and coordinates with the National Cancer

Institute to provide the Cancer Genome Anatomy Project.

60

Fig. 16. NCBI portal

The NCBI assigns a unique identifier (Taxonomy ID number) to each species of

organism. The NCBI has software tools that are available by WWW browsing or by

FTP. For example, BLAST is a sequence similarity searching program. BLAST can do

sequence comparisons against the GenBank DNA database in less than 15 seconds. The

NCBI Bookshelf is a collection of freely available, downloadable, on-line versions of

selected biomedical books. The Bookshelf has various titles covering aspects of

molecular biology, biochemistry, cell biology, genetics, microbiology, a couple of

disease states from a molecular and cellular point of view, research methods, and

virology. Some of the books are online versions of previously published books, while

others, such as Coffee Break (book), are written and edited by NCBI staff. The

Bookshelf is a complement to the Entrez PubMed repository of peer-reviewed

publication abstracts in that Bookshelf contents provide established perspectives on

evolving areas of study and a context in which many disparate individual pieces of

reported research can be organized.

European Molecular Biology Laboratory (EMBL) is a molecular biology research

institution supported by 20 European countries and Australia as associate member state.

The EMBL was created in 1974 and is a non-profit organisation funded by public

research money from its member states. Research at EMBL is conducted by

approximately 85 independent groups covering the spectrum of molecular biology. The

Laboratory operates from five sites: the main Laboratory in Heidelberg, and Outstations

in Hinxton (the European Bioinformatics Institute (EBI)), Grenoble, Hamburg, and

Monterotondo near Rome as in fig. 17. Each of the sites has a research specific field.

At EBI, the research is oriented towards computational biology and bioinformatics. At

Grenoble and Hamburg the research is in the field of structural biology. At

Monterotondo the research is focused mainly on mouse models for clinical research. At

the headquarters in Heidelberg, there are big departments in Cell Biology and Gene

Expression as well as smaller complementing the aforementioned research fields.

61

Fig. 17. EMBL portal

The cornerstones of EMBL's mission are: to perform basic research in molecular

biology and molecular medicine, to train scientists, students and visitors at all levels, to

offer vital services to scientists in the member states, to develop new instruments and

methods in the life sciences, and to actively engage in technology transfer. EMBL's

international PhD Programme has a student body of about 170. The Laboratory also

sponsors an active Science and Society programme. Many scientific breakthroughs

have been made at EMBL, most notably the first systematic genetic analysis of

embryonic development in the fruit fly by Christiane Nüsslein-Volhard and Eric

Wieschaus, for which they were awarded the Nobel Prize for Medicine in 1995.

DNA Data Bank of Japan (DDBJ) is a DNA data bank. It is located at the National

Institute of Genetics (NIG) in the Shizuoka prefecture of Japan. It is also a member of

the International Nucleotide Sequence Database Collaboration or INSDC. It exchanges

its data with European Molecular Biology Laboratory at the European Bioinformatics

Institute and with GenBank at the National Center for Biotechnology Information on a

daily basis. Thus these three databanks contents the same data at any given time. DDBJ

began data bank activities since 1986 at NIG and it boasts to be the only nucleotide

sequence data bank in Asia. Although DDBJ mainly receives its data from Japanese

researchers, however it can accept data from a contributor belonging to any other

country as in fig. 18.

62

Fig. 18. DDBJ Portal

DDBJ is primarily funded by the Japanese Ministry of Education, Culture, Sports,

Science and Technology (MEXT). DDBJ has an international advisory committee

which consists of nine members, 3 members each from Europe, US, and Japan. This

committee advice DDBJ about its maintenance, management and future plans once a

year. Apart from this DDBJ also has an international collaborative committee which

advises on various technical issues related to international collaboration and consists of

working-level participants.

6. Softwares Used in Sequence Alignment

 S.

No.
Name Function Website Link

1 ALIGN Sequence Analysis http://www.ebi.ac.uk/Tools/emboss/align

2 CENSOR Sequence Analysis http://www.ebi.ac.uk/Tools/censor/

3 CLUSTALW2 Sequence Analysis http://www.ebi.ac.uk/Tools/clustalw2/

4 CpG Plot/

CpGreport

Sequence Analysis http://www.ebi.ac.uk/Tools/emboss/

cpgplot/

5 Genewise Sequence Analysis http://www.ebi.ac.uk/Tools/Wise2/

6 Kalign Sequence Analysis http://www.ebi.ac.uk/Tools/kalign

7 MAFFT Sequence Analysis http://www.ebi.ac.uk/Tools/mafft/

8 MUSCLE Sequence Analysis http://www.ebi.ac.uk/Tools/muscle/

63

http://www.ebi.ac.uk/Tools/emboss/align
http://www.ebi.ac.uk/Tools/censor/
http://www.ebi.ac.uk/Tools/clustalw2/
http://www.ebi.ac.uk/Tools/emboss/%20cpgplot/
http://www.ebi.ac.uk/Tools/emboss/%20cpgplot/
http://www.ebi.ac.uk/Tools/Wise2/
http://www.ebi.ac.uk/Tools/kalign
http://www.ebi.ac.uk/Tools/mafft/
http://www.ebi.ac.uk/Tools/muscle/

9 Pepstats/

Pepwindow/Pepinfo

Sequence Analysis http://www.ebi.ac.uk/Tools/emboss/

pepinfo/

10 PromoterWise Sequence Analysis http://www.ebi.ac.uk/Tools/Wise2/

promoterwise.html

11 SAPS Sequence Analysis http://www.ebi.ac.uk/Tools/saps/

12 T-coffee Sequence Analysis http://www.ebi.ac.uk/Tools/t-coffee/

13 Transeq Sequence Analysis http://www.ebi.ac.uk/Tools/emboss/transeq/

14 COBALT Sequence Analysis http://www.ncbi.nlm.nih.gov/tools/ cobalt/

15 Genome

Workbench

Sequence Analysis http://www.ncbi.nlm.nih.gov/projects/

gbench/

16 ORF Finder Sequence Analysis http://www.ncbi.nlm.nih.gov/gorf/gorf/

html

17 Primer - BLAST Sequence Analysis http://www.ncbi.nlm.nih.gov/tools/ primer-

blast

18 ProSplign Sequence Analysis http://www.ncbi.nlm.nih.gov/sutils/static/pr

osplin/prosplign.html

19 Splign Sequence Analysis http://www.ncbi.nlm.nih.gov/sutils/ splign/

20 VecScreen Sequence Analysis http://www.ncbi.nlm.nih.gov/VecScreen/Ve

cScreen.html

21 Sequence Analysis Sequence analysis http://www.informagen.com/SA/

22 SeWeR Sequence analysis http://www.bioinformatics.org/sewer/

23 Motif Search Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/

motifsearch2/ index.pl

24 DNA Translator Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/JDT/

25 Non coding RNA

Gene Finder

Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/

ncRnaGeneFinder/index.pl

26 TransTerm Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/

transterm/

64

http://www.ebi.ac.uk/Tools/emboss/%20pepinfo/
http://www.ebi.ac.uk/Tools/emboss/%20pepinfo/
http://www.ebi.ac.uk/Tools/Wise2/%20promoterwise.html
http://www.ebi.ac.uk/Tools/Wise2/%20promoterwise.html
http://www.ebi.ac.uk/Tools/saps/
http://www.ebi.ac.uk/Tools/t-coffee/
http://www.ebi.ac.uk/Tools/emboss/transeq/
http://www.ncbi.nlm.nih.gov/tools/%20cobalt/
http://www.ncbi.nlm.nih.gov/projects/%20gbench/
http://www.ncbi.nlm.nih.gov/projects/%20gbench/
http://www.ncbi.nlm.nih.gov/gorf/gorf/%20html
http://www.ncbi.nlm.nih.gov/gorf/gorf/%20html
http://www.ncbi.nlm.nih.gov/tools/%20primer-blast
http://www.ncbi.nlm.nih.gov/tools/%20primer-blast
http://www.ncbi.nlm.nih.gov/sutils/static/prosplin/prosplign.html
http://www.ncbi.nlm.nih.gov/sutils/static/prosplin/prosplign.html
http://www.ncbi.nlm.nih.gov/sutils/%20splign/
http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html
http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html
http://www.informagen.com/SA/
http://www.bioinformatics.org/sewer/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20motifsearch2/%20index.pl
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20motifsearch2/%20index.pl
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20motifsearch2/%20index.pl
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/JDT/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/JDT/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20ncRnaGeneFinder/index.pl
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20ncRnaGeneFinder/index.pl
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20ncRnaGeneFinder/index.pl
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20transterm/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20transterm/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/%20transterm/

27 QRNA Sequence analysis http://nbc11.biologie.unikl.de/framed/

left/menu/auto/right/qrna/

28 Clustalformatter 5 Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/

ClustalFormatter/

29 BioEdit Sequence

Alignment Editor

http://www.mbio.ncsu.edu/BioEdit/

bioedit.html

30 FASTA Sequence Similarity

Search

http://www.ebi.ac.uk/Tools/fasta/

31 HMMER Homology of

protein

http://hmmer.janelia.org/

32 JAligner Pairwise seq.

alignment

http://jaligner.sourceforge.net/

33 JSTRING Java Search for

Tandem Repeats IN

Genomes

http://bioinf.dms.med.uniroma1.it/

JSTRING/

34 NCBI BLAST Aligning Sequences http://blast.ncbi.nlm.nih.gov/Blast.cgi

35 Gene Runner/ Motif

Runner

Motif based

sequence analysis

http://www.generunner.net/

36 GoCore Protein Seq.

Alignment &

Analysis

http://www.helsinki.fi/project/ritvos/

GoCore/

37 MAFFT Multiple alignment http://mafft.cbrc.jp/alignment/server/

index.html

38 MAUVE Multiple alignment http://gel.ahabs.wisc.edu/mauve/

39 MEME Suite Motif based

sequence analysis

http://meme.nbcr.net/

40 CORAL (CDTree) Aligning Core

Conserved Regions

http://www.ncbi.nlm.nih.gov/Structure/

cdtree/cdtree.shtml

41 BlastAlign Align N Seq. with

large INDELs

http://www.bioafrica.net/blast/BlastAlign.h

tml

42 ARB software Sequence DB

Handling and Data

Analysis

http://www.arb-home.de/

65

http://nbc11.biologie.unikl.de/framed/%20left/menu/auto/right/qrna/
http://nbc11.biologie.unikl.de/framed/%20left/menu/auto/right/qrna/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/ClustalFormatter/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/ClustalFormatter/
http://nbc11.biologie.uni-kl.de/framed/left/menu/auto/right/ClustalFormatter/
http://www.mbio.ncsu.edu/BioEdit/%20bioedit.html
http://www.mbio.ncsu.edu/BioEdit/%20bioedit.html
http://www.ebi.ac.uk/Tools/fasta/
http://hmmer.janelia.org/
http://jaligner.sourceforge.net/
http://bioinf.dms.med.uniroma1.it/%20JSTRING/
http://bioinf.dms.med.uniroma1.it/%20JSTRING/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.generunner.net/
http://www.helsinki.fi/project/ritvos/%20GoCore/
http://www.helsinki.fi/project/ritvos/%20GoCore/
http://mafft.cbrc.jp/alignment/server/%20index.html
http://mafft.cbrc.jp/alignment/server/%20index.html
http://gel.ahabs.wisc.edu/mauve/
http://meme.nbcr.net/
http://www.ncbi.nlm.nih.gov/Structure/%20cdtree/cdtree.shtml
http://www.ncbi.nlm.nih.gov/Structure/%20cdtree/cdtree.shtml
http://www.bioafrica.net/blast/BlastAlign.html
http://www.bioafrica.net/blast/BlastAlign.html
http://www.arb-home.de/

43 Automated Codon

Usage Analysis

Software - ACUA

Nucleotide Analysis http://www.bioinsilico.com/acua

44 AnnHyb Nucleotide Analysis http://www.bioinformatics.org/annhyb/

45 SOAP2 Short read

Alignment

http://soap.genomics.org.cn/

46 ACT (Artemis

Comparison Tool)

DNA Sequence

Comparison

http://www.sanger.ac.uk/resources/

software/act/

47 WU-BLAST Multiple Sequence

Alignment

www.ebi.ac.uk/Tools/blast2/

48 CLUSTALW2 multiple sequence

alignment

http://www.ebi.ac.uk/Tools/clustalw2/

References

www.wikipedia.org/

cnx.org/content/m11026/latest/

www.ncbi.nlm.nih.gov/

www.ebi.ac.uk/embl/

www.ddbj.nig.ac.jp/

66

http://www.bioinsilico.com/acua
http://www.bioinformatics.org/annhyb/
http://soap.genomics.org.cn/
http://www.sanger.ac.uk/resources/%20software/act/
http://www.sanger.ac.uk/resources/%20software/act/
http://www.ebi.ac.uk/Tools/blast2/
http://www.ebi.ac.uk/Tools/clustalw2/

Phylogenetic Analysis

Sarika1, M. A. Iquebal1, Anil Rai2 and Dinesh Kumar1

1ICAR-Indian Agricultural Statistics Research Institute, New Delhi

2Indian Council of Agricultural Research, New Delhi

INTRODUCTION

Phylogenetics is the study of evolutionary relationships. Biological sequences (amino acids

and nucleotides) are the product of evolutionary history and phylogenies are graphical

summaries of this history. Phylogenetic analysis of a family of related nucleic acids and protein

sequences is the determination of how the family might have been derived during evolution.

Phylogenetic analysis is the means of inferring or estimating the relationships. The

evolutionary history from phylogenetic analysis is generally depicted as branching or treelike

diagrams. Traditionally morphological features were used to derive relationships but now a

days molecular information is used to derive relationships, which are more informative than

the traditional anatomic or morphological characters. Molecular phylogeny provides new,

powerful and independent tests of the theory of evolution. Evolution supported molecular

phylogeny to be consistent with classical phylogeny. It also predicted that all parts of the

genome should evolve in parallel and exhibit the same taxonomic pattern. The recent

development of techniques to analyze and sequence proteins and nucleic acids has allowed

biologists to determine relatedness of organisms and to construct phylogenetic sequences.

Molecular phylogenetics attempts to determine the rates and patterns of change occurring in

DNA and proteins and to construct the evolutionary history of genes and organisms.

WHY DO WE BUILD PHYLOGENETIC TREES

The main aim of phylogenetics is to discover rates of evolutionary change, find origin of

diseases, prediction of sequence function and population history. In addition to analyzing

changes that have occurred in the evolution of different organisms, the evolution of a family

of sequences may be studied. On the basis of analysis, sequences that are most closely related

can be identified by their occupying neighboring branches on a tree. When a gene family is

found in an organism and group of organisms, phylogenetic relationships among the genes

can help to predict which ones might have an equivalent function. These functional

predictions can be tested by genetic experiments.Phylogenetic analysis can be used to study

the changes occurring in the rapidly changing species like virus. Analysis of types of changes

within a population can reveal whether or not a particular gene is under selection.

TERMINOLOGIES

A phylogeny or evolutionary tree, represents evolutionary relationships among a set of

organisms or groups of organisms, called taxa (Fig. 1). Understanding phylogeny is like

reading a family tree. The root of tree represents the ancestral lineage and the tips of branches

represent the descendants of that ancestor. Moving from root to tip means moving forward in

time. When a lineage splits (speciation), it represents a branching on a phylogeny.Whenever

speciation occurs, a single ancestral lineage give rise to two or more daughter lineages.Two

descendants that split from the same node are called sister groups. Branches connect nodes

67

uniquely and define the relationship between the taxonomic units in terms of descent and

ancestry. Only one branch can connect any two adjacent nodes. The branching pattern of the

tree is called topology, and the branch length usually represents the number of changes that

have occurred in the branch. Branches on phylogenetic trees may be scaled representing the

amount of evolutionary change, time or both, under the assumption of molecular clock or they

may be unscaled with no correspondence with either time or amount of evolutionary change.

Phylogenies trace patterns of shared ancestry between lineages. Each lineage has a part of its

history that is unique to it alone and parts that are shared with other lineages. Similarly, each

lineage has ancestors that are unique to that lineage and ancestors that are with other lineages-

common ancestors (Fig. 2).Clade includes a common ancestor and all the descendants of that

ancestor. When clades are nested within one another, they form a nested hierarchy.

Phylogenetic trees may be rooted or un-rooted (Fig. 3). In rooted trees, a particular node is

called the root, representing a common ancestor from which a unique path leads to any other

node. In case of un-rooted trees, branching relationship between taxa are specified by the way

they are connected to each other but the position of common ancestor is not. For example, on

an unrooted tree with five species, there are five branches on which tree can be rooted. Rooting

on each of the five branches has different implications for evolutionary relationships.

Fig. 1: Parts of a phylogenetic tree

Fig. 2: Each box represents a clade

Node

Root Branch

Branch length

Clade

Human

Mouse

Fly

68

(A)

(B)

Fig. 3. Rooted and rooted phylogenetic tress

ADVANTAGES OF PHYLOGENETIC CLASSIFICATION

Phylogenetic classification has two main advantages over the Linnaean system. First,

phylogenetic classification tells you something important about the organism: its evolutionary

history. Second, phylogenetic classification does not attempt to "rank" organisms. Linnaean

classification "ranks" groups of organisms artificially into kingdoms, phyla, orders, etc. This

can be misleading as it seems to suggest that different groupings with the same rank are

equivalent.

There is just no reason to think that any two identically ranked groups are comparable and by

suggesting that they are, the Linnaean system is misleading. So it seems that there are many

good reasons to switch to phylogenetic classification. However, organisms have been named

using the Linnaean system for many hundreds of years. How are biologists making the

transition to phylogenetic classification?

CONSTRUCTION OF PHYLOGENETIC TREE

Molecular phylogenetic tree construction can be divided into four steps (Felsenstein, 2004):

A. Choosing sequences

B. Multiple sequence alignment

C. Determining a tree building method and

D. Assessing tree reliability

A. CHOICE OF SEQUENCE

For constructing molecular phylogenetic trees, one can use either nucleotide or protein

sequence data. The choice of molecular markers is an important matter because it can make a

major difference in obtaining a correct tree. The decision to use nucleotide or protein sequences

depends on the properties of the sequences and the purpose of study. For studying very closely

related organisms nucleotide sequences can be used. For studying the evolution of more widely

divergent groups of organisms, one may choose either slowly evolving nucleotide sequences,

such as ribosomal RNA or protein sequences. If the phylogenetic relationships to be delineated

are at the deepest level, such as between bacteria and eukaryotes, using conserved protein

sequences makes more sense than using nucleotide sequences. DNA sequences are sometimes

more biased than protein sequences because of preferential codon usage in different organisms.

In this case, different codons for the same amino acid are used at different frequencies, leading

to sequence variations not attributable to evolution. In addition, the genetic code of

mitochondria varies from the standard genetic code. Therefore, for comparison of mitochondria

protein-coding genes, it is necessary to translate the DNA sequences into protein sequences.

Protein sequences allow more sensitive alignment than DNA sequences because the former has

69

twenty characters versus four in the latter. For moderately divergent sequences, it is almost

impossible to use DNA sequences to obtain correct alignment. In addition, to align protein-

coding DNA sequences, when gaps are introduced to maximize alignment scores, they almost

always cause frame-shift errors, making the alignment biologically meaningless. Synonymous

substitutions are nucleotide changes in the coding sequence that do not result in amino acid

sequence changes for the encoded protein. Non synonymous substitutions are nucleotide

changes that result in alterations in the amino acid sequences. Comparing the two types of

substitution rates helps to understand an evolutionary process of a sequence. For example, if

the non-synonymous substitution rate is found to be significantly greater than the synonymous

substitution rate, this means that certain parts of the protein are undergoing active mutations

that may contribute to the evolution of new functions. This is described as positive selection or

adaptive evolution. On the other hand, if the synonymous substitution rate is greater than the

non-synonymous substitution rate, this causes only neutral changes at the amino acid level,

suggesting that the protein sequence is critical enough that changes at the amino acid sequence

level are not tolerated. In this case, the sequence is said to be under negative or purifying

selection.

B. MULTIPLE SEQUENCE ALIGNMENT

The second step in making phylogenetic tree is sequence alignment. This is the most critical

step in the procedure because it establishes positional correspondence in evolution. Only the

correct alignment produces correct phylogenetic inference because aligned positions are

assumed to be genealogically related. Incorrect alignment leads to systematic errors in the final

tree or even a completely wrong tree. Therefore it is essential that the sequences are correctly

aligned. Two approaches are used for aligning sequence: Global alignment (similarity across

the full stretch of sequences) and a Local alignment (similarity in parts of the sequences).

Although many programs exist that can generate a multiple alignment from unaligned

sequences, extreme care must be taken when interpreting the results. An alignment may show

perfect matching of a known active-site residue with an identical residue in a well characterized

protein family, but, if the alignment is incorrect, any inference about function will also be

incorrect. A clustal program such as ClustalX which aligns sequences according to an explicitly

phylogenetic criterion, is the most commonly used program for the multiple alignment of

biochemical sequences. The multiple alignment is inefficient with sequences if INDELs are

common and substitution rates are high, most studies restrict comparisons to regions in which

alignments are relatively obvious. The substitution model should be given the same emphasis

as alignment and tree building. The simplest nucleotide substitution model is the Jukes–Cantor

model, which assumes that all nucleotides are substituted with equal probability. A formula for

deriving evolutionary distances that include hidden changes is introduced by using a

logarithmic function.

𝑑𝐴𝐵 = −(3 4⁄)𝑙𝑛[1 − (4 3⁄)𝑝𝐴𝐵]
where 𝑑𝐴𝐵 is the evolutionary distance between sequences A & B and 𝑝𝐴𝐵 is the observed

sequence distance measured by the proportion of substitutions over the entire length of the

alignment. Another model is the Kimura two-parameter model. This is a more sophisticated

model in which mutation rates for transitions and transversion are assumed to be different,

which is more realistic. According to this model, transitions occur more frequently than

transversions, which, therefore, provides a more realistic estimate of evolutionary distances.

The Kimura model uses the following formula:

70

𝑑𝐴𝐵 = −(1 2⁄) 𝑙𝑛(1 − 𝑝𝑡𝑖 − 𝑝𝑡𝑣) − (1 4⁄)𝑙𝑛(1 − 2𝑝𝑡𝑣)

where 𝑑𝐴𝐵 is the evolutionary distance between sequences A and B, 𝑝𝑡𝑖 is the observed

frequency for transition, and 𝑝𝑡𝑣 the frequency of transversion. The substitution model

influences both alignment and tree building. For protein sequences, the evolutionary distances

from an alignment can be corrected using a Protein Accepted Mutation (PAM) or Jones, Taylor,

Thornton (JTT) amino acid substitution matrix whose construction already takes into account

the multiple substitutions.

Alternatively, protein equivalents of Jukes–Cantor and Kimura models can be used to correct

evolutionary distances. For example, the Kimura model for correcting multiple substitutions in

protein distances is:

𝑑 = −𝑙𝑛(1 − 𝑝 − 0.2𝑝2)
where p is the observed pairwise distance between two sequences.

At the present time, two elements of the substitution model can be computationally assessed

for nucleotide data but not for amino acid or codon data. One element is the model of

substitution between particular bases; the other is the relative rate of overall substitution among

different sites in the sequence. Substitutions are more frequent between bases that are

biochemically more similar. In the case of DNA, the transitions between purine to purine and

pyrimidine to pyrimidine are usually more frequent than the transversion between purine to

pyrimidine and pyrimidine to purine. Such biases will affect the estimated divergence between

two sequences. Specification of the relative rates of substitution among particular residues

usually takes the form of a square matrix. The most widely used models of amino acid

substitution include distance based methods, which are based on matrixes such as PAM and

BLOSUM. Dayhoff’s PAM 001 matrix is an empirical model that scales probabilities of

change from one amino acid to another in terms of an expected 1% change between two amino

acid sequences. Phylogenetic distances are calculated with the assumption that the probabilities

in the matrix are correct. There are currently two main categories of tree-building methods.

Although any of the parameters in a substitution model might prove critical for a given data

set, the best model is not always the one with the most parameters. For a given DNA sequence

comparison, a two-parameter model will require that the summed base differences be sorted

into two categories and into six for a six parameter model. The number of sites sampled in each

of the six categories would be much smaller to give a reliable estimate. For protein sequences,

the model used is often dependent on the degree of sequence similarity. For more divergent

sequences, the BLOSUM matrices are often better, whereas the PAM matrix is suited for more

highly similar sequences.

C. TREE BUILDING METHOD

Tree building method is one of the steps of construction of phylogenetic trees. These may be

divided into Distance based method and character based method.

a) DISTANCE BASED METHODS

These methods employ the number of changes between each pair in a group of sequences to

produce a phylogenetic tree. These methods use the amount of dissimilarity (the distance)

between two aligned sequences to derive trees. The distance method was pioneered by Feng

and Doolittle. The algorithms for the distance based tree building method can be subdivided

71

into either clustering based or optimality based. The clustering type algorithms compute a tree

based on a distance matrix starting from the most similar sequence pairs. These algorithms

include an unweighted pair group method using arithmetic average (UPGMA) and neighbour

joining (NJ). The optimality based algorithms compare many alternative tree topologies and

select one that has the best fit between estimated distances in the tree and the actual

evolutionary distances. This category includes the Fitch-Margoliash and minimum

evolutionary algorithms.

1. Unweighted Pair Group Method with Arithmetic Mean (UPGMA)

The UPGMA method is the simplest method of tree construction. It joins tree branches based

on the criterion of greatest similarity. It is not strictly an evolutionary distance method. It

employs a sequential clustering algorithm, in which local topological relationship are identified

in the order of similarity, and the phylogenetic tree is built in a stepwise manner. Firstly, two

nodes which are most similar to each other is identified among all nodes and treat these as new

single node. Such a node is referred to as a composite node. Subsequently, among the new

group of nodes, the pair with highest similarity is identified and so on. UPGMA often produces

erroneous tree topologies.

2. Neighbor-Joining (NJ)

The UPGMA method uses unweighted distances and assumes that all taxa have constant

evolutionary rates. Since the molecular clock assumption is often not met in biological

sequences, so NJ method can be used, which is somewhat similar to UPGMA in that it builds

a tree by using stepwise reduced distance matrices. It does not require that all lineages have

diverged by equal amounts. The method is especially suited for datasets comprising lineages

with largely varying rates of evolution (Saitou, 1987). The NJ method is a special case of the

star decomposition method. The fully resolved tree is decomposed from a fully unresolved star

tree by successively inserting branches between a pair of closest neighbours and the remaining

terminals in the tree. The raw data are provided as distance matrix and the initial tree is a star

tree. Then a modified distance matrix is constructed in which the separation between each pair

of nodes is adjusted on the basis of their divergence from all other nodes. The tree is constructed

by linking the least-distant pair of nodes in this modified matrix. When two nodes are linked,

their common ancestral node is added to the tree and the terminal nodes with their respective

branches are removed from the tree. This pruning process converts the newly added common

ancestor into a terminal node on a tree of reduced size. At each stage in the process two terminal

nodes are replaced by one new node. The process is complete when two nodes remain,

separated by a single branch. The NJ method produces an unrooted tree. It is fast and thus

suited for large datasets. Sequence information is reduced. The methods is comparatively very

fast. Algorithm for finding NJ tree is:

𝑑𝐴𝐵′ = 𝑑𝐴𝐵 − 1 2⁄ 𝑥(𝑟𝐴 + 𝑟𝐵)

where𝑑𝐴𝐵′ is the converted distance between A and B and 𝑑𝐴𝐵 is the actual evolutionary

distance between A and B. The value of 𝑟𝐴 (or 𝑟𝐵) is the sum of distances of A (or B) to all

other taxa.

 3. Fitch-Margoliash Least Square Method (FM)

Optimality based methods have a well-defined algorithm to compare all possible tree

topologies and select a tree that best fits the actual evolutionary distance matrix. Based on the

differences in optimality criteria, there are two types of algorithms, Fitch–Margoliash and

minimum evolution (Fitch, 1967). The Fitch–Margoliash (FM) method selects a best tree

among all possible trees based on minimal deviation between the distances calculated in the

overall branches in the tree and the distances in the original dataset. It starts by randomly

72

clustering two taxa in a node and creating three equations to describe the distances, and then

solving the three algebraic equations for unknown branch lengths. The clustering of the two

taxa helps to create a newly reduced matrix. This process is repeated until a tree is completely

resolved. The method searches for all tree topologies and selects the one that has the lowest

squared deviation of actual distances and calculated tree branch lengths. The optimality

criterion is expressed in the following formula:

𝐸 = ∑ ∑
(𝑑𝑖𝑗 − 𝑝𝑖𝑗)

2

𝑑𝑖𝑗
2

𝑇

𝑗=𝑗+1

𝑇

𝑡=1

4. Minimum Evolution (ME)

In the ME method, distance measures that correct for multiple hits at the same sites are used.

The construction of a minimum evolution tree is time-consuming because, in principle, the

values for all topologies must be evaluated. The number of possible topologies (unrooted trees)

rapidly increases with the number of taxa so it becomes very difficult to examine all topologies.

While the NJ tree is usually the same as the ME tree, when the number of taxa is small the

difference between the NJ and ME trees can be substantial. If a long DNA or amino acid

sequence is used, the ME tree is preferable. When the number of nucleotides or amino acids

used is relatively small, the NJ method generates the correct topology more often than does the

ME method. It constructs a tree with a similar procedure, but uses a different optimality

criterion that finds a tree among all possible trees with a minimum overall branch length. The

optimality criterion relies on the formula:

𝑆 = ∑ 𝑏𝑖

where 𝑏𝑖 is the ith branch length. Searching for the minimum total branch length is an indirect

approach to achieving the best fit of the branch lengths with the original dataset.

b) CHARACTER BASED METHODS

Character-based methods are based directly on the sequence characters rather than on pairwise

distances. A character is a heritable trait possessed by an organism. When amino acid are used

we have 20 possible states per position (character), when DNA is used there are 4 states. The

actual nucleotide or amino acid occupying a site is the character state. The character-based

approaches treat each substitution separately rather than reducing all of the individual variation

to a single divergence value. Ancestral sequence can also be inferred. The two most popular

character-based approaches are maximum parsimony (MP) and maximum likelihood (ML)

methods.

1. Maximum Parsimony (MP)

The parsimony method chooses a tree that has the fewest evolutionary changes or shortest

overall branch lengths. The MP approach is in principal similar to ME approach but the latter

is distance based instead of character based. Parsimony tree building works by searching for

all possible tree topologies and reconstructing ancestral sequences that require the minimum

number of changes to evolve to the current sequences. To save computing time, only a small

number of sites that have richest phylogenetic information are used in tree determination. These

sites are called informative sites, which are defined as sites that have at least two different kinds

of characters, each occurring at least twice. Informative sites are the ones that can often be

explained by a unique tree topology. Other sites are non-informative, which are constant sites

73

or sites that have changes occurring only once. Constant sites have the same state in all taxa

and are obviously useless in evaluating the various topologies. The sites that have changes

occurring only once are not very useful either for constructing parsimony trees because they

can be explained by multiple tree topologies. The non-informative sites are thus discarded in

parsimony tree construction. Once the informative sites are identified and non-informative sites

are discarded, the minimum, number of substitutions at each informative site is computed for

a given tree topology. The total number of changes at all informative sites is summed up for

each possible tree topology. The tree that has smallest number of changes is chosen as the best

tree (Kitching, 1998). The key to counting a minimum number of substitutions for a particular

site is to determine the ancestral character states at internal nodes. Because these ancestral

character states are not known directly, multiple possible solutions may exist. In this case, the

parsimony principal applies to choose the character states that result in a minimum number of

substitutions. The inference of an ancestral sequence is made by first going from the leaves to

internal nodes and to the common root to determine all possible ancestral character states and

then going back from the common root to the leaves to assign sequences that require the

minimum number of substitutions.

2. Maximum Likelihood (ML)

Another character-based approach is ML, which uses probabilistic models to choose a best tree

that has the highest probability or likelihood of reproducing the observed data (Felsenstein,

1973). It finds a tree that most likely reflects the actual evolutionary process. ML is an

exhaustive method that searches every possible tree topology and considers every position in

an alignment, not just informative sites. It sometimes also incorporates parameters that account

for rate variations across sites. This method uses probability calculations to find a tree that best

accounts for the variation in a set of sequences. The likelihood becomes the sum of the

probabilities of each possible reconstruction of substitutions under a particular substitution

process. The likelihoods for all the sites are multiplied to give an overall “likelihood of the

tree” (i.e., the probability of the data given the tree and the substitution process). As one can

imagine, for one particular tree, the likelihood of the data is low at some sites and high at others.

For a “good” tree, many sites will have higher likelihood, so the product of likelihoods is high.

For a “poor” tree, the reverse will be true. The method is similar to the maximum parsimony

method in that the analysis is performed on each column of a multiple sequence alignment. All

possible trees are considered. Hence, the method is only feasible for a small number of

sequences. The number of sequence changes or mutations that may have occurred to give the

sequence variation is considered for each tree. Because the rate of appearance of new mutations

is very small, the more mutations needed to fit a tree to the data, the less likely that tree. Thus,

the method can be used to explore relationships among more diverse sequences, conditions that

are not well handled by maximum parsimony methods. The main disadvantage of maximum

likelihood methods is this method uses great amounts of computational time, it is usually

impractical to perform a complete search that simultaneously optimizes the substitution model

and the tree for a given data set. However, with faster computers, the maximum likelihood

method is seeing wider use and is being used for more complex models of evolution. ML works

by calculating the probability of a given evolutionary path for a particular extant sequence. The

probability values are determined by a substitution model (either for nucleotides or amino

acids). For example, for DNA sequences using the Jukes–Cantor model, the probability (P)

that a nucleotide remains the same after time t is:

𝑃(𝑡) = 1 4⁄ + 3 4⁄ 𝑒−𝛼𝑡

74

where 𝛼 is the nucleotide substitution rate in the Jukes–Cantor model, which is either

empirically assigned or estimated from the raw datasets. The most commonly used heuristic

ML method is called quartet puzzling, which uses a divide-and-conquer approach.

PHYLOGENETIC ANALYSIS USING BIOINFORMATICS TOOLS

Bioinformatics has transformed the discipline of biology from a purely lab-based science to an

information science as well. Now it becomes easier to do phylogenetic analysis by using

different softwares. Some of the softwares are free (PHYLIP) and some are not free (PAUP).

To do phylogeny with the help of bioinformatics tools it is easier to get results.

PHYLIP (the PHYLogeny Inference Package)

PHYLIP is the most widely-distributed phylogeny package. It is a package of programs for

inferring phylogenies (evolutionary trees) freely available on web. Methods that are available

in the package include parsimony, distance matrix, and likelihood methods and bootstrapping.

Data types that can be handled include molecular sequences, gene frequencies, restriction sites

and fragments, distance matrices, and discrete characters. The data are read into the program

from a text file, which the user can prepare using any word processor.

Programs of the PHYLIP package that make distance matrix include the following programs

DNADIST computes distances among input nucleic acid sequences. PROTDIST computes a

distance measure for protein sequences, based on the Dayhoff PAM model. Distance analysis

programs in PHYLIP includes FITCH which estimates a phylogenetic tree assuming additivity

of branch lengths using the Fitch-Margoliash method and does not assume a molecular clock.

KITSCH estimates a phylogenetic tree using the Fitch-Margoliash method but under the

assumption of a molecular clock. NEIGHBOR estimates phylogenies using the neighbor-

joining or UPGMA method.

The main programs for maximum parsimony analysis in the PHYLIP package are DNAPARS

which treats gaps as a fifth nucleotide state. DNAPENNY which performs parsimonious

phylogenies by branch-and-bound search that can analyze more sequences. DNACOMP, which

performs phylogenetic analysis using the compatibility criterion. Rather than searching for

overall parsimony at all sites in the multiple sequence alignment, this method finds the tree that

supports the largest number of sites. This method is recommended when the rate of evolution

varies among sites. DNAMOVE which performs parsimony and compatibility analysis

interactively. For analysis of protein sequences, the program is: PROTPARS which counts the

minimum number of mutations to change a codon for the first amino acid into a codon for the

second amino acid, but only scores those mutations in the mutational path that actually change

the amino acid.

PHYLIP includes two programs for maximum likelihood analysis DNAML estimates

phylogenies from nucleotide sequences by the maximum likelihood method, allowing for

variable frequencies of the four nucleotides, for unequal rates of transitions and transversions.

DNAMLK estimates phylogenies from nucleotide sequences by the maximum likelihood

method in the same manner as DNAML, but assumes a molecular clock. One starts with an

evolutionary model of sequence change that provides estimates of rates of substitution of one

base for another in a set of nucleic acid sequences. Once the analysis have done then we have

to see the phylogenetic tree by choosing the program DRAWGRAM which made rooted tree

and DRAWTREE which made unrooted tree.

75

D) TREE RELIABILITY

Although various methods have been developed for reconstructing phylogenetic trees, there

exist few methods for evaluating the statistical confidence of an inferred phylogeny or for

testing whether one phylogeny is significantly better than another. There are two questions that

need to be answered in assessing reliability. One is how reliable the tree or a portion of the tree

is; and the second is whether this tree is significantly better than another tree. To answer the

first question, we need to use analytical resampling strategies such as bootstrapping and

jackknifing, which repeatedly resample data from the original dataset. For the second question,

conventional statistical tests are needed. Bootstrapping is a statistical technique that tests the

sampling errors of a phylogenetic tree. It does so by repeatedly sampling trees through slightly

changed datasets. The robustness of the original tree can be assessed by this way. The rationale

for bootstrapping is that a newly constructed tree is possibly biased owing to incorrect

alignment or chance fluctuations of distance measurements. To determine the robustness or

reproducibility of the current tree, trees are repeatedly constructed with slightly disturbed

alignments that have some random fluctuations introduced. A truly robust phylogenetic

relationship should have enough characters to support the relationship even if the dataset is

disturbed in such a way. Otherwise, the noise introduced in the resampling process is sufficient

to generate different trees, indicating that the original topology may be derived from weak

phylogenetic signals. Thus, this type of analysis gives an idea of the statistical confidence of

the tree topology. Bootstrap resampling relies on redistribution of original sequence datasets.

There are two redistribution strategies. One way to produce disturbances by random

replacement of sites. This is referred to as Nonparametric bootstrapping. Another disturbance

is by making new datasets based on a particular sequence distribution, which is Parametric

bootstrapping. Both types of bootstrapping can be applied to the distance, parsimony, and

likelihood tree construction methods. A large number of bootstrap resampling steps are needed

to achieve meaningful results. It is generally recommended that a phylogenetic tree should be

bootstrapped 500 to 1,000 times. On the basis of simulation studies, it has been suggested that,

under favorable conditions bootstrap values greater than 70% correspond to a probability of

greater than 95% that the true phylogeny has been found. Under less favorable conditions,

bootstrap values greater than 50% will be overestimates of accuracy. Simply put under certain

conditions high bootstrap values can make the wrong phylogeny look good; therefore, the

conditions of the analysis must be considered. Bootstrapping can be used in experiments in

which trees are recomputed after internal branches are deleted one at a time. Bootstrapping

does not assess the accuracy of a tree, but only indicates consistency and stability of individual

clades of the tree. This means that, because of systematic errors, wrong trees can still be

obtained with high bootstrap values. Therefore, bootstrap results should be interpreted with

caution. Unusually high GC content in the original dataset, unusually accelerated evolutionary

rates and unrealistic evolutionary models are the potential causes for generating biased trees,

as well as biased bootstrap estimates, which come after the tree generation. In jackknifing, one

half of the sites in a dataset are randomly deleted, creating datasets half as long as the original.

Each new dataset is subjected to phylogenetic tree construction using the same method as the

original. The advantage of jackknifing is that sites are not duplicated relative to the original

dataset and that computing time is much shortened because of shorter sequences. One

disadvantage of this approach is that the size of datasets has been changed into one half and

that the datasets are no longer considered replicates. The statistical methodology for testing

phylogenies is in a primitive state. This is because of two reasons. First, phylogenetic

reconstruction has long been recognized as a problem in statistical inference few authors have

formulated the problem in a statistical framework. Most current methods give one or a few

trees and do not provide information concerning the confidence level of estimated phylogenies.

Second, the problem is complex, because the number of possible alternative trees is large even

76

when only a moderate number of taxa are involved. For this reason, most current statistical

tests are heuristic when the number of taxa involved is five or larger. The Bayesian method is

probably the most efficient statistical tests; it does not require bootstrapping because the

Markov chain Monte Carlo (MCMC) procedure itself involves thousands or millions of steps

of resampling. As a result of Bayesian tree construction, posterior probabilities are assigned at

each node of a best Bayesian tree as statistical support. Because of fast computational speed of

MCMC tree searching, the Bayesian method offers a practical advantage over regular

maximum likelihood (ML) and makes the statistical evaluation of ML trees more feasible.

Unlike bootstrap values, Bayesian probabilities are normally higher because most trees are

sampled near a small number of optimal trees. Therefore, they have a different statistical

meaning from bootstrap. The Kishino–Hasegawa (KH) test The KH test sets out to test the null

hypothesis that the two competing tree topologies are not significantly different. A paired

student t-test is used to assess whether the null hypothesis can be rejected at a statistically

significant level. In this test, the difference of branch lengths at each informative site between

the two trees is calculated. The standard deviation of the difference values can then be

calculated. This in turn allows derivation of a t-value which is used for evaluation against the

t-distribution to see whether the value falls within the significant range to warrant the rejection

of the null hypothesis

𝑡 =
𝐷𝑎 − 𝐷𝑡

𝑆𝑑
√𝑛

⁄
~𝑡𝑛−1

where n is the number of informative sites, t is the test statistic value, 𝐷𝑎 is the average site-to-

site difference between the two trees, 𝑆𝑑 is the standard deviation, and 𝐷𝑡 is the total difference

of branch lengths of the two trees.

References

1. Felsenstein, J. (2004). Inferring Phylogenies. Sunderland, MA: Sinauer Associates.

2. Felsenstein, J. (1973). Maximum likelihood estimation of evolutionary trees from

continuous characters. Am. J. Hum. Gen., 25: 471-492.

3. Fitch, W. and Margoliash, E. (1967). The construction of phylogenetic trees. Science, 155:

279-284.

4. Kitching, I. J., Forey, P. L., Humphries, C. J., and Williams, D. M. (1998). Cladistics: The

Theory and Practice of Parsimony Analysis.Second Edition.The Systematics Association

Publication No. 11. Oxford: Oxford University Press.

5. Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425.

77

DNA Signature based SNP and SSR Mining

M. A. Iquebal1, Sarika1, Anil Rai2 and Dinesh Kumar1

1ICAR-Indian Agricultural Statistics Research Institute, New Delhi

2Indian Council of Agricultural Research, New Delhi

1. Introduction

Molecular characterisation of genetic resources has been adding objectivity and rationality in

decision making for conservation. Plant, animal, fish and microbial genetic resources are being

characterised by various molecular markers, predominantly by microsatellite, AFLP and SNP

covering both nuclear genome as well as mitochondrial genome. These molecular markers have

inbuilt “molecular clock” entrained with evolutionary time scale having “pictures” or

“signatures” of speciation and differentiation of dynamic germplasm in evolutionary pace and

scale. Bioinformatics has not only revolutionised the germplasm characterisation, but had been

proven as indispensable tool for molecular identification of species. Bioinformatics has become

most powerful tool of taxonomy right from microbial meta-genome analysis of hitherto

uncultured microbes, plant, animal and fish species identification. Advances in genome

analysis technology are providing an unprecedented amount of information about animals,

bacterial and viral organisms, and hold great potential for pathogen detection and identification.

Here, a rational approach to the development and application of nucleic acid signatures is

described based on SNP and STR nucleotides. Other bioinformatics tools for classification and

prediction of such molecular data has also been discussed.

2. DNA barcoding of species and its origin

DNA barcoding is a taxonomic method that uses a short genetic marker in an organism's

mitochondrial DNA to identify it as belonging to a particular species. It is based on a relatively

simple concept: most eukaryote cells contain mitochondria and mitochondrial DNA (mtDNA)

has a relatively fast mutation rate, which results in significant variance in mtDNA sequences

between species and, in principle, a comparatively small variance within species. A 648-bp

region of the cytochrome c oxidase subunit I gene (COI) was initially proposed as a potential

'barcode'.

The use of nucleotide sequence variations to investigate evolutionary relationships is not a new

concept. Carl Woese used sequence differences in ribosomal RNA (rRNA) to discover archaea,

which in turn led to the redrawing of the evolutionary tree, and molecular markers (e.g.,

allozymes, rDNA, and mtDNAvage). DNA barcoding provides a standardised method for this

process via the use of a short DNA sequence from a particular region of the genome to provide

a 'barcode' for identifying species. In 2003, Paul D.N. Hebert from the University of Guelph,

Ontario, Canada, proposed the compilation of a public library of DNA barcodes that may be

linked to named specimens. This library would “provide a new master key for identifying

species, one whose power will rise with increased taxon coverage and with faster, cheaper

sequencing”.

2.1 Identification of birds by species bar code

78

In an effort to find a correspondence between traditional species boundaries established by

taxonomy and those inferred by DNA barcoding, Hebert and co-workers sequenced DNA

barcodes of 260 of the 667 bird species that breed in North America (Hebert et al. 2004a). It

was found that every single one of the 260 species had a different COI sequence. 130 species

were represented by two or more specimens. In all of these species, COI sequences were either

identical or were most similar to sequences of the same species. COI variations between species

averaged 7.93%, whereas variation within species averaged 0.43%. In four cases, there were

deep intraspecific divergences, indicating possible new species. Three out of these four

polytypic species are already split into two by some taxonomists. Hebert et al.'s (2004a) results

reinforce these views and strengthen the case for DNA barcoding. They also proposed a

standard sequence threshold to define new species, this threshold, the so-called "barcoding

gap", was defined as 10 times the mean intraspecific variation for the group under study.

2.2 Delimiting cryptic species by DNA bar code

The next major study into the efficacy of DNA barcoding was focused on the neotropical

skipper butterfly, Astraptesfulgerator at the Area Conservacion de Guanacaste (ACG) in north-

western Costa Rica. This species was already known as a cryptic species complex, due to subtle

morphological differences, as well as an unusually large variety of caterpillar food plants.

However, several years would have been required for taxonomists to completely delimit

species. Hebert et al. (2004b) sequenced the COI gene of 484 specimens from the ACG. This

sample included “at least 20 individuals reared from each species of food plant, extremes and

intermediates of adult and caterpillar color variation, and representatives” from the three major

ecosystems where Astraptesfulgeratorwas found. Hebert et al. (2004b) concluded that

Astraptesfulgerator consists of 10 different species in north-western Costa Rica. This

highlights that the results of DNA barcoding analyses can be dependent upon the choice of

analytical methods used by the investigators, so the process of delimiting cryptic species using

DNA barcodes can be as subjective as any other form of taxonomy.

2.3 Identifying flowering plants by species DNA bar code

Kress et al. (2005) suggest that the use of the COI sequence “is not appropriate for most species

of plants because of a much slower rate of cytochrome c oxidase I gene evolution in higher

plants than in animals”. A series of experiments was then conducted to find a more suitable

region of the genome for use in the DNA barcoding of flowering plants.

Three criteria were set for the appropriate genetic loci:

i. Significant species-level genetic variability and divergence

ii. An appropriately short sequence length so as to facilitate DNA extraction and

amplification, and

iii. The presence of conserved flanking sites for developing universal primers.

At the conclusion of these experiments, Kress et al. (2005) proposed the nuclear internal

transcribed spacer region and the plastid trnH-psbAintergenic spacer as a potential DNA

barcode for flowering plants. These results suggest that DNA barcoding, rather than being a

'master key' may be a 'master keyring', with different kingdoms of life requiring different keys.

2.4 Strain identification of fungi

79

Pucciniagraminis, the causal agent of stem rust, has caused serious disease of small cereal

grains (wheat, barley, oat, and rye) worldwide. P. graminis is the first sequenced representative

of the rust fungi (Uredinales), which are obligate plant pathogens. The rust fungi comprise

more than 7000 species and are one of the most destructive groups of plant pathogens. Stem

rust of wheat has been a serious problem wherever wheat is grown and has caused major

epidemics in North America. In 1999, a new highly virulent race TTKS (Ug99) of P. graminis

was identified in Uganda, and since then has spread, causing a widening epidemic in Kenya

and Ethiopia.

Bioinformatics can play very critical role in identification of species as well as strains and also

its dynamics across globe. The plethora of data both from host and parasite generated by using

latest molecular or biotechnological tools can easily be analysed by bioinformatics tools. The

talk will focus on Ug99 race of P. graminis. How the genome of it can be used to track the

movement of this fungal species and how the bioinformatics tools can be helpful in strain

identifcationP. graminis including Ug99 identification.

3. DNA based signature of domestic species and animal breeds

Mitochondrial DNA markers have been proved to be successful in many species of domestic

animals, being used especially for meat identification, poaching of wild animals, adulteration

of dairy milk, dairy products(like cheese) of various domestic animal species.

The prevalent markers used for the breeds are almost STR but very recently the SNP based

chip has proven its accuracy for breed signature along with details of admixture as well as very

powerful for parentage and pedigree.

3.1 STR based signatures of breeds

A question has generally been asked at various scientific fora with regard to molecular

characterization of breeds as to whether a livestock breed can be identified from a sample of

blood, semen, hair, blood spot, carcass etc. Various attempts have been made in the last couple

of years by the molecular geneticists of the world to answer this question. Some studies have

succeeded in developing a technology for breed certification and breed-specific genetic/DNA

signature in different breeds of cattle in Spain, Portugal and France; horses in Norway, sheep

in Spain, and camel in Kenya. The degree of accuracy of certification of a breed in these studies

was very high ranging between 95% to 99%.

Three methods viz (i) Frequency method (Paetkau et al., 1995), (ii) Bayesian method (Rannala

et al, 1997) and (iii) Distance methods (Goldstein et al 1995) have been used for developing

breed specific signatures. The Bayesian method has been reported to be more accurate with

microsatellite data to the extent of > 99% confidence limits (Corander et al., 2003, Bustamante

et al., 2003).

In the foreign countries, few attempts have been made to develop genetic signatures of some

breeds of livestock in the recent past. For cases of doubtful breed identity where it becomes

difficult to assign an individual to a particular breed due to individual being an admixture of

breeds, the studies have been made to develop breed hybrid index. The review of literature has

therefore been made under two headings: (i) Development of breed-specific signatures/profiles

and (ii) Development of breed hybrid index.

80

3.2 SNP chip based DNA signature of breeds

In Japan, Japanese Black and Holstein cattle are appreciated as popular sources of meat, and

imported beef from Australia and the United States is also in demand in the meat industry.

Since the BSE outbreak, the problem of false sales has arisen: imported beef has sometimes

been mislabelled as domestic beef due to consumer concerns. A method is needed to correctly

discriminate between Japanese and imported cattle for food safety. The SNP 50K based chip

can discrimination markers between Japanese and US cattle. There is a report where five US-

specific markers (BISNP7, BISNP15, BISNP21, BISNP23, and BISNP26) has been developed

with allelic frequencies that ranged from 0.102 (BISNP15) to 0.250 (BISNP7) and averaged

0.184. The combined use of the five markers would permit discrimination between Japanese

and US cattle with a probability of identification of 0.858. This result indicates the potential of

the bovine 50K SNP array as a powerful tool for developing breed identification markers.

These markers would contribute to the prevention of falsified beef displays in Japan

(Suekawaet al 2010, Sasazakiet al 2011).

4. DNA based signature of plant variety, example-Basmati rice

Basmati rice has a typical pandan-like (Pandanusamaryllifolius leaf) flavour caused by the

aroma compound 2-acetyl-1-pyrroline.Difficulty in differentiating genuine traditional basmati

from pretenders and the significant price difference between them has led fraudulent traders to

adulterate traditional basmati. To protect the interests of consumers and trade, a PCR-based

assay similar to DNA fingerprinting in humans allows for the detection of adulterated and non-

basmati strains. Its detection limit for adulteration is from 1% upwards with an error rate of

±1.5%. Exporters of basmati rice use 'purity certificates' based on DNA tests for their basmati

rice consignments.It was developed at the Centre for DNA Fingerprinting and Diagnostics,

Labindia, an Indian company has released kits to detect basmati adulteration. World's First

Single-tube, Multiplex(co-amplify eight microsatellite loci) Microsatellite Assay-based Kit for

Basmati Authentication.

The Basmati Verifiler™ Kit is the world's first product for establishing the authenticity of

Basmati rice samples via a molecular assay. The kit uses a PCR amplification technique based

on Simple Sequence Repeats (SSR) that provides the single most discriminating assay for

Basmati genotyping.

5. DNA based bar-coded signature of fishes

Ward et al (2005) described in a paper the potential of cox1 sequencing, or ‘barcoding’, in to

identification of fish species. In this study, two hundred and seven species of fish, mostly

Australian marine fish, were sequenced (bar coded) for a 655 bp region of the mitochondrial

cytochrome oxidase subunit I gene (cox1). Most species were represented by multiple

specimens, and 754 sequences were generated. The GC content of the 143 species of teleosts

was higher than the 61 species of sharks and rays (47.1% versus 42.2%), largely due to a higher

GC content of codon position 3 in the former (41.1% versus 29.9%). Rays had higher GC than

sharks (44.7% versus 41.0%), again largely due to higher GC in the 3rd codon position in the

former (36.3% versus 26.8%). Average within-species, genus, family, order and class Kimura

two parameter (K2P) distances were 0.39%, 9.93%, 15.46%, 22.18% and 23.27%, respectively.

All species could be differentiated by their cox1 sequence, although single individuals of each

of two species had haplotypes characteristic of a congener. Although DNA barcoding aims to

develop species identification systems, some phylogenetic signal was apparent in the data. In

81

the neighbour-joining tree for all 754 sequences, four major clusters were apparent: chimaerids,

rays, sharks and teleosts. Species within genera invariably clustered, and generally so did

genera within families. Three taxonomic groups—dogfishes of the genus Squalus, flatheads of

the family Platycephalidae, and tunas of the genus Thunnus—were examined more closely.

The clades revealed after bootstrapping generally corresponded well with expectations.

Individuals from operational taxonomic units designated as Squalus species B through F

formed individual clades, supporting morphological evidence for each of these being separate

species. This paper is still widely cited for DNA based fish signature.

6. Different bioinformatics tool for classification and prediction of molecular data

Advances in genome analysis technology are providing an unprecedented amount of

information about animals, bacterial and viral organisms, and hold great potential for pathogen

detection and identification. In this section, a rational approach to the development and

application of nucleic acid signatures is described based on SNP and STR nucleotides.

Regardless of the origin of the SNPs (e.g., sequencing and public databases), once SNPs from

a target organism and its nearest neighbours have been collected, it is necessary to identify

those SNPs that will be useful for species and strain identification. The approach that has been

taken is to use a database of SNP markers to enable phylogenetic analysis to identify

evolutionary clades and the SNPs that define them. The need for large data storage capability,

which facilitates data accessibility, automated SNP prediction (with reduction in manual

intervention), signature delineation and facilitated complex query capability, has been

recognized. Many databases exist as local resources, although some universal databases

housing eukaryotic SNP data have been established (e.g., dbSNP). Such global databases have

not been developed for microbial SNP data. Each database created for SNP discovery and

phylogenetic analysis will have different content and different structure that are determined by

the uses of the data. There is no single correct way to design a database but essential content is

necessary not only to allow different polymorphism databases to communicate but to provide

essential information for analysis of the data. Four essential core elements have been defined

and include:

✓ A unique SNP identifier (allele)

✓ The data source (e.g., experimental or computational)

✓ The sequence flanking the allele and the allele(s)

Many databases have been created for the storage and analysis of eukaryotic SNP data, some

are comprehensive or genomewide, and others are specialized or locus-specific. Both types of

databases are essential. The comprehensive database will provide a genome-wide view of

polymorphism, ideal for strain typing and identification. The locus-specific database will

provide a more in-depth view of polymorphisms at a particular locus. A database should

incorporate accurate information that can be used for downstream analyses and have the ability

to integrate with other databases. Some additional information associated with SNPs should be

implemented in the databases. A database and its associated pipeline should be able to process

and store data from a variety of sources, not only from a sequencing machine but external

sequence databases (e.g., GenBank, dbEST). The database should track the organism and

project to which a SNP belongs along with genome-, gene- and exon-specific information

related to a SNP. A downstream analysis requires not just flanking sequences but also a

reference sequence. Other information useful for quality assurance purposes and general data

analysis include the algorithm by which a SNP was discovered and whether it was validated

82

experimentally or not validated but computationally predicted and the method by which it was

validated (e.g., genotyping assay or sequencing). The type of SNP should also be included

(e.g., homozygous or heterozygous) along with the average allele frequency. Useful

information, such as the position of the SNP relative to its reference sequence, contig or

amplicon and whether the SNP is silent or pathogenic should be incorporated. To meet the

needs of signature development, a relational database has been created to store information

related to SNP discovery and downstream assay development. The information specific to SNP

discovery and assay design is stored logically in database tables or entities enabling complex

queries on SNPs and related data. Specifically, the SNP table includes, in addition to the SNP

site alleles, the 5´ and 3´ flanking sequences for assay design. Information related to the gene,

exon and project are stored to facilitate downstream analysis, such as population studies.

Algorithm-specific rank values and method are included, which enable the investigator to

assess the actual quality of each SNP. The SNP table is the central entity in the database.

Associated with each SNP is a name where each SNP can have more than one name. Each SNP

can also be associated with one or more reference sequences. Reference sequences have

multiple purposes including:

✓ Serving as a template for PCR primer design

✓ Providing flanking sequence around a SNP

✓ Being included in a Phrap assembly to ensure an accurate assembly

Reference sequences also provide a starting point for functional annotation. The reference

sequence has associated with it a name, GenBank accession or GI number, description and

sequence. Amplicons are sequences used for SNP prediction. Associated with an amplicon is

information, such as the name and description of each amplicon, primers used for its

amplification and its expected size. Even though this database was designed for higher

eukaryotes and their viruses, the data relationships will remain the same for prokaryotic SNP

data. The SNP marker database serves as the repository of information required for downstream

signature development and assay design activities.

Protocols and basic information of Bioinformatics tools which are important to search SNP,

Sequence data analysis, STR data Analysis, and to develop SNP/STR based DNA signatures

are shown below:

6.1GeneClass 2.0

The effectiveness of Single Nucleotide Polymorphisms (SNPs) for the assignment of various

breeds of cattle and buffalo has already been investigated by analysing numerous SNPs. Breed

assignment has been performed by comparing the Bayesian and frequency methods

implemented in the STRUCTURE 2.2 and GENECLASS 2 software programs. The use of

SNPs for the reallocation of known individuals to their breeds of origin and the assignment of

unknown individuals has already been tested. Exampleisgiven with GeneClass2 in Buffalo

having reference and unknown data of buffalo breeds (Figure 1 and Figure 2). The steps are as

follows

Step 1: Download the GeneClass2 Software(Freely available at

 http://www.montpellier.inra.fr/URLB/geneclass/geneclass.html).

Step 2. Preparation of data files for reference and unknown samples.

Step 3. Open the main window of the software (Figure 1) and import both files.

83

http://www.montpellier.inra.fr/URLB/geneclass/geneclass.html

Step 4.Choice of the parameters like Computational goal, Criteria for computation, Probability

computation and Selection Criteria.

Step 5. By clicking on the start button we can see the result (Figure 2) and finally interpretation

of the result can be drawn.

Figure 1. Main window of GeneClass2.0 Software

Figure 2. Identification of 5 unknown breeds of Buffalo with reference data.

6.2 BioEdit

BioEdit is a mouse-driven, easy-to-use sequence alignment editor and sequence analysis tool.

This tool can handle most simple sequence and alignment editing and manipulation functions

that researchers are likely to do on a daily basis, as well as a few basic sequences analyses. For

example alignment of different nucleotide sequence of various bacterial strains in Figure 1 and

Figure 2. The steps are as follows:

File→Newalignment→Import→AccessaryApplications→ClustalWAlignment→Multiple

Alignment (Figure 3) and to see the Alignment result View→ViewMode→Identity/similarity

(Figure 4).

84

Figure 3. Nucleotide Sequence Data (16 Different Microbial strains)

import in the main window

Figure 4. Alignment of all sequences showing nucleotide differences

6.3 Cleaver

Cleaver is an application for identifying restriction endonuclease recognition sites that occur

in some taxa (Jarman, 2006). Differences in DNA fragment restriction patterns among taxa are

the basis for many diagnostic assays for taxonomic identification; and are used in some

procedures for removing the DNA of some taxa from pools of DNA from mixed sources.

Cleaver analyses restriction digestion of groups of orthologous DNA sequences simultaneously

to allow identification of differences in restriction pattern among the fragments derived from

different taxa. Cleaver is freely available without registration from its website

(http://cleaver.sourceforge.net/). The program can be run as a script for computers that have

Python 2.3 and necessary extra modules installed. This allows it to run on Gnu/Linux, Unix,

MacOSX and Windows platforms. Standalone executable versions for Windows and MacOSX

operating systems are also available. The protocol for using the software is shown in Figure 5

and Figure 6.

85

http://cleaver.sourceforge.net/

Figure 5. Main Window of Cleaver Software

Figure 6.Restriction Map analysis of variable sequences of different Bacterial genomes

using Cleaver software.

6.4 FastPCR

The FastPCRis an integrated tool for PCR primers or probe design, in silicoPCR,

oligonucleotide assembly and analyses, alignment and repeat searching (Figure 7). The

software utilizes combinations of normal and degenerated primers for all tools and for the

melting temperature calculation are based on the nearest neighbour thermodynamic

parameters.The “in silico” (virtual) PCR primers or probe searching or in silico PCR against

whole genome(s) or a list of chromosome - prediction of probable PCR products and search of

potential mismatching location of the specified primers or probes. Comprehensive primer test,

the melting temperature calculation for standard and degenerate oligonucleotides, primer PCR

efficiency, primer's linguistic complexity, and dilution and resuspension calculator.

Primers (probes) are analyzed for all primer secondary structures including G-

quadruplexes detection, hairpins, self-dimers and cross-dimers in primer pairs.

FastPCR has the capacity to handle long sequences and sets of nucleic acid or protein sequences

and it allowed the individual task and parameters for each given sequences and joining several

different tasks for single run. It also allows sequence editing and databases analysis. Efficient

and complete detection of various types of repeats developed (for DNA based signature) and

applied to the program with a visualisation.

The program includes various bioinformatics tools for analysis of sequences with GC or AT

86

skew, CG content and purine-pyrimidine skew, the linguistic sequence complexity; generation

random DNA sequence, restriction analysis and supports the clustering of sequences and

consensus sequence generation and sequences similarity and conservancy analysis.

Figure 7.Main Window of FastPCR software.

For SSR search or any other analysis just we need to prepare data file in notepad file and import

in the main window. As per our need we can import the data and analyse by clicking on

Run/SSR search/Primer list analysis etc. option looking in main window.

References

Bustamante, CD., Nielsen, R. and Hartl, DL.(2003). Maximum likelihood and Bayesian

methods for estimating the distribution of selective effects among classes of mutations

using DNA polymorphism data.Theoretical Population Biology.63: 91-103.

Corander, J.,Waldmann, P. and Sillanpaa, MJ.(2003). Bayesian analysis of genetic

differentiation between populations.Genetics.163: 367-374.

Goldstein, DB., Linares, AR.,Cavalli-Sforza, LL. and Feldman, MW. (1995). Genetic absolute

dating based on microsatellites an origin of modern humans. PNAS USA.92: 6723-6727.

Hebert, PDN., Penton, EH., Burns, JM., Janzen, DH. AndHallwachs, W. (2004a). Ten Species

in One: DNA Barcoding Reveals Cryptic Species in the Neotropical Skipper Butterfly

Astraptesfulgerator. Proc. Natl. Acad. Sci. USA101(41): 14812-14817.

Hebert, PDN.,Stoeckle, MY.,Zemlak, TS. and Francis, CM. (2004b). Identification of Birds

Through DNA Barcodes. PLoS Biol. 2(10): 1657-1663.

Jarman.(2006). Cleaver: software for identifying taxon specific restrictionendonuclease

recognition sites. Bioinformatics Advance Access

(http://bioinformatics.oxfordjournals.org/content/early/2006/06/20/bioinformatics.btl3

30.full.pdf.)

Kress, WJ.,Wurdack, KJ., Zimmer, EA.,Weigt, LA. and Janzen, DH. (2005). Use of DNA

Barcodes to Identify Flowering Plants.Proc. Nat. Acad. Sci. USA,102(23): 8369-8374.

Paetkau, D., Calvert, W., Stirling, I. and Strobeck, C. (1995). Microsatellite analysis of

population structure in Canadian polar bears.Molecular Ecology.4: 347-354.

Rannala, B. and Mountain, JL. (1997). Detecting immigration by using multi locus genotypes

PNAS, USA. 94: 9197-9221.

Sasazaki S., Hosokawa D., Ishihara R., Aihara H., Oyama K., Mannen, H.

(2011).Development of discrimination markers between Japanese domestic and

imported beef.Animal Science Journal,82(1):67-72.

Suekawa, Y., Aihara, H., Araki, M., Hosokawa, D., Mannen, H., Sasazaki, S. (2010).

Development of breed identification markers based on a bovine 50K SNP array .Meat

Science,85(2), 285–288.

87

Genome Assembly

Dwijesh Chandra Mishra, Sanjeev Kumar, Sudhir Srivastava and Neeraj Budhlakoti

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Sanger Sequencing

• DNA is fragmented

• Cloned to a plasmid vector

• Cyclic sequencing reaction

• Separation by electrophoresis

• Readout with fluorescent tags

Sanger Vs NGS

• ‘Sanger sequencing’ has been the only DNA sequencing method for 30 years but…

• …hunger for even greater sequencing throughput and more economical sequencing

technology…

• NGS has the ability to process millions of sequence reads in parallel rather than 96 at a time

(1/6 of the cost)

NGS Platforms: Different sequencing techniques used for next generation sequencing are:

• Roche/454 FLX: 2004

• Illumina Solexa Genome Analyzer: 2006

• Applied Biosystems SOLiDTM System: 2007

• Helicos HeliscopeTM : 2009

• Pacific Biosciencies SMRT: 2010

88

General Experimental Procedure

Sequencing Technology at a Glance

Method Read

length

Accuracy Time per

run

Cost per 1

million bases

Advantages Disadvantages

Chain

termination

(Sanger

sequencing)

400 to

900 bp

99.9% 20 minutes

to 3 hours

Rs 144000 Long

individual

reads. Useful

for many

applications.

More expensive

and impractical

for larger

sequencing

projects.

Pyrosequencing

(454)

700 bp 99.9% 24 hours Rs 600 Long read size.

Fast

Runs are

expensive.

Homopolymer

errors.

Sequencing by

synthesis

(Illumina)

50 to 300

bp

98% 1 to 10 days,

depending

upon

sequencer

and specified

read length

Rs 3 to 9 Potential for

high sequence

yield,

depending

upon sequencer

model and

desired

application.

Equipment can be

very expensive.

Requires high

concentrations of

DNA.

Sequencing by

ligation

(SOLiD

sequencing)

50+35 or

50+50 bp

99.9% 1 to 2 weeks Rs 78 Low cost per

base.

Slower than other

methods. Have

issue sequencing

palindromic

sequence.

Single-

molecule real-

time

sequencing

(Pacific Bio)

10,000 bp

to 15,000

bp avg.

(14,000

bp);

87% 30 minutes

to 4 hours

Rs 7.8–36 Longest read

length.

 Fast.

Moderate

throughput.

Equipment can be

very expensive.

89

Reads, Contigs and Scaffolds

• Reads are what you start with (35bp-800bp)

• Fragmented assemblies produce contigs that can be kilobases in length

• Putting contigs together into scaffolds is the next step

FASTQ Format

Before Assembly

Fragment readout

• DNA characters in a fragment are determined from chromatogram

• Base call is a DNA character that is determined from chromatogram

90

Fragment readout

• Phred Score- determine the quality value of a base

𝑞 = −10 × 𝑙𝑜𝑔10(p)

 where p is the estimated error probability for the base

• if Phred assigns a quality score of 30 to a base, the chances that this base is called

incorrectly are 1 in 1000

• The most commonly used method is to count the bases with a quality score of 20 and

above

• Phred Score

Genome Properties

PASS FAIL

91

PASS FAIL

Library Quality

PASS FAIL

Run Quality

PASS FAIL

92

Read Quality

PASS FAIL

PASS FAIL

PASS FAIL

93

PASS FAIL

Trimming

• Trimming low-quality sequences

-removal of reads containing poor quality base calls

• Trimming vector sequences

-removal of reads containing vector sequences

94

Genome Annotation

Sanjeev Kumar, D. C. Mishra, Sneha Murmu and Jyotika Bhati

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Introduction

Until the genome revolution, genes were identified by researchers with specific interests in a

particular protein or cellular process. Once identified, these genes were isolated, typically by

cloning and sequencing cDNAs, usually followed by targeted sequencing of the longer

genomics segments that code for the cDNAs. Once an organism’s entire genome sequence

becomes available, there is strong motivation for finding all the genes encoded by a genome at

once rather than in a piecemeal approach. Such catalogue is immensely valuable to researchers,

as they can learn much more from the whole picture than from a much more limited set of

genes. For example, genes of similar sequence can be identified, evolutionary and functional

relationships can be elucidated, and a global picture of how many and what types of genes are

present in a genome can be seen. A significant portion of the effort in genome sequencing is

devoted to the process of annotation, in which genes, regulatory elements, and other features

of the sequence are identifies as thoroughly as possible and catalogued in a standard format in

public databases so that researchers can easily use the information. Functional genomics

research has expanded enormously in the last decade and particularly the plant biology research

community. Functional annotation of novel DNA sequences is probably one of the top

requirements in functional genomics as this holds, to a great extent, the key to the biological

interpretation of experimental results.

Computational Gene Prediction

Computational gene prediction is becoming more and more essential for the automatic analysis

and annotation of large uncharacterized genomic sequences. In the past two decades, many

algorithms have been evolved to predict protein coding regions of the DNA sequences. They

all have in common, to varying degree, the ability to differentiate between gene features like

Exons, Introns, Splicing sites, Regulatory sites etc. Gene prediction methods predicts coding

region in the query sequences and then annotates the sequences databases.

Gene Structure and Expression

The gene structure and the gene expression mechanism in eukaryotes are far more complicated

than in prokaryotes. In typical eukaryotes, the region of the DNA coding for a protein is usually

not continuous. This region is composed of alternating stretches of exons and introns. During

transcription, both exons and introns are transcribed onto the RNA, in their linear order.

Thereafter, a process called splicing takes place, in which, the intron

95

Fig. 1: Representative Diagram of Protein Coding Eukaryotic Gene

sequences are excised and discarded from the RNA sequence. The remaining RNA segments,

the ones corresponding to the exons are ligated to form the mature RNA strand. A typical multi-

exon gene has the following structure (as illustrated in Fig. 1). It starts with the promoter region,

which is followed by a transcribed but non-coding region called 5' untranslated region (5'

UTR). Then follows the initial exon which contains the start codon. Following the initial exon,

there is an alternating series of introns and internal exons, followed by the terminating exon,

which contains the stop codon. It is followed by another non-coding region called the 3' UTR.

Ending the eukaryotic gene, there is a polyadenylation (polyA) signal: the nucleotide Adenine

repeating several times. The exon-intron boundaries (i.e., the splice sites) are signalled by

specific short (2bp long) sequences. The 5'(3') end of an intron (exon) is called the donor site,

and the 3'(5') end of an intron (exon) is called the acceptor site. The problem of gene

identification is complicated in the case of eukaryotes by the vast variation that is found in gene

structure.

Gene Prediction Methods

There are mainly two classes of methods for computational gene prediction (Fig. 2). One is

based on sequence similarity searches, while the other is gene structure and signal-based

searches, which is also referred to as Ab initio gene finding.

Sequence Similarity Searches

Sequence similarity search is a conceptually simple approach that is based on finding similarity

in gene sequences between ESTs (expressed sequence tags), proteins, or other genomes to the

input genome. This approach is based on the assumption that functional regions (exons) are

more conserved evolutionarily than non-functional regions (intergenic or intronic regions).

Once there is similarity between a certain genomic region and an EST, DNA, or protein, the

similarity information can be used to infer gene structure or function of that region. EST-based

sequence similarity usually has drawbacks in that ESTs only correspond to small portions of

the gene sequence, which means that it is often difficult to predict the complete gene structure

of a given region. Local alignment and global alignment are two methods based on similarity

searches. The most common local alignment tool is the BLAST family of programs, which

detects sequence similarity to known genes, proteins, or ESTs. The biggest limitation to this

96

type of approaches is that only about half of the genes being discovered have significant

homology to genes in the databases.

Ab initio Gene Prediction Methods

The second class of methods for the computational identification of genes is to use gene

structure as a template to detect genes, which is also called ab initio prediction. Ab initio gene

predictions rely on two types of sequence information: signal sensors and content sensors.

Signal sensors refer to short sequence motifs, such as splice sites, branch points, poly

pyrimidine tracts, start codons and stop codons. Exon detection must rely on the content

sensors, which refer to the patterns of codon usage that are unique to a species, and allow

coding sequences to be distinguished from the surrounding non-coding sequences by statistical

detection algorithms.

Many algorithms are applied for modeling gene structure, such as Dynamic Programming,

linear discriminant analysis, Linguist methods, Hidden Markov Model and Neural Network.

97

Based on these models, a great number of ab initio gene prediction programs have been

developed.

Fig. 2: Diagrammatic Representation of Gene Prediction and Annotation

Gene Discovery in Prokaryotic Genomes

Discovery of genes in Prokaryote is relatively easy, due to the higher gene density typical of

prokaryotes and the absence of introns in their protein coding regions. DNA sequences that

encode proteins are transcribed into mRNA, and the mRNA is usually translated into proteins

without significant modification. The longest ORFs (open reading frames) running from the

first available start codon on the mRNA to the next stop codon in the same reading frame

generally provide a good, but not assured prediction of the protein coding regions. Several

methods have been devised that use different types of Markov models in order to capture the

compositional differences among coding regions, “shadow" coding regions (coding on the

opposite DNA strand), and noncoding DNA. Such methods, including ECOPARSE, the widely

used GENMARK, and Glimmer program, appear to be able to identify most protein coding

genes with good performance (Fig. 3).

 Fig. 3: Flow Diagram of Prokaryotic Gene Discovery

Gene Discovery in Eukaryotic Genome

It is a quite different problem from that encountered in prokaryotes. Transcription of protein

coding regions initiated at specific promoter sequences is followed by removal of noncoding

sequences (introns) from pre-mRNA by a splicing mechanism, leaving the protein encoding

exons. Once the introns have been removed and certain other modifications to the mature RNA

have been made, the resulting mature mRNA can be translated in the 5` to 3` direction, usually

from the first start codon to the first stop codon. As a result of the presence of intron sequences

98

in the genomic DNA sequences of eukaryotes, the ORF corresponding to an encoded gene will

be interrupted by the presence of introns that usually generate stop codons (Fig.4).

Fig. 4: Flow Diagram of Eukaryotic Gene Discovery

Gene Prediction Program

There are two basic problems in gene prediction: prediction of protein coding regions and

prediction of the functional sites of genes. Gene prediction program can be classified into four

generations. The first generation of programs was designed to identify approximate locations

of coding regions in genomic DNA. The most widely known programs were probably

TestCode and GRAIL. But they could not accurately predict precise exon locations. The second

generation, such as SORFIND and Xpound, combined splice signal and coding region

identification to predict potential exons, but did not attempt to assemble predicted exons into

complete genes. The next generation of programs attempted the more difficult task of

predicting complete gene structures. A variety of programs have been developed, including

GeneID, GeneParser, GenLang, and FGENEH. However, the performance of those programs

remained rather poor. Moreover, those programs were all based on the assumption that the

input sequence contains exactly one complete gene, which is not often the case. To solve this

Algorithms

Predicting

exon/intron

exon intron Initial and

terminal exon

Use of

homology

Start /stop

signals
and
promoters

promoters

Translation/transcription start signals

Translation/transcription stop signals

99

problem and improve accuracy and applicability further, GENSCAN and AUGUSTUS were

developed, which could be classified into the fourth generation.

GeneMark

GeneMark uses a Markov Chain model to represent the statistics of the coding and noncoding

frames. The method uses the dicodon statistics to identify coding regions. Consider the analysis

of a sequence x whose base at the ith position is called xi. The Markov chains used are fifth

order, and consist of a terms such as P(a/x1x2x3x4x5), which represent the probability of the

sixth base of the sequence x being given a given that the previous five bases in the sequence x

where x1x2x3x4x5, resulting in the first dicodon of the sequence being x1x2x3x4x5a. These terms

must be defined for all possible pentamers with the general sequence b1b2b3b4b5. The values of

these terms can be obtained of analysis of data, consisting of nucleotide sequence in which the

coding regions have been actually identified. When there are sufficient data, they are given by

𝑃(
𝑎

𝑏1𝑏2𝑏3𝑏4𝑏5
) =

𝑛𝑏1𝑏2𝑏3𝑏4𝑏5𝑎

∑ 𝑛𝑏1𝑏2𝑏3𝑏4𝑏5𝑎𝑎=𝐴,𝐶,𝐺,𝑇

where, 𝑛𝑏1𝑏2𝑏3𝑏4𝑏5𝑎 is the number of times the sequence b1b2b3b4b5a occurs in the training data.

This is the maximum likelihood estimators of the probability from the training data.

Glimmer

The core of Glimmer is Interpolated Markov Model (IMM), which can be described as a

generalized Markov chain with variable order. After GeneMark introduces the fixed-order

Markov chains, Glimmer attempts to find a better approach for modeling the genome content.

The motivational fact is that the bigger the order of the Markov chain, the more non-

randomness can be described. However, as we move to higher order models, the number of

probabilities that we must estimate from the data increases exponentially. The major limitation

of the fixed-order Markov chain is that models from higher order require exponentially more

training data, which are limited and usually not available for new sequences. However, there

are some oligomers from higher order that occur often enough to be extremely useful

predictors. For the purpose of using these higher-order statistics, whenever sufficient data is

available, Glimmer IMMs.

Glimmer calculates the probabilities for all Markov chains from 0th order to 8th. If there are

longer sequences (e.g. 8-mers) occurring frequently, IMM makes use of them even when there

is insufficient data to train an 8-th order model. Similarly, when the statistics from the 8-th

order model do not provide significant information, Glimmer refers to the lower-order models

to predict genes.

Opposed to the supervised GeneMark, Glimmer uses the input sequence for training. The ORFs

longer than a certain threshold are detected and used for training, because there is high

probability that they are genes in prokaryotes. Another training option is to use the sequences

with homology to known genes from other organisms, available in public databases. Moreover,

the user can decide whether to use long ORFs for training purposes or choose any set of genes

to train and build the IMM.

GeneMark.hmm

100

GeneMark.hmm is designed to improve GeneMark in finding exact gene starts. Therefore, the

properties of GeneMark.hmm are complementary to GeneMark. GeneMark.hmm uses

GeneMark models of coding and non-coding regions and incorporates them into hidden

Markov model framework. In short terms, Hidden Markov Models (HMM) are used to describe

the transitions from non-coding to coding regions and vice versa. GeneMark.hmm predicts the

most likely structure of the genome using the Viterbi algorithm, a dynamic programming

algorithm for finding the most likely sequence of hidden states. To further improve the

prediction of translation start position, GeneMark.hmm derives a model of the ribosome

binding site (6-7 nucleotides preceding the start codon, which are bound by the ribosome when

initiating protein translation). This model is used for refinement of the results.

Both GeneMark and GeneMark.hmm detect prokaryotic genes in terms of identifying open

reading frames that contain real genes. Moreover, they both use pre-computed species-specific

gene models as training data, in order to determine the parameters of the protein-coding and

non-coding regions.

Orpheus

The ORPHEUS program uses homology, codon statistics and ribosome binding sites to

improve the methods presented so far by using information that those programs ignored. One

of the key differences is that it uses database searches to help determine putative genes, and is

thus an extrinsic method. This initial set of genes is used to define the coding statistics for the

organism, in this case working at the level of codon, not dicodons. These statistics are then

used to define a larger set of candidate ORFs. From this set, those ORFs with an unambiguous

start codon end are used to define a scoring matrix for the ribosome-binding site, which is then

used to determine the 5` end of those ORFs where alternative start are present.

EcoParse

EcoParse is one of the first HMM model based gene finder, was developed for gene finding in

E.coli. It focuses on the uses the codon structure of genes. With EcoParse a flora of HMM

based gene finder, usuing dynamic programming and the viterbi algorithm to parse a sequence,

emerged.

Evaluation of Gene Prediction Programs

In the field of gene prediction accuracy can be measured at three levels

a. Coding nucleotides (base level)

b. Exon structure (exon level)

c. Protein product (protein level)

At base level gene predictions can be evaluated in terms of true positives (TP) (predicted

features that are real), true negatives (TN) (non-predicted features that are not real), false

positives (FP) (predicted features that are not real), and false negatives (FN) (real features that

were not predicted) Fig. 5. Usually the base assignment is to be in a coding or non coding

segment, but this analysis can be extended to include non coding parts of genes, or any

functional parts of the sequences.

 TN FN TP FP TN FP TP FN TN

Real

101

Predicted

Real

Predicted

Fig. 5: Four Possible Comparisons of Real and Predicted Genes

Sensitivity (Sn): The fraction of bases in real genes that are correctly predicted to be in genes

is the sensitivity and interpreted as the probability of correctly predicting a nucleotide to be in

a given gene that it actually is.

Specificity (Sp): The fraction of those bases which are predicted to be in genes that actually

are is called the specificity and interpreted as the probability of a nucleotide actually being in

a gene given that it has been predicted to be.

Care has to be taken in using these two values to assess a gene prediction program because, as

with the normal definition of specificity, extreme results can make them misleading.

Approximate correlation coefficient (AC) has been proposed as a single measure to circumvent

these difficulties. This defined as AC=2(ACP-0.5), where

At the exon level, determination of prediction accuracy depends on the exact prediction of exon

start and end points. There are two measures of sensitivity and specificity used in the field,

each of which measures a different but useful property.

The sensitivity measures used are

Sn1 = CE/AE and Sn2 = ME/AE

The specificity measures used are

Sp1=CE/PE and Sp2=WE/PE

Where,

AE = No of actual exons in the data

PE = No of predicted exons in the data

CE = No of correct predicted exons

ME = No of missing exons (rarely occurs)

WE = No of wrongly predicted exons (Figure-5)

Sn =
TP

TP + FN

Sp =
TP

TP + FP

ACP =
1

n

TP

TP + FN
+

TP

TP + FP
+

TN

TN + FP
+

TN

TN + FN

 ,

102

Fig. 6: Real and Predicted Exons

Gene Ontology

The gene ontology (GO, http:www.geneontology.org) is probably the most extensive scheme

today for the description of gene product functions but other systems such as enzyme codes,

KEGG pathways, FunCat, or COG are also widely used. Here, we describe the Blast2GO (B2G,

www.blast2go.org) application for the functional annotation, management, and data mining of

novel sequence data through the use of common controlled vocabulary schemas. The main

application domain of the tool is the functional genomics of nonmodel organisms and it is

primarily intended to support research in experimental labs. Blast2GO strives to be the

application of choice for the annotation of novel sequences in functional genomics projects

where thousands of fragments need to be characterized. Functional annotation in Blast2GO is

based on homology transfer. Within this framework, the actual annotation procedure is

configurable and permits the design of different annotation strategies. Blast2GO annotation

parameters include the choice of search database, the strength and number of blast results, the

extension of the query-hit match, the quality of the transferred annotations, and the inclusion

of motif annotation. Vocabularies supported by B2G are gene ontology terms, enzyme codes

(EC), InterPro IDs, and KEGG pathways.

Fig.7 shows the basic components of the Blast2GO suite. Functional assignments proceed

through an elaborate annotation procedure that comprises a central strategy plus refinement

functions. Next, visualization and data mining engines permit exploiting the annotation results

to gain functional knowledge. GO annotations are generated through a 3-step process: blast,

mapping, annotation. InterPro terms are obtained from InterProScan at EBI, converted and

merged to GOs. GO annotation can be modulated from Annex, GOSlim web services and

manual editing. EC and KEGG annotations are generated from GO. Visual tools include

sequence color code, KEGG pathways, and GO graphs with node highlighting and filtering

options. Additional annotation data-mining tools include statistical charts and gene set

enrichment analysis functions.

103

Fig. 7: Schematic Representation of Blast2GO Application.

The Blast2GO annotation procedure consists of three main steps: blast to find homologous

sequences, mapping to collect GO terms associated to blast hits, and annotation to assign

trustworthy information to query sequences.

Blast Step

The first step in B2G is to find sequences similar to a query set by blast. B2G accepts nucleotide

and protein sequences in FASTA format and supports the four basic blast programs (blastx,

blastp, blastn, and tblastx). Homology searches can be launched against public databases such

as (the) NCBI nr using a query-friendly version of blast (QBlast). This is the default option and

in this case, no additional installations are needed. Alternatively, blast can be run locally against

a proprietary FASTA-formatted database, which requires a working www-blast installation.

The Make Filtered Blast-GO-BD function in the Tools menu allows the creation of customized

databases containing only GO annotated entries, which can be used in combination with the

local blast option. Other configurable parameters at the blast step are the expectation value (e-

value) threshold, the number of retrieved hits, and the minimal alignment length (hsp length)

which permits the exclusion of hits with short, low e-value matches from the sources of

functional terms. Annotation, however, will ultimately be based on sequence similarity levels

as similarity percentages are independent of database size and more intuitive than e-values.

Blast2GO parses blast results and presents the information for each sequence in table format.

Query sequence descriptions are obtained by applying a language processing algorithm to hit

descriptions, which extracts informative names and avoids low content terms such as

“hypothetical protein” or “expressed protein”.

Mapping Step

104

Mapping is the process of retrieving GO terms associated to the hits obtained after a blast

search. B2G performs three different mappings as follows.

a. Blast result accessions are used to retrieve gene names (symbols) making use of two

mapping files provided by NCBI (geneinfo, gene2accession). Identified gene names are

searched in the species-specific entries of the gene product table of the GO database.

b. Blast result GI identifiers are used to retrieve UniProt IDs making use of a mapping file

from PIR (Non-redundant Reference Protein database) including PSD, UniProt, Swiss-Prot,

TrEMBL, RefSeq, GenPept, and PDB.

c. Blast result accessions are searched directly in the DBXRef Table of the GO database.

Annotation Step

This is the process of assigning functional terms to query sequences from the pool of GO terms

gathered in the mapping step. Function assignment is based on the gene ontology vocabulary.

Mapping from GO terms to enzyme codes permits the subsequent recovery of enzyme codes

and KEGG pathway annotations. The B2G annotation algorithm takes into consideration the

similarity between query and hit sequences, the quality of the source of GO assignments, and

the structure of the GO DAG. For each query sequence and each candidate GO term, an

annotation score (AS) is computed (see Figure 8). The AS is composed of two terms. The first,

direct term (DT), represents the highest similarity value among the hit sequences bearing this

GO term, weighted by a factor corresponding to its evidence code (EC). A GO term EC is

present for every annotation in the GO database to indicate the procedure of functional

assignment.

Fig. 8: Blast2GO Annotation Rule

ECs vary from experimental evidence, such as inferred by direct assay (IDA) to unsupervised

assignments such as inferred by electronic annotation (IEA). The second term (AT) of the

annotation rule introduces the possibility of abstraction into the annotation algorithm.

Abstraction is defined as the annotation to a parent node when several child nodes are present

in the GO candidate pool. This term multiplies the number of total GOs unified at the node by

a user defined factor or GO weight (GOw) that controls the possibility and strength of

abstraction. When all ECw’s are set to 1 (no EC control) and the GOw is set to 0 (no abstraction

is possible), the annotation score of a given GO term equals the highest similarity value among

the blast hits annotated with that term. If the ECw is smaller than one, the DT decreases and

higher query-hit similarities are required to surpass the annotation threshold. If the GOw is not

equal to zero, the AT becomes contributing and the annotation of a parent node is possible if

multiple child nodes coexist that do not reach the annotation cutoff. Default values of B2G

annotation parameters were chosen to optimize the ratio between annotation coverage and

annotation accuracy. Finally, the AR selects the lowest terms per branch that exceed a user-

defined threshold.

105

Blast2GO includes different functionalities to complete and modify the annotations obtained

through the above-defined procedure. Enzyme codes and KEGG pathway annotations are

generated from the direct mapping of GO terms to their enzyme code equivalents. Additionally,

Blast2GO offers InterPro searches directly from the B2G interface. B2G launches sequence

queries in batch, and recovers, parses, and uploads InterPro results. Furthermore, InterPro IDs

can be mapped to GO terms and merged with blast-derived GO annotations to provide one

integrated annotation result. In this process, B2G ensures that only the lowest term per branch

remains in the final annotation set, removing possible parent-child relationships originating

from the merging action.

References

1. Conesa, S. Gotz, J. M. Garcia-Gomez, J. Terol, M. Talon, and M. Robles, “Blast2GO: a universal

tool for annotation, visualization and analysis in functional genomics research,” Bioinformatics,

vol. 21, no. 18, pp. 3674–3676, 2005.

2. Conesa and S. Gotz, "Blast2GO: A Comprehensive Suite for Functional Analysis in Plant

Genomics," International Journal of Plant Genomics, vol. 2008, 2008.

3. H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa, “KEGG: Kyoto

Encyclopedia of Genes and Genomes,” Nucleic Acids Research, vol. 27, no. 1, pp. 29–34, 1999.

4. J.D. Watson, R.M. Myers, A.A. Caudy and J.A. Witkowski, "Recombinant DNA: Genes and

Genomes - A Short Course," 3rd Ed., 2007.

5. M. Ashburner, C. A. Ball, J. A. Blake, et al., “Gene Ontology: tool for the unification of biology.

The Gene Ontology Consortium,” Nature Genetics, vol. 25, no. 1, pp. 25–29, 2000.

6. Ruepp, A. Zollner, D. Maier, et al., “The FunCat, a functional annotation scheme for systematic

classification of proteins from whole genomes,” Nucleic Acids Research, vol. 32, no. 18, pp.

5539–5545, 2004.

7. R. L. Tatusov, N. D. Fedorova, J. D. Jackson, et al., “The COG database: an updated version

includes eukaryotes,” BMC Bioinformatics, vol. 4, p. 41, 2003.

8. Schomburg, A. Chang, C. Ebeling, et al., “BRENDA, the enzyme database: updates and major

new developments,” Nucleic Acids Research, vol. 32, Database issue, pp. D431–D433, 2004.

9. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search

tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990.

10. S. Myhre, H. Tveit, T. Mollestad, and A. Lægreid, “Additional Gene Ontology structure for

improved biological reasoning,” Bioinformatics, vol. 22, no. 16, pp. 2020–2027, 2006.

106

Hands-on Session for Genome Annotation

Sneha Murmu

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Introduction

Genome annotation is the process of identifying functional elements within a genome, such as

genes, regulatory regions, and repeat elements. The goal of genome annotation is to create an

accurate and comprehensive description of the genome's structure and function. This can be a time-

consuming process, but it is essential for understanding how genes and other functional elements

work together to control an organism's biology.

One powerful tool for genome annotation is Blast2GO (Conesa et al., 2005). Blast2GO is a

commercial bioinformatics software suite that provides comprehensive functional annotation of

nucleotide and protein sequences. It combines powerful sequence similarity search algorithms,

such as BLAST (Altschul et al., 1997) and HMMER (Finn et al., 2011), with functional annotation

tools, such as InterProScan (Zdobnov et al., 2001) and Gene Ontology (GO) mapping, to provide

a detailed functional analysis of genomic and transcriptomic data.

Blast2GO works by first performing a sequence similarity search, typically using BLAST, to

identify sequences with homology to known sequences in public databases. The resulting hits are

then annotated using a variety of functional annotation tools, including InterProScan, which

identifies conserved protein domains and functional motifs, and GO mapping, which assigns GO

terms based on the functional categories of annotated genes.

Blast2GO also includes tools for statistical analysis and data visualization, allowing users to

explore functional trends and patterns in their data. It can be used to analyze a wide range of

genomic and transcriptomic data sets. One of the strengths of Blast2GO is its user-friendly

interface, which allows even non-experts to perform complex functional annotation analyses.

Blast2GO is also highly customizable, allowing users to tailor the annotation process to their

specific needs and research questions.

107

Here are the four broad steps involved in genome annotation using Blast2GO:

 Sequence quality control and assembly: Before annotating a genome, it is important to ensure

that the quality of the sequencing data is high and that the genome has been properly

assembled. This may involve trimming low-quality sequences, filtering out contaminants, and

performing de novo assembly or mapping to a reference genome.

 Sequence similarity search: The first step in genome annotation is to identify sequences with

homology to known sequences in public databases. This is typically done using BLAST or a

similar tool. The resulting hits can provide clues about the function and evolutionary

relationships of the sequences in question.

 Functional annotation: Once sequences have been identified using a sequence similarity

search, functional annotation tools can be used to identify functional domains and motifs,

assign Gene Ontology terms, and perform other types of functional analysis. Blast2GO

includes a number of annotation tools, including InterProScan, which searches for conserved

domains and motifs in protein sequences, and GO mapping, which assigns Gene Ontology

terms based on the functional categories of annotated genes.

 Data analysis and visualization: Once the sequences have been annotated with functional

information, the data can be analyzed and visualized in a variety of ways. Blast2GO includes

tools for statistical analysis and data visualization. The results of the analysis can be exported

in a variety of formats for further analysis.

Installation of Blast2GO:

Following are the general steps to install Blast2GO:

1. System requirements: Check that your computer meets the system requirements for Blast2GO.

Blast2GO is compatible with Windows, macOS, and Linux operating systems, and requires at least

8 GB of RAM.

2. Download Blast2GO: Visit the Blast2GO website (https://www.blast2go.com/) and download the

appropriate installation file for your operating system. You may need to create an account and

purchase a license, depending on your intended use of the software.

3. Install Blast2GO: Double-click the downloaded installation file and follow the on-screen

instructions to install Blast2GO (as depicted in Figure 1). You may need to provide administrator

permissions, depending on your operating system and security settings.

108

https://www.blast2go.com/

4. Configure Blast2GO: Once Blast2GO is installed, you will need to configure it to work with your

specific computing environment. This may include setting preferences for sequence databases,

annotation tools, and other settings.

5. Activate license: If you have purchased a license for Blast2GO, you will need to activate it before

you can use the software. This typically involves entering a license key or activating the license

through an online portal.

Once Blast2GO is installed and configured, you can begin using it to analyze and annotate your

genomic or transcriptomic data.

Figure 1: Installation steps of Blast2GO in Windows system.

Stepwise guide to perform annotation using Blast2GO

1. Open Blast2GO: Launch Blast2GO on your computer.

2. Load sequences: Load your sequence file(s) into Blast2GO. This can be done by clicking on

"Load data" in the main menu and selecting the appropriate file type (e.g., FASTA).

3. Run BLAST search: In the main menu, click on "Run BLAST" and select the appropriate

database for your search (e.g., NCBI non-redundant protein database) as shown in Figure 2.

You can choose to run a BLASTP (protein query against protein database) or a BLASTX

109

(nucleotide query against protein database) search. You can also set various search parameters,

such as the e-value threshold and the maximum number of hits to return.

4. View BLAST results: Once the BLAST search is complete, you can view the results in the

BLAST results table (as shown in Figure 3). The table will show the sequence ID, the best hit,

the e-value, the bit score, and other relevant information. You can sort the table by various

columns to help you identify the best hits.

5. Import BLAST results: To import the BLAST results into the Blast2GO annotation pipeline,

select the sequences you want to annotate and click on "Import selected hits". This will import

the BLAST results and link them to the appropriate sequences in the annotation pipeline.

Figure 2: BLAST search.

110

Figure 3: BLAST result.

6. Run InterProScan: In the main menu, click on "Run InterProScan" and select the appropriate

database for your search (e.g., InterPro database). You can choose to run the search on protein

or nucleotide sequences (Figure 4a).

7. Set search parameters: You can set various search parameters, such as the e-value threshold,

the maximum number of sequences to align, and the type of analysis to perform (e.g., Pfam,

Prosite, SMART, etc.) (Figure 4b).

111

Figure 4: InterProScan search.

8. View InterProScan results: Once the InterProScan search is complete, you can view the results

in the InterProScan results table. The table will show the sequence ID, the best match, the e-

value, the score, and other relevant information (Figure 5). You can sort the table by various

columns to help you identify the best matches.

Figure 5: InterProScan result.

9. Import InterProScan results: To import the InterProScan results into the Blast2GO annotation

pipeline, select the sequences you want to annotate and click on "Import selected hits". This

will import the InterProScan results and link them to the appropriate sequences in the

annotation pipeline.

10. Perform mapping: Once the BLAST results have been imported, you can use the Blast2GO

mapping tools to map your sequences to Gene Ontology (GO) terms (Figure 6). This involves

using the BLAST results to transfer functional annotations from similar sequences to your own

sequences.

112

Figure 6: Mapping.

11. Edit mappings: You can edit the mappings manually, by adding or removing GO terms, or by

changing the evidence codes. You can also remove or filter out low-confidence mappings,

based on various criteria such as the e-value, the similarity score, or the GO term specificity.

12. Export mapping results: Once your sequences have been mapped, you can export the results in

a variety of formats, such as tab-delimited text files or FASTA files (Figure 7). These results

can be used for further analysis.

Figure 7: Mapping result.

113

13. Annotate sequences: Once the InterProScan results have been imported, you can use the

Blast2GO annotation tools to assign functional information to your sequences (Figure 8). This

may include mapping Gene Ontology (GO) terms, performing enrichment analysis, and

performing other types of functional analysis.

Figure 8: Annotate.

14. Export annotation results: Once your sequences have been annotated, you can export the results

in a variety of formats, such as tab-delimited text files or FASTA files. These results can be

used for further analysis, visualization, or sharing with collaborators.

114

Figure 9: Annotate result.

15. Generate Gene Ontology (GO) graph: To create a GO graph in Blast2GO, click on "Graphs"

in the main menu and select "GO Graph" (Figure 10). This will generate a graphical

representation of the GO terms assigned to your sequences, based on the hierarchical structure

of the Gene Ontology.

Figure 10. Generate GO graph.

16. Customize GO graph: You can customize the appearance of the GO graph by changing the

colors, font sizes, or layout. You can also filter the GO terms based on various criteria such as

115

the level in the hierarchy, the number of sequences assigned to the term, or the statistical

significance of the enrichment.

17. Analyze GO graph: Once you have generated a GO graph, you can use it to analyze the

functional annotations of your sequences. This can include identifying overrepresented or

underrepresented GO terms, comparing the GO profiles of different datasets or treatments, or

visualizing the relationships between different biological processes, molecular functions, or

cellular components (Figure 11).

Figure 11: GO graph.

18. Export GO graph: Once you have customized and analyzed your GO graph, you can export it

in a variety of formats, such as PNG, PDF, or SVG. These graphs can be used for presentations,

publications, or further analysis with other tools or software.

19. Perform pathway analysis: To perform pathway analysis in Blast2GO, you need to use the

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database. In the main menu,

click on "Annotation" and select "Pathway annotation". This will open the pathway annotation

dialog box (Figure 12).

116

Figure 12. Run Pathway Analysis.

20. Select pathway database: In the pathway annotation dialog box, select the "KEGG" database

and click on "Start". Blast2GO will download and install the latest version of the KEGG

database on your computer.

21. Run pathway analysis: Once the KEGG database is installed, you can use the Blast2GO

pathway analysis tools to identify the KEGG pathways that are enriched in your sequences.

This involves comparing the frequency of KEGG pathway terms in your sequences to the

frequency of these terms in a reference dataset, such as the entire KEGG database.

22. Filter and visualize pathways: Once the pathway analysis is complete, you can use the

Blast2GO pathway analysis tools to filter and visualize the enriched pathways. This can

involve setting statistical thresholds, such as the false discovery rate (FDR) or the p-value, or

selecting specific pathways based on their relevance to your research question.

23. Analyze pathways: Once you have identified the enriched pathways, you can use the Blast2GO

pathway analysis tools to analyze the functional annotations and gene products associated with

these pathways. This can include identifying the key enzymes or regulators, comparing the

pathway profiles of different datasets or treatments, or visualizing the relationships between

different metabolic or signaling pathways (Figure 13).

117

Figure 13. Pathway graph.

24. Export pathway data: Once you have customized and analyzed your pathway data, you can

export it in a variety of formats, such as Excel, CSV, or XML. These data can be used for

further analysis with other tools or software, or for visualizing and communicating the results

of your pathway analysis.

References

Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., & Robles, M. (2005). Blast2GO:

a universal tool for annotation, visualization and analysis in functional genomics

research. Bioinformatics, 21(18), 3674-3676.

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J.

(1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic acids research, 25(17), 3389-3402.

Finn, R. D., Clements, J., & Eddy, S. R. (2011). HMMER web server: interactive sequence

similarity searching. Nucleic acids research, 39(suppl_2), W29-W37.

Zdobnov, E. M., & Apweiler, R. (2001). InterProScan–an integration platform for the signature-

recognition methods in InterPro. Bioinformatics, 17(9), 847-848.

118

Introduction to R for Bioinformatics

Sudhir Srivastava, D. C. Mishra and Deepa Bhatt

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Introduction

R is a programming language that allows for advanced statistical computing and

graphics. It was created by the statisticians Ross Ihaka and Robert Gentleman. It is

supported by the R Core Team and the R Foundation for Statistical Computing. The

language is very powerful for writing programs. Output may be limited based on

the function, but even small code can generate wonderful graphics. It is very

sensitive to syntax, case, punctuation used, even spacing. R is open source and free

on the Internet. R is used among statisticians, computer scientists and

bioinformaticians for data analysis and developing statistical software. The official

R software environment is an open-source free software environment within

the GNU package, available under the GNU General Public License. It is written

primarily in C, Fortran, and R itself (partially self-hosting).

Precompiled executables are provided for various operating systems. R has

a command line interface as well as multiple third-party graphical user

interfaces such as RStudio (an integrated development environment) and Jupyter

(a notebook interface).

Working in R and RStudio

R can be installed in Linux, Unix, Windows and Mac platforms from www.r-

project.org. For downloading R, please visit https://cloud.r-project.org/.

The R GUI

119

https://en.wikipedia.org/wiki/Robert_Gentleman_(statistician)
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Statistical_software
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/List_of_GNU_packages
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Self-hosting_(compilers)
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Command_line_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/RStudio
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Jupyter
https://en.wikipedia.org/wiki/Notebook_interface
http://www/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/

RStudio is a free, open-source IDE (integrated development environment) for R. It

can be downloaded from https://www.rstudio.com/products/rstudio/download/.

One must install R before installing RStudio. The interface is organized so that the

user can clearly view graphs, data tables, R code, and output all at the same time.

R Studio Interface

There are various ways for working in R:

• Work directly from the R editor to type in your script and execute the script

completely (batch) or line-by-line (highlight and execute)

• Write script in an external editor (Notepad or software that interfaces with R)

and execute in R by copy/paste or highlighting

• Beyond the native R GUI, external GUI can work with R to help in writing

scripts, selecting functions, procedures, statistical tests, or graphics

Getting started: R

120

https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/

Getting started: RStudio

R is an expression language with a very simple syntax. It is case sensitive as are

most UNIX based packages. For example, A and a are different symbols and refer

to different variables. The set of symbols which can be used in R names depends

on the operating system and country within which R is being run (technically on

the locale in use). Normally all alphanumeric symbols are allowed (and in some

countries this includes accented letters) plus ‘.’ and ‘_’, with the restriction that a

name must start with ‘.’ or a letter, and if it starts with ‘.’ the second character must

not be a digit. Elementary commands consist of either expressions or assignments.

If an expression is given as a command, it is evaluated, printed (unless specifically

made invisible), and the value is lost. An assignment evaluates an expression and

passes the value to a variable but the result is not automatically printed. Commands

are separated either by a semi-colon (‘;’), or by a newline. Elementary commands

can be grouped together into one compound expression by braces (‘{’ and ‘}’).

Comments can be put almost anywhere, starting with a hashmark (‘#’), everything

to the end of the line is a comment. If a command is not complete at the end of a

line, R will give a different prompt, by default + on second and subsequent lines

and continue to read input until the command is syntactically complete.

121

R Workspace

R workspace is temporary space on your CPU’s RAM that “disappears” at the end

of R session. It includes any user-defined objects (vectors, matrices, data frames,

lists, functions). All data, analyses, output are stored as objects in the R workspace.

This workspace is not saved on disk unless you tell R to do so. This means that your

objects are lost when you close R and not save the objects, or worse when R or your

system crashes on you during a session. When you close the RGui or the R console

window, the system will ask if you want to save the workspace image. If you select

to save the workspace image then all the objects in your current R session are saved

in a file “.RData”. “.RData” is a binary file located in the working directory of R,

which is by default the installation directory of R. During your R session, you can

also explicitly save the workspace image.

Go to the ‘Session’ menu and then select ‘Save Workspace as’

 > save.image(“example1.Rdata”)

If you have saved a workspace image and you start R the next time, it will restore

the workspace. So all your previously saved objects are available again.

Go to the ‘Session’ menu and then select ‘Load Workspace’.

 > load.image(“example1.Rdata”)

• Windows uses a \ (left slash) to delineate locations in CPU:

 C:\Users\hp\Documents

• R uses / (right slash) to delineate locations in CPU:

 C:/Users/hp/Documents

• An alternative to R’s / (single right) is \\ (two left) slashes:

 C:\\Users\\hp\\Documents

• There is no issue in the MAC OS/Linux as they have retained the / (right slash)

as the basis for directory delineation

• Print the current working directory

 > getwd()

122

• List the objects in the current workspace

 > ls()

• Change to my directory

 > setwd(mydirectory)

• Display last 25 commands

 > history()

• Display all previous commands

 > history(max.show=Inf)

• Saving R workspace

 > x <- 5 # object x; x is assigned value 5

 > y <- 10 # object y; y is assigned value 10

 > z <- x+y # object z (addition of numbers x and y); z is assigned the value x+y

 > save(x, y, file = "example1_xy.RData") # save two specified objects x and y

 > save.image(file = "example1.RData") # save entire workspace

• Removing objects R workspace: Use rm()

> ls()

[1] "x" "y" "z"

> rm(x, y) # removes objects x and y

> ls()

[1] "z"

• Use load() to add previously saved objects or workspaces to your current R

session.

> load(file = "example1.RData")

> ls()

[2] "x" "y" "z"

123

Getting help with functions and features

To get more information on any specific named function, use help() function or ?

help operator.

> help(lm) or > help(“lm”)

> ?lm

For a feature specified by special characters, the argument must be enclosed in

double or single quotes, making it a “character string”. This is also necessary for a

few words with syntactic meaning including if, for and function.

> help("[[")

The convention is to use double quote marks for preference.

On most R installations help is available in HTML format by running help.start()

which will launch a Web browser that allows the help pages to be browsed with

hyperlinks. The help.search command (alternatively ??) allows searching for help

in various ways.

> help.search("lm")

> ??lm

The examples on a help topic can normally be run by

> example(lm)

Windows versions of R have other optional help systems: Use ?help for further

details.

R Datasets

R comes with a number of sample datasets that you can experiment with. One has

to type data() to see the available datasets. The results will depend on which

packages you have loaded. For getting details on a sample dataset, type

help(datasetname). Example: > help("AirPassengers")

R Packages

One of the strengths of R is that the system can easily be extended. The system

allows you to write new functions and package those functions in a so called `R

package' (or `R library’). The R package may also contain other R objects, for

example data sets or documentation. There is a lively R user community and many

R packages have been written and made available on CRAN for other users. For

124

example, there are packages for statistics, bioinformatics and many more. To attach

package to the system you can use the menu or the library function.

• Via the menu in RGui: Select the ‘Packages’ menu and select ‘load package...’,

a list of available packages on your system will be displayed. Select one and

click ‘OK’.

• Via the library function: > library()

Data Management

Everything in R is an object. An object is simply a data structure that has some

methods and attributes. The data elements in any R object has attributes. These

attributes describe the nature of the elements. Object attributes are modes, class and

types.

• Modes: logical (TRUE, FALSE), numeric, character (string), complex

(complex number)

• Type (e.g. vectors can be character, numeric, logical or complex)

• Class: Describes object type and mode of object or element that is specified.

Objects in R:

• Scalar: a single number (1x1 vector)

• Vector: all elements of the same type (Type: logical, character, numeric or

complex)

• List: can contain objects of different types

• Matrix: table of vectors, where all elements are numeric (or complex)

• Data frame: table of number and/or character vectors. Can contain lists, too.

Data objects in R can exist in many different modes, classes, and types. mode()

function returns the mode of an object. Some object classes like arrays and matrices

require all elements to be of the same mode. A vector can have only mode type of

elements. It can have only numeric, character, logical or complex elements. Other

objects (data frames, lists) allow for different modes to exist, i.e. objects within data

frames and lists can be of different modes. Class describes object type and mode of

object or element that is specified. class() function returns class of an object.

Examples: “vector”, “data.frame”, “numeric”, “factor”

> z <- 0:9

> z

 [1] 0 1 2 3 4 5 6 7 8 9

125

> digits <- as.character (z)

> digits

[1] "0" "1" "2" "3" "4" "5" "6" "7" "8" "9"

> d <- as.integer (digits)

> d

[1] 0 1 2 3 4 5 6 7 8 9

> class (z)

[1] "integer"

> class (digits)

[1] "character"

> class (d)

[1] "integer"

Vector Arithmetic

<- the arrow is the assignment symbol, used to assign a value or function to a

symbol or object. The ‘=’ operator can be used as an alternative.

> 5+10

[1] 15

> x <- 5 # object x; x is assigned value 5

> y <- 10 # object y; y is assigned value 10

> z <- x+y # object z; z is assigned the value x+y

> z # Display z

[1] 15

> sqrt(z)

[1] 3.872983

> ls() # List objects

[1] "x" "y" "z"

Here, x, y and z are scalar objects, each having a single value.

Assignment statement using c() function

> x <- c(9.5, 10.8, 2.5, 3.9, 19.6)

> x

[1] 9.5 10.8 2.5 3.9 19.6

> assign("x", c(9.5, 10.8, 2.5, 3.9, 19.6))

> x

126

[1] 9.5 10.8 2.5 3.9 19.6

> c(9.5, 10.8, 2.5, 3.9, 19.6) -> x

> x

[1] 9.5 10.8 2.5 3.9 19.6

> 1/x

[1] 0.10526316 0.09259259 0.40000000 0.25641026 0.05102041

> y <- c(x, 1, 0, 1, x)

> y

 [1] 9.5 10.8 2.5 3.9 19.6 1.0 0.0 1.0 9.5 10.8 2.5 3.9 19.6

The elementary arithmetic operators:

• +, -, *, / and ^

• log, exp, sin, cos, tan, sqrt

• max and min select the largest and smallest elements of a vector respectively.

• range is a function whose value is a vector of length two, namely c(min(x),

max(x)).

• length(x) is the number of elements in x.

• sum(x) gives the total of the elements in x.

• prod(x) gives the product.

> x <- c(1:10)

> x

[1] 1 2 3 4 5 6 7 8 9 10

> x [x>6]

[1] 7 8 9 10

> x [(x>6) | (x<4)]

[1] 1 2 3 7 8 9 10

> x <- seq (1,10)

> x

 [1] 1 2 3 4 5 6 7 8 9 10

> rev (x) # reverse order

 [1] 10 9 8 7 6 5 4 3 2 1

> x <- (1:4)^2

> x

[1] 1 4 9 16

127

Missing values

Arithmetic functions on missing values yield missing values.

> x <- c(1, 5, 4, NA, 6)

> x

[1] 1 5 4 NA 6

> mean(x)

[1] NA

> mean(x, na.rm = TRUE)

[1] 4

The function is.na(x) gives a logical vector of the same size as x with value TRUE

if and only if the corresponding element in x is NA.

> is.na(x)

[1] FALSE FALSE FALSE TRUE FALSE

Impossible values (e.g., dividing by zero) are represented by the symbol NaN (Not

a Number).

> 5/0

[1] Inf

> 0/0

[1] NaN

> Inf - Inf

[1] NaN

is.na(xx) is TRUE both for NA and NaN values.

is.nan(xx) is only TRUE for NaNs.

> color <-c("red", "green", "blue")

> color # the values of character variable color are red, green and blue

[1] "red" "green" "blue"

> cat(color) # remove quotation marks

red green blue

> cat(color[1])

red

Assign names to the Elements

> x <- c(Delhi="red", Mumbai="green", Kolkata="blue")

> x

 Delhi Mumbai Kolkata

 "red" "green" "blue"

128

> names(x)

[1] "Delhi" "Mumbai" "Kolkata"

> fruit <- c(2, 3, 6)

> names(fruit) <- c("orange", "apple", "banana")

> fruit

orange apple banana

 2 3 6

> fruit[c("apple","orange")]

 apple orange

 3 2

> Fruit <- c(orange=2, apple=3, banana=6)

> Fruit

orange apple banana

 2 3 6

All elements of a vector must have the same type. If you concatenate vectors of

different types, they will be converted to the least "restrictive" type.

> c(2, "car")

[1] "2" "car”

Logical values are converted to 0 / 1 OR "TRUE"/ "FALSE".

> c(FALSE, 5)

[1] 0 5

> c(FALSE, "red")

[1] "FALSE" "red"

Background in Vector Arithmetic: Vector addition required the vectors to be the

same length (dimension).

x <- c(9, 2)

> x

[1] 9 2

> y <- c(5, 1)

> y

[1] 5 1

> x + 5

[1] 14 7

> x + y

129

[1] 14 3

> x - y

[1] 4 1

> x*y

[1] 45 2

> 2*x+y+5

[1] 28 10

> x/y

[1] 1.8 2.0

Concatenate – c()

c(x, y)

> z <- c(6, 4, 1, 0)

> z

[1] 6 4 1 0

> x <- c(6, 4)

> x

[1] 6 4

> y <- c(1, 0)

> y

[1] 1 0

> z <- c(x, y)

> z

[1] 6 4 1 0

Generating regular sequences – seq()

> x1 <- 1:10

> x1

 [1] 1 2 3 4 5 6 7 8 9 10

> x2 <- seq(1, 10)

> x2

 [1] 1 2 3 4 5 6 7 8 9 10

> x3 <- seq(1, 10, by = 2)

> x3

[1] 1 3 5 7 9

> x4 <- seq(10, 22, length = 5)

130

> x4

[1] 10 13 16 19 22

> x5 <- seq(length = 31, from = -5, by = 3)

> x5

 [1] -5 -2 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

73

[28] 76 79 82 85

Generating regular sequences – rep()

Replicate or repeat

> x6 <- rep(3, 5)

> x6

[1] 3 3 3 3 3

> x7 <- 1:3

> x7

[1] 1 2 3

> x8 <- rep(x7, times = 5) # put five copies of x7 end-to-end in x8

> x8

 [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

> x9 <- rep(x7, each = 5) # repeats each element of x7 five times before moving

on to the next

> x9

 [1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

Summaries and Subscripting

> x <- c(1, 3, 4, 7, 11, 32)

> x[1:3]

[1] 1 3 4

> x[c(1:3, 6)]

[1] 1 3 4 32

> x[-(1:4)]

[1] 11 32

> mean(x) # Mean

[1] 9.666667

> m1 <- sum(x)/length(x)

> m1

131

[1] 9.666667

> var(x) # Variance

[1] 131.8667

> sum((x-m1)^2)/(length(x)-1)

[1] 131.8667

> sd(x) # Standard deviation

[1] 11.48332

> sqrt(sum((x-m1)^2)/(length(x)-1))

[1] 11.48332

> summary(x) # Summary

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1.000 3.250 5.500 9.667 10.000 32.000

> summary(x[1:4]) # Summary

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1.00 2.50 3.50 3.75 4.75 7.00

Matrices

Matrices or more generally arrays are multi-dimensional generalizations of vectors.

In fact, they are vectors that can be indexed by two or more indices.

> X <- matrix(1:12, nrow = 3, ncol = 4)

> X

 [,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> dim(X)

[1] 3 4

> Y <- matrix(1:12, nrow = 3, ncol = 4, byrow = TRUE)

> Y

 [,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

Assigning names to rows and columns

> rownames(X) <- c("A", "B", "C")

132

> X

 [,1] [,2] [,3] [,4]

A 1 4 7 10

B 2 5 8 11

C 3 6 9 12

> colnames(X) <- c("X1", "X2", "X3", "X4")

> X

 X1 X2 X3 X4

A 1 4 7 10

B 2 5 8 11

C 3 6 9 12

Accessing elements of a matrix

> X

 X1 X2 X3 X4

A 1 4 7 10

B 2 5 8 11

C 3 6 9 12

> X[,1]

A B C

1 2 3

> X[1,]

X1 X2 X3 X4

 1 4 7 10

> X[2, 3]

[1] 8

Adding additional rows or binding matrices – rbind()

Adding additional columns or binding matrices – cbind()

> X <- matrix(1:12, nrow = 3, ncol = 4)

> X

 [,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> rbind(X, c(5, 1, 2, 6))

 [,1] [,2] [,3] [,4]

[1,] 1 4 7 10

133

[2,] 2 5 8 11

[3,] 3 6 9 12

[4,] 5 1 2 6

> cbind(X, c(3, 4, 9))

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 4 7 10 3

[2,] 2 5 8 11 4

[3,] 3 6 9 12 9

Transpose – t(); Determinant – det(); Inverse – solve()

> X <- matrix(c(1, 3, 8, 12), nrow = 2, byrow = TRUE)

> X

 [,1] [,2]

[1,] 1 3

[2,] 8 12

> t(X) # Transpose of matrix

 [,1] [,2]

[1,] 1 8

[2,] 3 12

> det(X) # Determinant of matrix

[1] -12

> solve(X) # Inverse of matrix

 [,1] [,2]

[1,] -1.0000000 0.25000000

[2,] 0.6666667 -0.08333333

List and Data Frame

An R list is an object consisting of an ordered collection of objects known as its

components.

> Lst <- list(name="Fred", wife="Mary", no.children=3, child.ages=c(4,7,9))

> Lst

$name

[1] "Fred"

$wife

[1] "Mary"

$no.children

134

[1] 3

$child.ages

[1] 4 7 9

> length(Lst) # Length

[1] 4

> names(Lst) # Names

[1] "name" "wife" "no.children" "child.ages“

 > Lst$no.children

[1] 3

> Lst[[3]]

[1] 3

A data frame object in R has similar dimensional properties to a matrix but it may

contain categorical data, as well as numeric (mixed modes). The standard layout is

to put data for one observation across a row and variables as columns. Columns can

be thought of as vectors, being either numeric or character. Columns can have

column names, similar to variable names. Column names can be of any length,

consisting of letters, numbers and a period (.) if desired. Underscores are not

allowed. Column names must start with a letter. Columns (vectors) in a data.frame

must be of the same length. On one level, as the notation will reflect, a data frame

is a list. Each component corresponds to a variable, i.e., the vector of values of a

given variable for each sample. Therefore, a data frame is like a list with

components as columns of table. Lists have columns of the same lengths.

A list can be made into a data.frame:

✓ Components must be vectors (numeric, character, logical) or factors.

✓ All vectors and factors must have the same lengths.

Matrices and even other data frames can be combined with vectors to form a data

frame if the dimensions match up.

> students <- data.frame(gender = c("F", "M","F"), ht = c(170, 188.5, 168.3), wt =

c(91.8,90, 82.6))

> students

 gender ht wt

1 F 170.0 91.8

2 M 188.5 90.0

3 F 168.3 82.6

> students[1, 2] # Identify the row 1, col 2 element in object Students

135

[1] 170

> names(students) # Identify the column names in object Students

[1] "gender" "ht" "wt"

> rownames(students) <- c("S1", "S2", "S3") # Apply row names to object Students

> students

 gender ht wt

S1 F 170.0 91.8

S2 M 188.5 90.0

S3 F 168.3 82.6

Lists

Lists combine a collection of objects into a larger composite object.

> intake.pre <- c(23,35,34,13,46, 45,34)

> intake.post <- c(56,57,36,58,36,67,32)

> mylist <- list(before=intake.pre, after=intake.post)

> mylist

$before

[1] 23 35 34 13 46 45 34

$after

[1] 56 57 36 58 36 67 32

> mylist[1]

$before

[1] 23 35 34 13 46 45 34

> mylist[[1]]

[1] 23 35 34 13 46 45 34

> dat <- data.frame(intake.pre, intake.post)

> dat

 intake.pre intake.post

1 23 56

2 35 57

3 34 36

4 13 58

5 46 36

6 45 67

7 34 32

> dat$intake.pre

136

[1] 23 35 34 13 46 45 34

> dat$intake.pre[3]

[1] 34

> dat$intake.pre[c(1,3)]

[1] 23 34

> dat$intake.pre[-3]

[1] 23 35 13 46 45 34

Factor

Factors are the data objects which are used to categorize the data and store it as

levels. They can store both strings and integers. They are useful in the columns

which have a limited number of unique values such as gender (Male, Female), etc.

factor(x = character(), levels, labels = levels, ordered = is.ordered(x))

> gender <- c("male","male","female","female","male","female","male")

> gender

[1] "male" "male" "female" "female" "male" "female" "male"

> class(gender)

[1] "character“

> gender <- factor(gender)

> gender

[1] male male female female male female male

Levels: female male

> class(gender)

[1] "factor"

Two-way Layout

Consider our two-way layout problem, where we produced the indicator variables

using rep(). A better way to do this is using the function gl, which will generate

factors.

> clevels <- gl(3,8)

> clevels

 [1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

+ 3

Levels: 1 2 3

> rlevels <- gl(4,2,length=24)

> rlevels

137

[1] 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4

+ 4

Levels: 1 2 3 4

Use the function expand.grid to produce a data frame with the desired factors.

> reps

[1] 1 2

> colLevels <- 1:3

> colLevels

[1] 1 2 3

> rowLevels <- 1:4

> rowLevels

[1] 1 2 3 4

> height = seq(60, 80, 10)

> height

[1] 60 70 80

> weight = seq(100, 200, 50)

> weight

[1] 100 150 200

> sex = c("Male","Female")

> sex

[1] "Male" "Female"

Generating Random Numbers

As a language for statistical analysis, R has a comprehensive library of functions

for generating random numbers from various statistical distributions.

Example: Generate 5 random integers between 1 and 10

> set.seed (100) # function in R used to reproduce results

> sample (1:10, 5) # sampling without

 replacement is the default

[1] 10 7 6 3 1

> sample (1:10, 5, replace = TRUE)

[1] 10 7 6 6 4

> sample (c("H","T"),5, replace = TRUE)

[1] "H" "T" "T" "H" "H"

> runif (5, 0, 1) # generating between 0 and 1, excluding 0 and 1

[1] 0.6902905 0.5358112 0.7108038 0.5383487 0.7489722

138

> rnorm (5, 1, 3) # generating random numbers from normal dist with (1,3)

[1] 0.3950981 3.2195215 1.3701385 0.9120499 -0.1665627

Importing Data

> mydata <- read.table ("mydata.txt", header=TRUE) # From Text file

> head(mydata)

 Height Weight Sex

1 60 100 Male

2 70 100 Male

3 80 100 Male

4 60 150 Male

5 70 150 Male

6 80 150 Male

> mydata <- read.table ("mydata.csv", header=TRUE) # From CSV file

> mydata <- read.delim ("mydata.csv") # Importing file with a separator character

> mydata <- read.delim2("mydata.csv")

Importing from Excel: Importing from 1st worksheet

We will require a package named ‘xlsx’.

> library(xlsx)

Warning message:

package ‘xlsx’ was built under R version 4.0.5

> mydata <- read.xlsx("mydata.xlsx", 1)

Importing SPSS

library(foreign)

mydata <- read.spss(“mydata.sav”, to.data.frame=TRUE,

use.value.labels=FALSE)

Importing SAS files

library(sas7bdat)

mydata <- read.sas7bdat(“mydata.sas7bdat”)

Importing Minitab files

library(foreign)

mydata <- read.mtp(“mydata.mtp”)

139

Descriptive Statistics

Descriptive statistics investigates the variables separately. Various descriptive

statistics can be computed by using in-built R functions as given below.

Name of function Use of function

mean calculates the mean of an input

median calculates the median of an input

var calculates the variance of an input

sd calculates the standard deviation of an input

IQR calculates the interquartile range of an input

min calculates the minimum value of an input

max calculates the maximum of an input

range returns a vector containing the minimum and

maximum of all given arguments

summary returns a vector containing a mixture of the above

functions (minimum, first quartile, median, mean,

third quartile, maximum)

> data(trees)

> head(trees)

 Girth Height Volume

1 8.3 70 10.3

2 8.6 65 10.3

3 8.8 63 10.2

4 10.5 72 16.4

5 10.7 81 18.8

6 10.8 83 19.7

> summary(trees)

 Girth Height Volume

 Min. : 8.30 Min. :63 Min. :10.20

 1st Qu.:11.05 1st Qu.:72 1st Qu.:19.40

 Median :12.90 Median :76 Median :24.20

 Mean :13.25 Mean :76 Mean :30.17

 3rd Qu.:15.25 3rd Qu.:80 3rd Qu.:37.30

 Max. :20.60 Max. :87 Max. :77.00

140

> mean(trees$Height)

[1] 76

> sd(trees$Height)

[1] 6.371813

> range(trees$Height)

[1] 63 87

Graphics

Histogram plots the frequencies that data appears within certain ranges.

> data(trees)

Add a title: The “main” statement will give the plot an overall heading.

Add axis labels: Use “xlab” and “ylab” to label the X and Y axes, respectively.

Changing colors: Use the col statement

hist(trees$Height, main="Height of Cherry Tree", xlab="Height",

ylab="Frequency", col="red")

A boxplot provides a graphical view of the median, quartiles, maximum, and

minimum of a data set.

> boxplot(trees$Volume,main='Volume of Timber', ylab='Volume (cubic ft)')

141

Partitioning the Graphics Window

A useful facility before beginning is to divide a page into smaller pieces so that

more than one figure can be displayed graphically.

par: used to set or query graphics parameters

par(mfrow=c(2,2))

This will create a window of graphics with 2 rows and 2 columns.

The windows are filled up row-wise.

Use mfcol instead of mfrow to fill up column-wise.

> data(trees)

> par(mfrow=c(2,2))

> hist(trees$Height)

> boxplot(trees$Height)

> hist(trees$Volume)

> boxplot(trees$Volume)

> par(mfrow=c(1,1))

- Use layout()

Example: layout(matrix(1:4,2,2)) will partition the window into 4 equal parts

One can view the layout with layout show (n = 4)

142

A scatter plot provides a graphical view of the relationship between two sets of

numbers.

> plot(trees$Height, trees$Volume, xlab="Height", ylab="Volume",

main="Scatter Plot", pch=20)

parameter pch stands for ‘plotting character’.

> pairs(trees)

A matrix of scatterplots is produced.

Density plot is a representation of the distribution of a numeric variable that uses

a kernel density estimate to show the probability density function of the variable.

143

In R Language we use the density() function which helps to compute kernel density

estimates.

> plot(density(gtemp), ylim=c(0, 2), col = "green",main = "Density plot")

> lines(density(gtemp2), col="red")

> legend(0.5,1.5, cex=0.8, c("gtemp", "gtemp2"), col=c("green", "red"), lty=1:1)

Writing functions

A function is a set of statements organized together to perform a specific task. R

has a large number of in-built functions such as seq(), mean(), max(), sum(), etc.

The user can create their own functions.

General form of the function:

func_name <- function(arg1, arg2, ...) {

Function body

}

func_name is the name of actual name of function.

The argument can be any type of object (like a scalar, a matrix, a data frame, a

vector, a logical, etc)

Local vs global environment

It’s not necessarily to use return() at the end of your function. The reason you return

an object is if you’ve saved the value of your statements into an object inside the

function. In this case, the objects in the function are in a local environment and

won’t appear in your global environment.

fun1 <- function(x){

 2*x+3

}

144

> fun1(4)

[1] 11

fun2 <- function(x){

 y <- 2*x+3

}

> fun2(4)

> print(y)

Error in print(y) : object 'y' not found

We can return the value of y using return(y) at the end of the function.

fun2_1 <- function(x){

 y <- 2*x+3

 return(y)

}

> fun2_1(4)

[1] 11

fun3 <- function(x, y){

 z1 <- 2*x+y

 z2 <- x+2*y

 z3 <- 2*x+2*y

 z4 <- x/y

 return(c(z1, z2, z3, z4))

}

> fun3(1, 2)

[1] 4.0 5.0 6.0 0.5

If we need to return multiple objects from a function, we can use list() to list them

together. To extract objects from output, use [[]] operator.

fun4 <- function(x, y){

 m1 <- mean(x)

 m2 <- mean(y)

 sd1 <- sd(x)

 sd2 <- sd(y)

 cor.xy <- cor(x, y)

145

 xy <- cbind(x, y)

 list(m1, m2, sd1, sd2, cor.xy, xy)

}

> x <- c(1, 4, 8, 11, 20, 23)

> y <- c(2, 6, 3, 8, 21, 29)

> fun4(x, y)

[[1]]

[1] 11.16667

[[2]]

[1] 11.5

[[3]]

[1] 8.750238

[[4]]

[1] 10.96814

[[5]]

[1] 0.9471335

[[6]]

 x y

[1,] 1 2

[2,] 4 6

[3,] 8 3

[4,] 11 8

[5,] 20 21

[6,] 23 29

for loops

-The for loop is used when iterating through a list.

-The basic structure of the for loop:

for(index in list){

 commands

}

cars <- c("Toyota", "Ford", "Chevy")

for(I in cars) {

 print(i)

146

}

[1] "Toyota"

[1] "Ford"

[1] "Chevy"

while loop

The while loop is used when you want to keep iterating as long as a specific

condition is satisfied. The basic structure of the while loop:

while(condition) {

 commands

}

i <- 3

while(i <= 6) {

 i <- i+1

 print(i)

}

[1] 4

[1] 5

[1] 6

[1] 7

Ifelse function

The ifelse function is very handy because it allows the user to specify the action

taken for the test condition being true or false. Like the if statement the ifelse

function can be included in any function or loop.

The basic structure of the ifelse function:

Ifelse(test, action.if.true, action.if.false)

> x <- seq(1:10)

> ifelse(x < 6, "T", "F")

[1] "T" "T" "T" "T" "T" "F" "F" "F" "F" "F"

R Packages for Bioinformatics

R packages are extensions to the R statistical programming language. R packages

contain code, data, and documentation in a standardised collection format that can

be installed by users of R. A large number of R packages are freely through CRAN

147

(the Comprehensive R Archive Network; https://cran.r-project.org/) and

Bioconductor set of R packages (www.bioconductor.org). Some well-known

bioinformatics R packages are the Bioconductor set of R packages

(www.bioconductor.org). Bioconductor is a free, open source and open

development software project for the analysis and comprehension of genomic data.

R Packages for analysis of biological sequence analysis and retrieval of

genomic data

▪ seqinr

▪ tidysq

▪ biomartr

▪ rentrez

R packages for sequence alignment

▪ Biostrings

▪ msa

▪ msaR

▪ ggmsa

▪ AlignStat

R Packages for differential gene expression analysis of microarray data

▪ amda

▪ maGUI

▪ maEndToEnd

▪ limma

▪ GEOlimma

R packages for differential gene expression analysis of RNA-Seq data

▪ edgeR

▪ DESeq2

▪ ideal

▪ DEvis

R Packages for protein structure analysis

▪ Bio3D

▪ Rpdb

148

▪ XLmap

R packages for protein-protein interaction graphs

▪ graph

▪ RBGL

▪ Rgraphviz

▪ crosstalkr

▪ igraph

R Packages for proteomics data analysis

▪ RforProteomcs

▪ protti

▪ Proteus

▪ DanteR

▪ MSstats

▪ MSqRob

▪ DAPAR

R Packages for metagenomics data analysis

▪ MicrobiomeExplorer

▪ matR

▪ MegaR

R Packages for GWAS and genomic selection

▪ statgenGWAS

▪ GWASTools

▪ BlueSNP

▪ rrBLUP

▪ lme4GS

▪ BWGS

▪ GSelection

▪ learnMET

▪ GAPIT

149

Demonstration of an R package “GAPIT: Genomic Association and Prediction

Integrated Tool”

GAPIT implemented a series of methods for Genome Wide Association (GWAS)

and Genomic Selection (GS). The GWAS models include

▪ General Linear Model (GLM)

▪ Mixed Linear Model (MLM or Q+K)

▪ Compressed MLM (CMLM)

▪ Enriched CMLM

▪ SUPPER

▪ Multiple Loci Mixed Model (MLMM)

▪ FarmCPU

▪ BLINK

The GS models include

▪ gBLUP

▪ Compressed BLUP

▪ SUPER BLUP

GAPIT is an R package which can be freely downloaded from http://www.r-

project.org or http://www.rstudio.com.

There are two sources to install GAPIT package.

Zhiwu Zhang Lab website

source("http://zzlab.net/GAPIT/GAPIT.library.R")

source("http://zzlab.net/GAPIT/gapit_functions.txt")

GitHub

install.packages("devtools")

devtools::install_github("jiabowang/GAPIT3",force=TRUE)

library(GAPIT3)

Help manual: https://zzlab.net/GAPIT/gapit_help_document.pdf

Import data from Zhiwu Zhang Lab

myY <- read.table("http://zzlab.net/GAPIT/data/mdp_traits.txt", head = TRUE)

myGD=read.table(file="http://zzlab.net/GAPIT/data/mdp_numeric.txt",head=T)

myGM=read.table(file="http://zzlab.net/GAPIT/data/mdp_SNP_information.txt",

head=T)

GWAS

myGAPIT=GAPIT(

 Y=myY[,c(1,2,3)], #fist column is ID

 GD=myGD,

150

 GM=myGM,

 PCA.total=3,

 model=c("FarmCPU", "Blink"),

 Multiple_analysis=TRUE)

References

Giorgi, F. M., Ceraolo, C. and Mercatelli, D. (2022). The R Language: An Engine

for Bioinformatics and Data Science. Life (Basel, Switzerland), 12(5), 648.

https://doi.org/10.3390/life12050648

Ihaka, R. and Gentleman, R (1996). R: A Language for Data Analysis and

Graphics. Journal of Computational and Graphical Statistics, 5, 299–314.

doi: 10.1080/10618600.1996.10474713

W. N. Venables, D. M. Smith and the R Core Team. An Introduction to R. Notes

on R: A Programming Environment for Data Analysis and Graphics, Version

4.2.2 (2022-10-31), URL: https://cran.r-project.org/doc/manuals/r-release/R-

intro.pdf

https://en.wikipedia.org/wiki/R_(programming_language)

https://en.wikipedia.org/wiki/Bioconductor

https://www.cran.r-project.org/

https://www.bioconductor.org/

151

Genome-Wide Association Studies

Soumya Sharma

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Genome-wide association study (GWAS) is a research strategy to find genetic variations that

are statistically linked to a disease or a particular trait. The approach involves scanning the

genomes of a large number of individuals in search of genetic variants that are more prevalent

in persons with a particular disease or trait than in people without the disease or trait. These

genomic variants are often utilised to look for neighbouring variants that are directly

responsible for the disease or trait once they have been found.

Linkage disequilibrium (LD) between the markers being studied and the functional

polymorphisms of the causal genes is the basis for GWAS. On the chromosome, loci that are

physically close to one another are separated by recombination less frequently than loci that

are farther apart. Gametic-phase disequilibrium, often known as LD, is the nonrandom

connection of alleles at two loci. The SNPs close to the causal locus may have strong LD with

the functional polymorphisms and hence be linked to the desired trait. These relationships are

discovered through genome-wide association studies, which also highlight the genomic areas

that contain the significant SNPs and the relevant genes.

Genome-wide association study (GWAS) attempts to predict association of specific traits

(phenotype) with genetic variants (genotype) by statistical analysis at population level.

Phenotypic information can be obtained by systematically measuring the phenotype (physical

and physiological traits) that can be influenced by various genetic and environmental factors.

Individual genotyping is usually done with microarrays for common variations or next-

generation sequencing technologies like WES or WGS for rare variants. Due to the current

expense of next-generation sequencing, microarray-based genotyping is the most frequently

used approach for retrieving genotypes for GWAS. However resequencing the entire genome

has the ability to uncover almost all genetic variations. This genotypic information along with

phenotypic data can be analysed to identify the genetic markers (SNPs, SSRs etc.), QTLs or

candidate genes associated with a specific trait.

The input files for GWA studies usually include the genotype file i.e., marker information and

the phenotype file i.e., trait information and also coded family relations between individuals.

Following the data input, producing reliable GWAS results requires meticulous quality control.

152

Testing for associations.

The biometrical model underpins the genetic association theory. Depending on whether the

phenotype is continuous (such as plant height, grain yield etc.) or binary (such as the presence

or absence of disease), linear or logistic regression models are typically employed in GWAS

to test for associations. To account for stratification and eliminate confounding effects from

demographic characteristics, covariates such as age, sex, and ancestry are added, with the

caveat that this may impair statistical power for binary traits in ascertained samples. Adding an

additional individual-specific random effect term to linear or logistic mixed models to account

for genetic relatedness among individuals might improve statistical power for genome

discovery and boost control for stratification at the expense of increased complexity. Adding

an additional individual-specific random effect term to linear or logistic mixed models to

account for genetic relatedness between people might boost statistical power for genome

discovery and increase control for stratification at the cost of more processing resources. When

doing a GWAS, it's important to remember that genotypes of genetic variants that are

physically close together aren't independent because they are in linkage disequilibrium; this

test dependency should be taken into account as well.

The following equation depicts the linear regression model for testing the association between

a marker and a trait:

𝑌~𝑋𝛼 + 𝑍𝑠𝛽𝑠 + 𝑒

𝑒~𝑁(0, 𝜎𝑒
2𝐼)

where, for each individual, Y is a vector of phenotype values, X is a matrix assigning records

to phenotypes fixed effect, α is a corresponding vector of fixed effects sizes (e.g., the mean,

population structure effects, and age), 𝑍𝑠 is a vector of genotype values for all individuals at

genetic variations, 𝛽𝑠 is the corresponding fixed effect size of genetic variants, 𝜎𝑒
2 measures

residual variance and I is an identity matrix.

The underlying assumption is that if the marker will have effect on trait only if it is in linkage

disequilibrium with an unseen QTL. The null hypothesis for the study asserts that marker has

no effect on the trait, while the alternative hypothesis states that it does have an effect on the

trait (as it is in LD with a QTL). If F > 𝐹𝛼;1;2 where F is the F statistic obtained from the data

153

and 𝐹𝛼;1;2 is the value from a F distribution at level of significance and 1, 2 degrees of

freedom, the null hypothesis is rejected.

There are numerous statistical models to find associations between marker loci and a variety

of traits, ranging from simple to highly complex. Accurate decoding of complex traits in

diverse population requires more comprehensive statistical models which takes care of false

positives arising from family relatedness and population structure, at the same time also keeps

in check the number of false negatives due to over correction. Confounding effects due to

population structure and kinship among individuals is taken into account by using these

covariates in the statistical model. STRUCTURE (Pritchard et al., 2000), PCA (Price et al.,

2006), and a discriminant analysis of principal components (DAPC) (Jombart et al., 2010) are

methods for determining population organisation by using genetic markers. False positives

arising due to common ancestry and family relatedness can be addressed by incorporating

kinship matrix into the statistical model. One of the most often used methods for estimating

family relatedness among individuals in a diverse population is identity-by-state (Loiselle et

al., 1995).

Inclusion of population structure and a kinship matrix as covariates in mixed linear models

(MLM) to reduce false positives is a widely used approach. Many MLM-based approaches

have been presented since Yu et al. (2006) published the first MLM of association mapping

(Zhang et al., 2010; Wang et al., 2014). All of these models are called single-locus models as

they do a unidimensional genome scan by examining one marker at a time and then iterate the

process for each marker in the dataset. But the true genetic model of complex traits that are

governed by multiple loci at the same time cannot be explained by single locus models.

Multilocus association mapping models have been suggested as a solution to this problem since

they consider the input from all loci at the same time (Wang et al., 2016). One more constraint

of MLM based models is increase in number of false negatives due to overfitting which may

lead to omission of certain potentially valuable association (Liu et al., 2016). False negatives

may arise during multiple comparison adjustments for evaluating statistical significance.

Bonferroni correction (Holm, 1979) and false discovery rate (FDR) (Benjamini and Hochberg,

1995) are two commonly used multiple comparison approaches in association mapping for

determining the significant threshold. Highly conservative standards can result in a high rate

of false negatives. As a result, selection of a proper model and threshold are critical steps in

detecting true trait associated markers that may be located inside or in high LD with genes that

govern trait variation, while minimizing both false-positive and false-negative associations.

154

Statistical models for GWAS

Some popular models for GWAS include:

(1) analysis of variance (ANOVA)

(2) general linear model with principle component analysis (GLM + PCA) (Price et al., 2006),

(3) MLM with principle component analysis and Kinship matrix for family relatedness

estimates (GLM+PCA+K) (Yu et al., 2006)

(4) compressed MLM (Zhang et al., 2010)

(5) enriched compressed MLM (Li et al., 2014)

(6) settlement of MLM under progressively exclusive relationship (SUPER) (Wang et al.,

2014)

(7) multiple loci MLM (MLMM) (Segura et al., 2012)

(8) fixed and random model circulating probability unification (FarmCPU) (Liu et al., 2016).

Models from (1) to (6) are single locus models, while (7) and (8) are multilocus models.

Among these popular models of GWAS, the GLM and MLM are said to have a better control

of false positives than ANOVA (Price et al., 2006; Yu et al., 2006). The GLM with PCA model

is supposed to lower the number of false positives caused by population structure alone (Price

et al., 2006). The kinship matrix is included in the MLM with PCA and K model, which is

intended to reduce false positives caused by family relatedness (Yu et al., 2006). By controlling

false positives, the MLM model is said to perform better than the GLM model alone (Yu et al.,

2006). The benefit of MLM model in controlling false positives disappears when complex

qualities are connected with population structure with considerable genetic divergence, The

MLM approach does a good job of controlling P-value inflation, but it also produces false

negatives, making it difficult to identify actual correlations (Zhang et al., 2010). The

compressed MLM model (CMLM), which clusters individuals into groups and fits genetic

values of groups as random effects in the model, was created to address this challenge (Zhang

et al., 2010). When compared to traditional MLM methods, the CMLM method boosts

statistical power (Zhang et al., 2010). Another option for dealing with P-value deflation caused

by MLM is to adopt a SUPER model, in which just the linked genetic markers are utilised as

pseudo–Quantitative Trait Nucleotides (QTNs) to determine kinship, rather than all of the

markers (Wang et al., 2014). When a pseudo QTN is associated with the testing marker, it is

not included in the kinship analysis. Between the pseudo QTNs and the testing marker, the

SUPER model applies an LD threshold. When compared to using total kinship from all

155

markers, this strategy improves statistical power. FarmCPU is a multilocus model that was

created to reduce false positives while keeping false negatives to a minimum (Liu et al.,2016).

To partially minimise the confusion between testing markers and kinship, the FarmCPU model

use a modified MLM method called multiple loci linear mixed model (MLMM), which

combines many markers simultaneously as covariates in a stepwise MLM. When compared to

other models, this model is said to improve statistical power, computing efficiency, and the

capacity to control false positives and false negatives (Liu et al., 2016).

Single-locus models, such as the general linear model (GLM) and the mixed linear model

(MLM) require multiple tests that undergo a Bonferroni correction (Bradbury et al., 2007) for

multiple comparison adjustments. The typical Bonferroni correction is often too conservative,

which results in many important loci associated with the target traits being eliminated because

they do not satisfy the stringent criterion of the significance test. The multi-locus models are

better alternatives for GWASs because they do not require the Bonferroni correction, and thus

more marker-trait associations may be identified. Recently, several new multi-locus GWAS

models, such as multi-locus RMLM (mrMLM, Wang et al., 2016), fast multi-locus random-

SNP-effect EMMA (FASTmrEMMA, Wen et al., 2017), and Iterative modified-Sure

Independence Screening EM-Bayesian LASSO (ISIS EM-BLASSO, Tamba et al., 2017), have

been developed.

Representation of GWAS Results

GWAS results are typically represented as two types of p-value plots: genome-wide association

plots (Manhattan plots) and quantile-quantile (QQ) plots. In Manhattan plot marker loci are

represented as chromosomes and position on the chromosome in genomic order on x-axis and

negative logarithm of their p values (-log10P) on y-axis (Fig1). The Manhattan plot resembles

the Manhattan skyline because clusters of significant P values tend to ascend to the top due to

local correlation of the genetic variants brought on by linkage.

156

https://www.frontiersin.org/articles/10.3389/fpls.2018.01083/full#B8
https://www.frontiersin.org/articles/10.3389/fpls.2018.01083/full#B71
https://www.frontiersin.org/articles/10.3389/fpls.2018.01083/full#B64

Fig 1: An illustration of a Manhattan plot depicting several strongly associated loci to the trait

Quantile-quantile plots (QQ plots) are widely used to display the proportion of significant

results in relation to the projected number of significant results at a specific P value (Fig 2).

The figure unambiguously demonstrated that, at levels more than P 0.001, more significant

SNP were discovered in their analysis than would have been expected by chance.

Fig 2: Quantile-quantile (QQ) plot. Comparison of GWAS P-values (black dotted line) to those

expected for a null distribution (red line).

157

References:

Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate, A practical and powerful approach

to multiple testing. J. R. Stat. Soc. Series. B. Stat. Methodol. 57, 289–300. doi: 10.1111/j.2517-

6161.1995.tb02031.x

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., et al. (2006). Principal

components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38 (8), 904–

909. doi: 10.1038/ng1847

Zhang, Z., Ersoz, E., Lai, C. Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., et al. (2010). Mixed linear

model approach adapted for genome-wide association studies. Nat. Genet. 42, 355–360. doi: 10.1038/ng.546

Kaler, A. S., Gillman, J. D., Beissinger, T., & Purcell, L. C. (2020). Comparing different

statistical models and multiple testing corrections for association mapping in soybean and

maize. Frontiers in plant science, 10, 1794.

Yu, J., Pressoir, G., Briggs, W. H., Vroh, B. I., Yamasaki, M., Doebley, J. F., et al. (2006). A unifed mixed-

model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–

208. doi: 10.1038/ng1702

Liu, X., Huang, M., Fan, B., Buckler, E. S., Zhang, Z. (2016). Iterative usage of fixed and random effect

models for powerful and efficient genome-wide association studies. PLoS Genet. 12 (2), e1005767. doi:

10.1371/journal.pgen.1005767

Li, M., Liu, X., Bradbury, P., Yu, J., Zhang, Y.-M., Todhunter, R. J., et al. (2014). Enrichment of statistical

power for genome-wide association studies. BMC Biol. 12, 73. doi: 10.1186/s12915-014-0073-5

Wang, Q., Tian, F., Pan, Y., Buckler, E. S., Zhang, Z. (2014). A SUPER powerful method for genome wide

association study. PLoS ONE 9, e107684. doi: 10.1371/journal.pone.0107684

Segura, V., Vilhjálmsson, B. J., Platt, A., Korte, A., Seren, Ü., Long, Q., et al. (2012). An efficient multi-

locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 44,

825–830. doi: 10.1038/ng.2314

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70.

Wen, Y. J., Zhang, H., Ni, Y. L., Huang, B., Zhang, J., Feng, J. Y., et al. (2018). Methodological

implementation of mixed linear models in multi-locus genome-wide association studies. Brief.

Bioinform. 19, 700–712. doi: 10.1093/bib/bbw145

Tamba, C. L., Ni, Y. L., Zhang, Y. M. (2017). Iterative sure independence screening EM-Bayesian LASSO

algorithm for multi-locus genome-wide association studies. PLoS Comput. Biol. 13, e1005357. doi:

10.1371/journal.pcbi.1005357

158

Hands-on Session for GWAS

Soumya Sharma

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

TASSEL also known as Trait Analysis by aSSociation, Evolution and Linkage is a powerful

statistical software to conduct association mapping such as General Linear Model (GLM) and

Mixed Linear Model (MLM). The GUI (graphical user interface) version of TASSEL is very well

built for anyone who does not have a background or experience in working in command line. The

following section demonstrates how to prepare input files and run association analysis in TASSEL

in stepwise manner.

1. Download and install TASSEL software

Download and install the latest version of the TASSEL software at this link:

https://www.maizegenetics.net/tassel

2. Preparing the Input files

Phenotype file

Phenotype file can be prepared as shown below in the figure below

159

https://www.maizegenetics.net/tassel

Please remember if your data has covariates such as sex, age or treatment, then, please categories

them with header name factor.

Genotype file

TASSEL supports various genotype file formats such as VCF (variant call format), .hmp.txt, and

plink. We are using the hmp.txt version of the genotype file for this demonstration. The below

screenshot of the hmp.txt genotype file.

3. Importing phenotype and genotype files

Import the files by following the steps shown below.

160

Start Tassel -> go to “file” menu -> select “open” -> specify the “folder” where files are located -

> choose the “files” to open holding CTRL button -> click on “open”

4. Phenotype distribution plot

It is always a wise idea to look at the phenotype distribution by plotting to check for any outliers.

Select the “phenotype” file -> go to “Results” -> go to “Charts” -> select graph type as

“Histogram” -> select the trait under “Series 1”

5. Genotype summary analysis

Next crucial step is to look at the genotype data by simply following the steps shown.

Select genotype data -> go to “Data” menu -> click “Geno Summary”

161

The output will be as shown in the figure below. The arrow depicts missing genotypic data to see

if it requires to be imputed.

Minor allele frequency distribution

Select genotype _SiteSummary -> go to “Results” -> click on “Charts” -> select “Minor Allele

Frequency” under “Series 1”

Proportion of heterozygous in the samples to check for selfed samples.

162

Select genotype_TaxaSummary -> go to “Results” -> click on “Charts” -> select “Proportion

Heterozygous” under “Series 1”

6. Imputation of missing values

Select genotype file -> go to “impute” -> click on “LD KNNi imputation” -> set parameters -

>click “okay”

7. Filter Markers based on Minor allele frequency (MAF)

Steps to filter markers based on Minor allele frequency (MAF) are shown below:

0.05 Minor allele Frequency (set filter thresholds for rare alleles)

163

Select genotype file -> go to “filter” -> click on “Filter Genotype Table Sites” -> set parameters -

> click “OK”

Conduct GWAS analysis

8. Principal component analysis (PCA)

PCA output can be used as the covariate in the GLM or MLM to correct for population structure.

Please follow the steps shown below:

Select genotype file -> go to “Analysis” -> go to “Relatedness” -> click on “PCA”-> set parameters

-> click “ok”

MAF filter

Heterozygosity

filter

164

9. Intersecting the files

Intersect the genotype, phenotype and PCA files by following the steps below:

Select genotype, phenotype and PCA files simultaneously by holding ‘CTRL’ button -> go to

“Data” -> click on “Intersect join”

10. Running General Linear Model (GLM)

Run the GLM analysis by selecting the intersected files following the steps below:

Select the intersect joined file “mdp_traits + PC_mdp_genotype + mdp_genotype” -> go to

“Analysis” -> go to “association” -> click on “GLM” -> set parameters -> click “ok”

165

The output of the GLM analysis is produced under the Result node. The GLM association test can

be evaluated by plotting Q-Q plot and the Manhattan plot as shown below.

Select the association analysis output file -> go to “Results” -> click on “Manhattan plot”-> select

the trait

Select the association analysis output file -> go to “Results” -> click on “QQ plot”-> select the

trait -> click “okay”

166

11. Mixed Linear Model (MLM)

Calculating Kinship matrix

Follow the below steps to calcuate the kinship matrix:

Select genotype file -> go to “Analysis” ->go to “Relatedness” -> click on “kinship” -> set

parameters -> click “ok”

Running Mixed Linear Model (MLM)

MLM model includes the PCA and the kinship matrix i.e. MLM (PCA+K).

167

Therefore, once the Kinship matrix has been calculated, MLM can be now be conducted by

following below steps:

Select the intersect joined file “mdp_traits + PC_mdp_genotype + mdp_genotype” and kinship file

simultaneously by holding ‘CTRL’ button -> go to “Analysis” -> go to “Association” -> click on

“MLM” -> set parameters -> click “okay”

Plot the output (MLM stats file in the Results branch following the steps shown for GLM).

12. Exporting results

One may export the results in .txt format by the following the below steps:

Select the file -> go to “File” -> click on “ Save As” ->browse the folder to save the file -> name

the file ->click “okay”

168

13. Plotting GWAS results in R using qqman package

The R code to plot GWAS result using QQMAN package is below:

library(qqman)

library(dplyr)

import TASSEL results

note

TASSEL_MLM_Out <- read.table("mlm_out.txt", header = T, sep = "\t")

Number of traits

head(unique(TASSEL_MLM_Out$Trait))

note: for each plot trait name must be specificed

first trait as example (i.e., EarHT)

Trait1 <- TASSEL_MLM_Out %>% filter(.$Trait == "EarHT")

Bonferroni correction threshold

nmrk <- nrow(Trait1)

(GWAS_Bonn_corr_threshold <- -log10(0.05 / nmrk))

Manhattan plot

(Mann_plot <- manhattan(

169

 TASSEL_MLM_Out,

 chr = "Chr",

 bp = "Pos",

 snp = "Marker",

 p = "p",

 col = c("red", "blue"),

 annotateTop = T,

 genomewideline = GWAS_Bonn_corr_threshold,

 suggestiveline = F

)

)

QQ plot

QQ_plot <- qq(TASSEL_MLM_Out$p)

Manhattan and Q-Q plot arranged in 1 rows and 2 columns

old_par <- par()

par(mfrow=c(1,2))

(Mann_plot <- manhattan(

 TASSEL_MLM_Out,

 chr = "Chr",

 bp = "Pos",

 snp = "Marker",

 p = "p",

 col = c("red", "blue"),

 annotateTop = T,

 genomewideline = GWAS_Bonn_corr_threshold,

 suggestiveline = F,

 main = "EarHT" # trait name

)

170

)

(QQ_plot <- qq(TASSEL_MLM_Out$p, main = "EarHT"))

The output plot will be as shown below:

Reference:

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S.

(2007). TASSEL: software for association mapping of complex traits in diverse

samples. Bioinformatics, 23(19), 2633-2635.

171

An Introduction to Quantitative Trait Loci (QTL) Mapping

Neeraj Budhlakoti, D. C. Mishra and G. K. Jha

ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India

Background

Quantitative traits exhibit continuous variation due to a combination of polygenic inheritance

and environmental influences. Polygenes contribute individually with small effects on the

phenotype of the trait, but the cumulative impact of all polygenes affecting a particular trait is

significant. Initially postulated to have only additive effects, polygenes are now known to

demonstrate dominance and epistatic effects.

This approach aims to identify genomic regions linked to the expression of quantitative traits,

referred to as quantitative trait loci (QTL). A QTL can encompass one or more genes

influencing the relevant quantitative trait. To conduct QTL analysis, it is crucial to assess the

phenotypes of the mapping population at multiple locations. Relying on a single location for

evaluation may lead to an underestimation of the total number of QTLs governing the traits in

question. Main effect QTLs directly impact the expression of the traits, while epistatic QTLs

interact with main effect QTLs, influencing the overall trait phenotype. A major QTL is

characterized by explaining 10% or more of the phenotypic variance for the trait, while a QTL

with a smaller effect size is termed a minor QTL. The phenotypic effect of a stable QTL

remains relatively consistent across environments, making it detectable across different

conditions. In contrast, an unstable QTL exhibits variable behavior in different environments.

Typically, major QTLs demonstrate stable expression across various environments, whereas

minor QTLs are more susceptible to environmental variations. Metabolic QTLs (mQTLs)

govern metabolic traits, such as the rates of diverse metabolic reactions and the levels of

metabolites. mQTLs typically exhibit epistatic interactions and possess moderate phenotypic

effects. Generally, metabolic traits display lower heritability compared to gene expression

levels, and it's noteworthy that eQTLs and mQTLs for a specific trait do not co-

localize.Quantitative variation in the cellular content of specific proteins is orchestrated by

Protein Quantity QTLs (pQTLs), which have been mapped in various plant species, including

maize and wheat. In the case of wheat, pQTLs are distributed throughout the genome, with

some affecting proteins associated with membranes. Studies aimed at identifying and mapping

eQTLs, mQTLs, and pQTLs that control molecular traits collectively form the field of genetical

172

genomics. This interdisciplinary field contributes to our understanding of the intricate

relationships between genetic variations and the regulation of molecular processes in diverse

biological systems.

General Procedure for QTL Mapping:

The general procedure for Quantitative Trait Loci (QTL) mapping involves a series of

methodical steps, each integral to the process. There are four fundamental prerequisites for

successful QTL mapping:

✓ Creation of a Suitable Mapping Population: This involves selecting two

homozygous lines with contrasting phenotypes for the trait of interest and crossing them

to generate an appropriate mapping population. Preferably, this population should be a

doubled haploid (DH) or recombinant inbred line (RIL) population.

✓ Construction of a Dense Marker Linkage Map: The next step is phenotyping, where

the mapping population is assessed for the target trait through replicated trials, ideally

over various locations and years.

✓ Reliable Phenotypic Evaluation: Both parent lines of the mapping population are

screened with a large number of genetic markers covering the entire genome to identify

polymorphic markers.

✓ Utilization of Appropriate Software for QTL Detection and Mapping: The entire

mapping population is then genotyped using these polymorphic markers.

✓ Subsequent steps include:

✓ Linkage Map Construction: The marker genotype data are utilized to construct a

framework linkage map for the population. This map displays the sequence of the

markers and the genetic distances between them, measured in centimorgans (cM).

✓ Association Analysis between Marker Genotypes and Trait Phenotypes: The final

step involves analyzing the marker genotype data alongside the trait phenotype data to

detect correlations between marker genotypes and the trait phenotype.

This methodology is primarily based on bi-parental populations and is essential for identifying

the genetic basis of various traits in species, paving the way for advanced genetic research and

breeding programs.

173

Methods for QTL Detection and Mapping:

Quantitative Trait Loci (QTL) mapping methods must navigate three critical challenges to

ensure accuracy and reliability in their findings:

1. Inference of QTL Genotypes: Unlike observable physical traits, the QTL genotypes

of different individuals in a population are not directly observable. Hence, these

genotypes must be deduced or inferred, often through indirect means such as the

analysis of genetic markers.

2. Selection of an Appropriate Genetic Model: Given the potential for thousands of

loci across the whole genome, selecting an appropriate genetic model for QTL

analysis is a complex task. This selection is crucial because the model influences how

the data is interpreted and the accuracy of the mapping results. The challenge lies in

choosing from a vast array of possible models, each with its own assumptions and

implications.

3. Correlation of Loci on the Same Chromosome: Loci that are located on the same

chromosome tend to be correlated due to linkage. This correlation makes it

challenging to separate and individually analyze the effect of each locus, as their

effects on the trait may be intertwined.

To address these issues, QTL analysis methodologies have been developed and can be

broadly categorized into two main groups:

a) Single QTL Mapping

b) Multiple QTL Mapping

Single QTL Mapping

Single QTL mapping methods focus on detecting one Quantitative Trait Locus (QTL) at a time.

These approaches do not account for the potential presence of other QTLs in the genome that

may also influence the target trait. The two primary methods in this category are:

✓ Single-Marker Analysis (SMA): Single-marker analysis, also known as single-point

analysis, represents the simplest and earliest method used in QTL detection. In this

approach, each marker is individually tested for its association with the target trait. A

significant difference in the trait between different genotypes at the marker locus

suggests that the marker is linked to a QTL influencing the trait. This process is repeated

for every marker locus evaluated in the mapping population. The extent of the

174

phenotypic difference between the genotype classes of the marker gives an estimate of

the effect caused by substituting a single allele at the QTL locus. A commonly used

statistical package for SMA is R/qtl.

✓ Simple Interval Mapping (SIM): Simple Interval Mapping, initially proposed by

Lander and Botstein in 1989, leverages the information from a linkage map. This

method assesses the association between trait values and the genotype of a hypothetical

QTL (target QTL) at various points between pairs of adjacent marker loci (the target

interval). The presence of a putative QTL is inferred if the log of odds (LOD) score

exceeds a predetermined critical threshold. Lander and Botstein developed formulas for

calculating significance levels appropriate for interval mapping, taking into account

factors like genome size, number of chromosomes, number of marker intervals, and the

desired overall false positive rate. SIM has become a widely used approach due to its

accessibility through statistical packages such as MAPMAKER/QTL.

Multiple QTL Mapping

Multiple QTL mapping (MQM) combines multiple regression analysis with SIM to include all

the significant QTLs in the genetic model used for mapping (Jansen 1994).

MQM offers the following advantages:

(1) Consideration of other QTLs affecting the trait tends to reduce residual variation

(2) Increase the QTL detection power,

(3) Linked QTLs can be detected as separate QTLs,

(4) The estimates of QTL effects are more reliable than those with single QTL methods

(5) QTL- QTL interaction can be detected. But when too many markers are included as

cofactors in the model, the QTL detection power tends to decline in comparison to SIM.

The main multiple QTL mapping methods include

(1) Composite interval mapping

(2) Multiple interval mapping

(3) Bayesian multiple QTL mapping

✓ Composite Interval Mapping (CIM)

CIM merges the techniques of interval mapping and multiple regression analysis, as

established by Jansen in 1994 and Zeng in 1994. It effectively manages the influence

of QTLs found in different marker intervals, both within the same chromosome and

across others, enhancing the accuracy of QTL identification. The process begins with

an analysis of individual markers, followed by the development of a multi-QTL model

175

using either stepwise or forward regression methods. The model initially incorporates

the marker with the highest LOD score, followed by the addition and reevaluation of

the marker with the next highest score for its significance.

✓ Multiple Interval Mapping (MIM)

Developed by Kao et al. in 1999, MIM facilitates the simultaneous mapping of QTLs

across various marker intervals. This method, considered simpler than CIM, maps

multiple QTLs at the same time. The genetic model in MIM encompasses the quantity,

positions, and interactions (epistasis) of the QTLs.

✓ Bayesian Multiple QTL Mapping

This method, designed for identifying multiple QTLs, regards the number of QTLs as

a variable subject to random change. It employs a reversible-jump Markov Chain Monte

Carlo (MCMC) method for precise modeling, as proposed by Satgopan et al. in 1996

and Banerjee et al. in 2008. Bayesian QTL mapping starts with a chosen prior

distribution, from which a posterior distribution is derived to make inferences. Both the

CIM and Bayesian methods use maximum likelihood functions for analysis. These

methods have been integrated into various software tools, including QTL Cartographer,

FlexQTL, INTERQTL, and R/QTLBIM.

LOD Score and LOD Score Threshold

The Logarithm of the Odds (LOD) score is a crucial metric in identifying the most probable

location of a Quantitative Trait Locus (QTL) in relation to the linkage map. An empirical

threshold for the LOD score can be determined using a permutation test, as outlined by

Churchill and Doerge in 1994. In this approach, while the marker genotypes of the sample

population remain constant, their corresponding trait phenotype values are randomly

rearranged. This method helps in assessing the significance of the LOD score by comparing it

against a distribution generated from these random shuffles, providing a robust means to

discern the true association of a QTL with a specific trait.

Test of Significance

LOD > 3 is the significance threshold – 1 in 1,000 the loci are not linked

Odds =
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑆𝑢𝑐𝑒𝑠𝑠

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒
 =

𝑝

1−𝑝

Odds = 1 → Equal chance of success and failure

Odds < 1 → Lower chance of success

176

Odds > 1 → Higher chance of success

QTL Confidence/Support Interval

The location of a Quantitative Trait Locus (QTL) on a linkage map is typically represented by

a bar adjacent to the map. When QTLs associated with different traits are found in the same

region, they are indicated by placing additional bars next to each other. The length of these bars

symbolizes a range known as the confidence interval or support interval. This interval signifies

the probable area where the QTL is situated. It stretches on both sides of the point where the

peak of the Logarithm of the Odds (LOD) score is observed, encapsulating the region within

which the QTL is most likely to be found.

Advantages of QTL Mapping

1. QTL mapping detects and map each QTL to short genomic region and identify

markers flanking the QTL regions, which can subsequently be used in molecular

breeding. Finely mapped QTL facilitates cloning of the genes located in some QTL

regions and understanding their functions.

2. QTL analysis provides an estimate of the phenotypic variation explained by a QTL.

It helps the breeders in selecting QTL for deployment for crop improvement.

Disadvantages of QTL mapping

1. The genetic variation for quantitative traits in the bi-parental mapping population

used for QTL mapping is limited to the variation present in the parents used.

Similarly, alleles studied are also limited to two only.

2. Mapping resolution is low due to limited meiotic cycles. QTL is often mapped to

a large genomic region which usually harbors hundreds of genes posing difficulty

in identifying the target gene.

3. QTL mapping is difficult in perennial crops; it needs special approach.

4. Identified QTL needs validation which incurs extra cost and time.

177

Commonly used Software for QTL mapping

A large number of QTL analysis software is available. For SMA, simple statistical package can

work. However, for CIM, MIM, ICIM, etc. different software with suitable algorithm would

be required. Name of a few commonly used software are:

Table 1: Tools and packages for QTL Mapping

Tool Name Description Interface URL References

QTL

IciMapping

Integrated Software for

Building Genetic Linkage

Maps and Mapping

Quantitative Trait Genes

Written in

C# and runs

on

Windows

XP/Vista/7/

10,

with .NET

Framework

4.0.

https://isbreedingen.ca

as.cn/software/qtllcim

apping/294607.htm

Meng at al., 2015

solQTL Major tool for Solanaceae

researchers to perform

QTL analysis and

dynamically crosslink to

relevant genome

annotation and genetic

expression

Command-

line

interface (R

based)

http://solgenomics.net

/qtl/

Tecle et al., 2010

QTL

Cartographer

Identifies and maps

quantitative trait loci

(QTL) in inbred cross

populations

Windows

menu-

driven

stand-alone

https://brcwebportal.c

os.ncsu.edu/qtlcart/W

QTLCart.htm

Wang et al., 2012

MapMaker/Q

TL:

It's widely used in genetic

research for analyzing

recombination between

different markers and for

mapping various genetic

traits.

 http://hpcio.cit.nih.go

v/lserver/MAPMAKE

R_Q TL.html

Lander et al., 1987

R/QTL It is an extensible,

interactive environment

for mapping quantitative

trait loci (QTL) in

experimental

populations.

 http://www.rqtl.org Broman et al., 2003

Conclusion and Future Prospects

With the advancement of molecular biological tools, improved techniques, and a deeper

understanding of the genome, the concept of Quantitative Trait Loci (QTL) is evolving. The

definition of a 'trait' has expanded from the traditional whole-organism phenotype to include

178

https://isbreedingen.caas.cn/software/qtllcimapping/294607.htm
https://isbreedingen.caas.cn/software/qtllcimapping/294607.htm
https://isbreedingen.caas.cn/software/qtllcimapping/294607.htm
http://solgenomics.net/qtl/
http://solgenomics.net/qtl/
https://brcwebportal.cos.ncsu.edu/qtlcart/WQTLCart.htm
https://brcwebportal.cos.ncsu.edu/qtlcart/WQTLCart.htm
https://brcwebportal.cos.ncsu.edu/qtlcart/WQTLCart.htm
http://hpcio.cit.nih.gov/lserver/MAPMAKER_Q%20TL.html
http://hpcio.cit.nih.gov/lserver/MAPMAKER_Q%20TL.html
http://hpcio.cit.nih.gov/lserver/MAPMAKER_Q%20TL.html
http://www.rqtl.org/

more specific phenotypes, such as the quantity of RNA transcript from a particular gene

expression (e-QTL) or the amount of protein produced from a specific gene (Protein QTL).

The challenge of limited molecular markers or sparsely populated maps has been overcome by

leveraging genomic sequences or Single Nucleotide Polymorphisms (SNPs). Similarly,

advancements in phenotyping techniques, including proteomics and metabolomics, are

addressing the challenges associated with capturing complex trait variations.

Genome-wide Association Studies (GWAS) have gained significant popularity,

complementing QTL mapping. Together, QTL mapping and GWAS offer the potential to

achieve the ultimate goal: identifying individual genes or nucleotides that contribute to the

target phenotype. This integrated approach represents a powerful strategy in the contemporary

era of genomics, enabling a more precise understanding of the genetic basis of complex traits

and facilitating targeted improvements in various fields, including agriculture and medicine.

References:

Banerjee S, Yandell BS, Yi N (2008) Bayesian quantitative trait loci mapping for multiple

traits. Genetics, 179:2275–2289.

Broman, K. W., Wu, H., Sen, Ś., & Churchill, G. A. (2003). R/qtl: QTL mapping in

experimental crosses. Bioinformatics, 19(7), 889-890.

Churchill GA, Deorge RW (1994) Empirical threshold values for quantitative trait mapping.

Genetics, 138:963–971.

Jansen RC (1994) High resolution of quantitative traits into multiple loci via interval mapping.

Genetics, 136:1447–1455.

Kao CH, Zeng Z-B, Teasdale RD (1999) Multiple interval mapping. Genetics, 152:1203–1216.

Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using

RFLP linkage maps. Genetics, 121:185–199.

Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E., & Newberg,

L. A. (1987). MAPMAKER: An interactive computer package for constructing primary genetic

linkage maps of experimental and natural populations. Genomics, 1(2), 174-181.

Meng, L., Li, H., Zhang, L., & Wang, J. (2015). QTL IciMapping: Integrated software for

genetic linkage map construction and quantitative trait locus mapping in biparental

populations. The Crop Journal, 3(3), 269-283.

179

Satgopan JM, Yandell BS, Newton MA et al (1996) A Bayesian approach to detect quantitative

trait loci using Markov chain Monte Carlo. Genetics, 144:805–816.

Tecle IY, Menda N, Buels RM, van der Knaap E, & Mueller LA. solQTL: a tool for QTL

analysis, visualization and linking to genomes at SGN database. BMC Bioinformatics. 2010;

11(1):525.

Wang, S., Basten, C. J., Zeng, Z. B. (2012). Windows QTL Cartographer 2.5. Department of

Statistics, North Carolina State University, Raleigh, NC.

Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics, 136:1457–1468.

180

Genomic Selection: Concept, Methods and Challenges

Neeraj Budhlakoti1, Anil Rai2 and D. C. Mishra1

1ICAR-Indian Agricultural Statistics Research Institute, New Delhi

2Indian Council of Agricultural Research, New Delhi

Abstract

Since the inception of the theory and conceptual framework of genomic selection (GS),

extensive research has been done on evaluating its efficiency for utilization in crop

improvement. Though marker-assisted selection has proven its potential for improvement of

qualitative traits that are controlled by one to few genes with large effects, its role in improving

quantitative traits that are controlled by several genes with small effects is limited. In this

regard, GS that utilizes genomic-estimated breeding values of individuals obtained from

genome-wide markers to choose candidates for the next breeding cycle is a powerful approach

to improve quantitative traits. In the past 20 years, GS has been widely adopted in animal

breeding programs globally because of its potential to improve selection accuracy, minimize

phenotyping, reduce cycle time and increase genetic gains. Improved statistical models that

leverage the genomic information to increase the prediction accuracies are critical for the

effectiveness of GS-enabled breeding programs.

Keywords: GEBVs, GS, LD, MAS, QTL, SNP.

Introduction

As it is known earlier selection based on phenotypic data has been successfully used in past.

As abundance of DNA and marker data, trend slightly shifted to marker assisted selection

(MAS). MAS is an indirect selection process where a trait of interest is selected, not based on

the trait itself, but on a marker linked to it. MAS has been shown to be efficient and effective

for traits that are associated with one or a few major genes with large effect but does not

perform as well when it is used for selection of polygenic traits (Bernardo 2008).As most

economic traits are influenced by many genes, tracking a small number of these through DNA

markers will only explain a small proportion of the genetic variance. In addition, individual

genes are likely to have small effects and so a large amount of data is needed to accurately

estimate their effects. To overcome these difficulties, Meuwissen et al. (2001) proposed a

variant of MAS that they called genomic selection. The key features of this method are that

markers covering the whole genome are used so that potentially all the genetic variance is

explained by the markers and the markers are assumed to be in linkage disequilibrium (LD)

181

with the Quantitative trait loci (QTL), so that the number of effects per QTL to be estimated is

small.

Any successful GS program, starts with forming a training population in such a way that

individuals/lines/variety are genotyped for genomic markers distributed over entire genome

and should be representative of whole population. The training individuals are further subjected

to extensive phenotyping for underlying trait of interest. The information of individual

genotype and phenotype is used for identification and building of suitable statistical model

using phenotype as a response and genotype as independent variable whereas part of training

data can also be used for validation of fitted model. Genomic Estimated Breeding Values

(GEBVs) of the individuals of the breeding population (where only information of genotyped

individuals is available with no phenotypic records) is being calculated using their genotyped

information where marker effect are estimated from developed model. Ultimately

individuals/line/variety from the breeding population can be selected based on superiority of

their estimated value of GEBVs.

Fig. 1: Basic schema of genomic selection process

182

The major limitation to the implementation of genomic selection has been the large number of

markers required and the cost of genotyping these markers are very high. Recently both these

limitations have been overcome in most livestock and plant species following the sequencing

of the livestock genomes, the subsequent availability of hundreds of thousands of single

nucleotide polymorphisms (SNP), and dramatic improvements in development of SNP

genotyping technology. Various regression methods have been developed for predicting

phenotype. Methods are based on analysis of data consist of genotype and phenotype

information. These methods are primarily based on linear models, which are easy to interpret

and able to fit to the data without over fitting. However, the relationship between breeding

value and genetic markers is likely to be more complex than a simple linear relationship,

particularly when large numbers of SNPs are fitted simultaneously in the model. To answer

these issues, model-free or so-called nonparametric methods which side-step linearity and

require lesser genetic assumptions have gained more attention (Gianola et al, 2006).

Statistical model for Genomic Selection

Process of selecting the suitable individuals in GS starts with a simple linear model sometime

also called as least squares regression or ordinary least squares regression (OLS).

𝑌 = 1𝑛µ + 𝑋𝛽 + 𝜀

where, Y = 𝑛 × 1 vector of observations; µ is the mean; 𝜷 = 𝑝 × 1 vector of marker

effects; 𝜀 = 𝑛 × 1 vector of random residual effects; 𝑿 = design matrix of order

𝑛 × 𝑝 (where each row represents the genotype/individuals/lines (n) and column corresponds

to marker (p)), 𝜀~𝑁(0, 𝜎𝑒
2).

One major problem in linear models using several thousands of genome-wide markers is that

number of markers (p) exceed the number of observations (n) i.e. genotype/individuals/lines

and this creates the problem of over-parameterization (large ‘p’ and small ‘n’ problem (p>>n)).

Using a subset of the significant markers can be an alternative for dealing with large ‘p’ and

small ‘n’ problem. Meuwissen et al. (2001) used a modification of the least squares regression

for GS. They performed least squares regression analysis on each maker separately with

following model

𝑌 = 𝑋𝑗𝛽𝑗 + 𝜀

where,

𝑋𝑗 = 𝑗𝑡ℎcolumn of the design matrix of marker

𝛽𝑗 = genetic effect of 𝑗𝑡ℎ marker

183

Marker with significant effects are selected using the log likelihood of this model and those are

further used for estimation of breeding values. However, it has to be noted that some crucial or

key information may be lost by selection based on subset of markers.

Hence, an efficient solution for the over-parameterization problem in linear models is using

ridge regression (RR), which is a penalized regression-based approach (Meuwissen et al.,

2001). It also solves the problems of multicollinearity at the same time (i.e. correlated

predictors e.g. SNP or markers). RR shrinks the coefficients of correlated predictors equally

towards zero and solves the regression problem using ℓ2 penalized least squares. Here, the goal

is to derive an estimator of parameter 𝛽 with smaller variance than the least square estimator.

Similar to RR, least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996; Usai

et al., 2009) is other variant of penalized regression, which uses the ℓ1 penalized least squares

criterion to obtain a sparse solution. LASSO sometime may not work well highly correlated

predictors (e.g. SNPs in high linkage disequilibrium) (Ogutu et al., 2012). The elastic net

(ENET) is an extension of the lasso that is robust to extreme correlations among the predictors

(Friedman et al., 2010) and it is a compromise between ℓ1 penalty (lasso) and ℓ2 penalty (ridge

regression) (Zou and Hastie, 2005).

The RR model considers that each marker contribute to equal variance, which is not the case

for all traits. Therefore, the variance of the markers based on the trait genetic architecture has

to be modeled. For this purpose, several Bayesian models have been proposed where it is

assumed that there is some prior distribution of marker effects. Further, inferences about model

parameters are obtained on the basis of posterior distributions of the marker effects. There are

several variants of Bayesian models for genomic prediction such as Bayes A, Bayes B, Bayes

Cπ and Bayes Dπ (Meuwissen et al., 2001; Habier et al., 2011) and other derivatives e.g.

Bayesian LASSO, Bayesian ridge regression (BRR). Besides the marker-based models, the

best linear unbiased prediction (BLUP), is one of the most commonly used genomic prediction

method. There are many variants of BLUP available for this purpose e.g. genomic BLUP

(GBLUP), single-step GBLUP (ssGBLUP), ridge regression BLUP (RRBLUP), GBLUP with

linear ridge kernel regression (rrGBLUP), of which is GBLUP is very frequently used. While

the BLUP has been used in other plant and animal breeding studies traditionally for various

purposes (Henderson et al., 1959), the GBLUP uses the genomic relationships calculated using

markers instead of the conventional pedigree-based BLUP which uses the pedigree

relationships to obtain the GEBVs of the lines or individuals (Meuwissen et al., 2001).

184

The genomic prediction models discussed so far perform well for traits with additive genetic

architecture but their performance becomes very poor in case of epistatic genetic architectures.

Hence, Gianola et al. (2006) first used nonparametric and semiparametric methods for

modeling complex genetic architecture. Subsequently, several statistical methods were

implemented to model both main and epistatic effects for genomic selection (Xu, 2007; Cai et

al., 2011; Legarra and Reverter, 2018). There are several nonparametric methods have been

studied in relation to genomic selection e.g. NW (Nadaraya-Watson) estimator (Gianola et al.,

2006), RKHS (Reproductive Kernel Hilbert Space) (Gianola et al., 2006), SVM (support vector

machine) (Maenhout et al., 2007; Long et al., 2011), ANN (Artificial Neural Network)

(Gianola et al., 2011) and RF (Random Forest) (Holliday et al., 2012) among them

nonparametric methods SVM, NN and RF are based on machine learning approach.

Methods discussed earlier in this section are based on genomic information where information

is available for single-trait i.e. single-trait genomic selection (STGS). As performance of STGS

based methods may be affected significantly in case of pleiotropy i.e., one gene linked to

multiple traits. A mutation in a pleiotropic gene may have an effect on several traits

simultaneously. It was also observed that low heritability traits can borrow information from

correlated traits and consequently achieve higher prediction accuracy can be achieved. Also

STGS based methods considers the information of each trait independently. Hence we may

lose crucial information which may ultimately result in poor genomic prediction accuracy.

Now-a-days we are also getting data on multiple traits, so multi-trait genomic selection

(MTGS) based methods may provide more accurate GEBVs and subsequently the higher

prediction accuracy. Several MTGS based methods have been studied in relation to GS e.g.

Multivariate mixed model approach (Jia and Jannink, 2012; Klápště et al., 2020), Bayesian

multi-trait model (Jia and Jannink, 2012; Cheng et al., 2018), MRCE (Multivariate Regression

with Covariance Estimation)(Rothman et al., 2010), cGGM (conditional Gaussian Graphical

Models) (Chiquet et al., 2017). Jia et al. (2012) presented three multivariate linear models (i.e.,

GBLUP, Bayes A, and Bayes Cπ) and compared them to uni-variate models and a detailed

comparison of various STGS and MTGS based methods has also been studied by Budhlakoti

et al. (2019). A brief structure of different STGS and MTGS based methods used in GS studies

are given in Fig. 2.

185

Fig. 2: Overall summary of the most commonly used models in Genomic Selection

Tools and packages to implement Genomic Selection

Several tools and packages have been developed for the evaluation of genomic prediction and

implementation of GS, some of which are discussed below.

Tools/Package

s

Description URL Reference

GMStool It is a genome-wide association

study (GWAS)-based tool for

genomic prediction using genome-

wide marker data

https://github.com/

JaeYoonKim72/GM

Stool

Jeong et al.

(2020)

rrBLUP R package based on BLUP models

its and other derivatives

https://CRAN.R-

project.org/

package=rrBLUP

Endelman,

(2011)

BWGS It has a wide choice of totally 15

parametric and nonparametric

statistical models for estimation of

GEBV for selection candidates.

https://CRAN.R-

project.org/package

=BWGS

Charmet

et al.

(2020)

BGLR This package is an extension of the

BLR package (Perezand Campos,

2014) and can be used to implement

several Bayesian models

https://CRAN.R-

project.org/package

=BGLR

Perez

and

Campos,

(2014)

GenSel Used for estimation of molecular

marker–based breeding values of

animals for trait under evaluation

https://github.com/

austin-putz/GenSel

Fernando

and

186

Garrick,

(2009)

lme4GS This package can be used for fitting

mixed models with covariance

structures with user defined

parameter

https://github.com/p

erpdgo/lme4GS

Caamal-Pat

et al.

(2021)

GSelection Package comprises of a set of

functions to select the important

markers and estimates the GEBV of

selection candidates using an

integrated model framework

https://

CRAN.R-

project.org/package

=GSelection

Majumdar

et al.

(2019)

STGS It is a comprehensive package which

gives a single-step solution for

genomic selection based on most

commonly used statistical methods

(i.e., RR, BLUP, LASSO, SVM,

ANN, and RF).

https://CRAN.Rproj

ect.

org/package=STGS

Budhlakoti

et al.

(2019a)

MTGS MTGS is a comprehensive package

which gives a single-step solution

for genomic selection using various

MTGS-based methods (MRCE,

MLASSO, i.e., multivariate

LASSO, and KMLASSO, i.e.,

kernelized multivariate LASSO).

https://CRAN.R-

project.org/

package=MTGS

Budhlakoti

et al.

(2019)

Issues and challenges in genomic selection

Genomic selection is a powerful tool for plant and animal breeding, but it also presents a

number of challenges and issues. Some of the key challenges and issues in genomic selection

include:

1. Data quality and quantity: Genomic selection requires large amounts of high-quality

genomic data. However, obtaining this data can be challenging, especially in species

with complex genomes or limited genomic resources.

2. Genetic diversity: Genomic selection works best when there is a large amount of genetic

diversity in the population. However, in some species, there may be limited genetic

diversity, which can limit the effectiveness of genomic selection.

3. Phenotyping: In order to train genomic selection models, accurate and consistent

phenotypic data is required. However, phenotyping can be time-consuming, expensive,

and difficult to standardize.

187

4. Trait heritability: The effectiveness of genomic selection depends on the heritability of

the trait being selected. Some traits may have low heritability, making it difficult to

accurately predict their values using genomic data.

5. Statistical model used: The choice of statistical model used in genomic selection is

important because it can impact the accuracy of the predictions and the efficiency of

the analysis. Some of the key concerns related to the type of statistical model used in

genomic selection include:

i. Overfitting: Overfitting can occur when a model is too complex for the data,

leading to high accuracy in the training set but poor performance on new data.

This can be a concern in genomic selection, particularly when using models

with a large number of parameters or when the sample size is small.

ii. Model assumptions: Different statistical models have different assumptions

about the data, and violating these assumptions can lead to biased or inaccurate

predictions. For example, linear regression assumes that the residuals are

normally distributed and homoscedastic, and violating these assumptions can

lead to poor performance.

iii. Scalability: Some statistical models are computationally intensive and may not

be feasible for very large datasets. This can be a concern in genomic selection,

particularly as the amount of genomic data continues to grow.

iv. Interpretability: Some statistical models are more interpretable than others,

which can be important for understanding the biological basis of the trait being

predicted. For example, linear regression models can provide insight into which

genomic regions are associated with the trait, while more complex models may

be more difficult to interpret.

v. Incorporation of external information: Some statistical models can incorporate

external information, such as gene annotation or pathway information, to

improve predictions. However, the quality and relevance of this external

information can impact the performance of the model.

188

6. Integration with traditional breeding: Genomic selection is most effective when it is

integrated with traditional breeding methods. However, this can be challenging,

especially in species with long breeding cycles or complex genetic architectures.

Conclusion and perspectives

Genomic selection has improved genetic gains in plant and animal breeding research over the

past two decades. Advances in cheaper next-generation sequencing technologies have resulted

in the availability of high-density SNP genotyping chips and completely sequenced crop and

animal genomes, boosting the predictive ability of a genomic selection model. However, there

is still scope for improvement in the methodology of genomic selection, such as imputation of

missing genotypic value and implementation of GxE interaction, to successfully implement it

in breeding programs. Regular updating of the training set and evaluation under controlled

conditions is necessary for better performance. To achieve fruitful outcomes, a structured

program is needed that includes human resource development, advanced data recording

methodologies, and trait phenotyping.

Reference

Bernardo, R. (2008). Molecular markers and selection for complex traits in plants: Learning

from the last 20 years. Crop Science 48, 1649–1664. doi:10.2135/CROPSCI2008.03.0131.

Budhlakoti, N., Mishra, D. C., Rai, A., Lal, S. B., Chaturvedi, K. K., and Kumar, R. R. (2019).

A Comparative Study of Single-Trait and Multi-Trait Genomic Selection. Journal of

Computational Biology 26, 1100–1112. doi:10.1089/CMB.2019.0032.

Budhlakoti, N, Mishra, D. C., Rai, A. and Chaturvedi, K.K. (2019a) Package ‘STGS’, 1-11.

Budhlakoti, N., Mishra, D. C., and Rai, A. (2019b). Package ‘MTGS’, 1–6.

Caamal-Pat, D., Pérez-Rodríguez, P., Crossa, J., Velasco-Cruz, C., Pérez-Elizalde, S., and

Vázquez-Peña, M. (2021). lme4GS: An R-Package for Genomic Selection. Frontiers in

Genetics 12, 982. doi:10.3389/FGENE.2021.680569/BIBTEX.

Cai, X., Huang, A., and Xu, S. (2011). Fast empirical Bayesian LASSO for multiple

quantitative trait locus mapping. BMC Bioinformatics 12, 1–13. doi:10.1186/1471-2105-12-

211/FIGURES/5.

Charmet, G., Tran, L. G., Auzanneau, J., Rincent, R., and Bouchet, S. (2020). BWGS: A R

package for genomic selection and its application to a wheat breeding programme. PLOS ONE

15, e0222733. doi:10.1371/JOURNAL.PONE.0222733.

Cheng, H., Kizilkaya, K., Zeng, J., Garrick, D., and Fernando, R. (2018). Genomic prediction

from multiple-trait Bayesian regression methods using mixture priors. Genetics 209, 89–103.

doi:10.1534/GENETICS.118.300650/-/DC1.

189

Chiquet, J., Mary-Huard, T., St´, S., and Robin, S. (2017). Structured regularization for

conditional Gaussian graphical models. Statistics and Computing 27, 789-804.

Endelman, J. B. (2011). Ridge Regression and Other Kernels for Genomic Selection with R

Package rrBLUP. The Plant Genome 4, 250–255.

doi:10.3835/PLANTGENOME2011.08.0024.

Fernando, R. and Garrick, D. (2009). GenSel- User Manual for a portfolio of

Genomic Selection related Analyses.

(http://taurus.ansci.iastate.edu/Site/Welcome_files/GenSel%20 Manual%20v2.pdf)

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized Linear

Models via Coordinate Descent. Regularization Paths for Generalized Linear Models via

Coordinate Descent. Journal of statistical software 33, 1.

Gianola, D., Fernando, R. L., and Stella, A. (2006). Genomic-Assisted Prediction of Genetic

Value With Semiparametric Procedures. Genetics 173, 1761.

doi:10.1534/GENETICS.105.049510.

Gianola, D., Okut, H., Weigel, K. A., and Rosa, G. J. M. (2011). Predicting complex

quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat.

BMC Genet. 12, 87. doi:10.1186/1471-2156-12-87.

Habier, D., Fernando, R. L., Kizilkaya, K., and Garrick, D. J. (2011). Extension of the bayesian

alphabet for genomic selection. BMC Bioinformatics 12, 1–12. doi:10.1186/1471-2105-12-

186/FIGURES/2.

Henderson, C. R., Kempthorne, O., Searle, S. R. and von Krosigk, C. M. (1959). The estimation

of environmental and genetic trends from records subject to culling. Biometrics, 15: 192.

Holliday, J. A., Wang, T., and Aitken, S. (2012). Predicting Adaptive Phenotypes From

Multilocus Genotypes in Sitka Spruce (Picea sitchensis) Using Random Forest.

doi:10.1534/g3.112.002733.

Jeong, S., Kim, J. Y., and Kim, N. (2020). GMStool: GWAS-based marker selection tool for

genomic prediction from genomic data. Scientific Reports 10, 1–12. doi:10.1038/s41598-020-

76759-y.

Jia, Y., and Jannink, J. L. (2012). Multiple-Trait Genomic Selection Methods Increase Genetic

Value Prediction Accuracy. Genetics 192, 1513. doi:10.1534/GENETICS.112.144246.

Klápště, J., Dungey, H. S., Telfer, E. J., Suontama, M., Graham, N. J., Li, Y., et al. (2020).

Marker Selection in Multivariate Genomic Prediction Improves Accuracy of Low Heritability

Traits. Front. Genet. 11, 499094. doi:10.3389/FGENE.2020.499094/FULL.

Legarra, A., and Reverter, A. (2018). Semi-parametric estimates of population accuracy and

bias of predictions of breeding values and future phenotypes using the LR method 01

Mathematical Sciences 0104 Statistics. Genetics Selection Evolution 50, 1–18.

doi:10.1186/S12711-018-0426-6/FIGURES/3.

Long, N., Gianola, D., Rosa, G. J. M., and Weigel, K. A. (2011). Application of support vector

regression to genome-assisted prediction of quantitative traits. Theor. Appl. Genet. 123, 1065–

1074. doi:10.1007/S00122-011-1648-Y.

Maenhout, S., De Baets, B., Haesaert, G., and Van Bockstaele, E. (2007). Support vector

machine regression for the prediction of maize hybrid performance. Theor. Appl. Genet. 115,

1003–1013. doi:10.1007/s00122-007-0627-9.

190

Majumdar, S. G., Rai, A., and Mishra, D. C. (2019). Package ‘GSelection’, 1–14.Available at:

https://rdrr.io/cran/GSelection/man/GSelection-package.html.

Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E. (2001). Prediction of total genetic value

using genome-wide dense marker maps. Genetics 157, 1819–1829.

doi:10.1093/GENETICS/157.4.1819.

Ogutu, J. O., Schulz-Streeck, T., and Piepho, H. P. (2012). Genomic selection using regularized

linear regression models: ridge regression, lasso, elastic net and their extensions. BMC Proc.

6, S10. doi:10.1186/1753-6561-6-S2-S10.

Perez, P., and Campos, G. (2014). BGLR : A Statistical Package for Whole Genome

Regression and Prediction. Genetics 198, 483–495.

Rothman, A. J., Levina, E., and Zhu, J. (2010). Sparse Multivariate Regression With

Covariance Estimation. J. Comput. Graph. Stat. 19, 947. doi:10.1198/JCGS.2010.09188.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of Royal

Statistical Society, 58: 267–288.

Usai, M. G., Goddard, M. E., and Hayes, B. J. (2009). LASSO with cross-validation for

genomic selection. Genet. Res. (Camb). 91, 427–436. doi:10.1017/S0016672309990334.

Xu, S. (2007). An Empirical Bayes Method for Estimating Epistatic Effects of Quantitative

Trait Loci. Biometrics 63, 513–521. doi:10.1111/J.1541-0420.2006.00711.X.

Zou, H., and Hastie, T. (2005). Regularization and variable selection via the elastic net. J. R.

Stat. Soc. B 67, 301–320.

191

Transcriptomic Data Analysis

Mohammad Samir Farooqi and Sudhir Srivastava

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Introduction

The advent of Next-Generation Sequencing (NGS) technology has transformed genomic

studies. One important application of NGS technology is the study of the transcriptome,

which is defined as the complete collection of all the RNA molecules in a cell. Various types

of RNA that have been classified so far are shown in Fig. 1. All of these molecules are called

transcripts since they are produced by process of transcription.

Fig. 1: Different types of RNA

(Image source: http://scienceblogs.com/digitalbio/2011/01/08/next-gene-sequencing)

Understanding the transcriptome is essential for interpreting the functional elements of the

genome and revealing the molecular constituents of cells and tissues, and also for

understanding development and disease [1]. The main purpose of transcriptomics are: to

catalogue all species of transcript, including mRNAs, non-coding RNAs and small RNAs; to

determine the transcriptional structure of genes, in terms of their start sites, 5′ and 3′ ends,

splicing patterns and other post-transcriptional modifications; and to quantify the changing

expression levels of each transcript during development and under different conditions.

The study of transcriptome is carried out through sequencing of RNAs. RNA sequencing

(RNA-Seq) is a powerful method for discovering, profiling, and quantifying RNA transcripts

[2]. RNA-Seq uses NGS datasets to obtain sequence reads from millions of individual RNAs.

The RNA-Seq analysis is performed in several steps: First, all genes are extracted from the

reference genome (using annotations of type gene). Other annotations on the gene sequences

are preserved (e.g.CDS information about coding sequences etc). Next, all annotated

192

transcripts (using annotations of type mRNA) are extracted [3]. If there are several annotated

splice variants, they are all extracted. An example is shown in below Fig. 2(a).

Fig. 2(a): A simple gene with three exons and two splice variants.

The given example is a simple gene with three exons and two splice variants. The transcripts

are extracted as shown in Fig. 2(b).

Fig. 2(b): All the exon-exon junctions are joined in the extracted transcript.

Next, the reads are mapped against all the transcripts plus the entire gene [see Fig. 2(c)].

Fig. 2(c): The reference for mapping: all the exon-exon junctions and the gene

(Image source: CLC Genomic workbench tutorials)

From this mapping, the reads are categorized and assigned to the genes and expression values

for each gene and each transcript are calculated and putative exons are then identified.

RNA Sequencing Experiment

In a standard RNA-seq experiment, a sample of RNA is converted to a library of

complementary DNA fragments and then sequenced on a high-throughput sequencing

platform, such as Illumina's Genome Analyzer, SOLiD or Roche 454 [4]. Millions of short

sequences, or reads, are obtained from this sequencing and then mapped to a reference

genome (Fig. 3). The count of reads mapped to a given gene measures the expression level of

this gene. The unmapped reads are usually discarded and mapped reads for each sample are

assembled into gene-level, exon-level or transcript-level expression summaries, depending on

the objectives of the experiment. The count of reads mapped to a given gene/exon/transcript

measures the expression level for this region of the genome or transcriptome.

One of the primary goals for most RNA-seq experiments is to compare the gene expression

levels across various treatments. A simple and common RNA-seq study involves two

treatments in a randomized complete design, for example, treated versus untreated cells, two

different tissues from an organism, plants, etc. In most of the studies, researchers are

193

particularly interested in detecting gene with differential expressions (DE). A gene is

declared differentially expressed if an observed difference or change in read counts between

two experimental conditions is statistically significant, i.e. if the difference is greater than

what would be expected just due to random variation [5]. Detecting DE genes can also be an

important pre-step for subsequent studies, such as clustering gene expression profiles or

testing gene set enrichments.

Fig. 3: General RNA-seq experiment. mRNA is converted to cDNA, and fragments from that

library are used to generate short sequence reads. Those reads are assembled into contigs

which may be mapped to reference sequences (Wang et al., 2009)

Analysing RNA-Seq data

RNA-seq experiments must be analyzed with robust, efficient and statistically correct

algorithms. Fortunately, the bioinformatics community has been striving hard at work for

incorporating mathematics, statistics and computer science for RNA-seq and building these

ideas into software tools. RNA-seq analysis tools generally fall into three categories: (i) those

for read alignment; (ii) those for transcript assembly or genome annotation; and (iii) those for

transcript and gene quantification. Some of the open source softwares available for RNA-seq

analysis are as follows:

• Data preprocessing

• Fastx toolkit

• Samtools

• Short reads aligners

194

• Bowtie, TOPHAT, Stampy, BWA, Novoalign, etc

• Expression studies

• Cufflinks package

• R packages (DESeq, edgeR, more…)

• Visualisation

• CummeRbund, IGV, Bedtools, UCSC Genome Browser, etc.

Besides there are commercially data analysis pipelines like GenomeQuest, CLCBio etc

available for researchers to use. The most commonly used pipeline is to identify protein

coding genes by aligning RNA-Seq data to annotate data from sources like RefSeq. After

generating the alignments, the number of aligning sequences is counted for each

position. Since each alignment represents a transcript, the alignments allow to count the

number of RNA molecules produced from every gene.

Using NGS technology, RNA-Seq enables to count the number of reads that align to one of

thousands of different cDNAs, producing results similar to those of gene expression

microarrays [6]. Sequences generated from an RNA-Seq experiment are usually mapped to

libraries of known exons in known transcripts. RNA-Seq can be used for discovery

applications such as identifying alternative splicing events, allele-specific expression, and

rare and novel transcripts [7]. The sequencing output files (compressed FASTQ files) are the

input for secondary analysis. Reads are aligned to an annotated reference genome, and those

aligning to exons, genes and splice junctions are counted. The final steps are data

visualisation and interpretation, consisting of calculating gene- and transcript-expression and

reporting differential expression. A general Bioinformatics workflow to map transcripts from

RNA-seq data is shown in Fig. 4.

Fig. 4: RNA-seq workflow (Adapted from Advancing RNA-Seq analysis Brian J. Haas and

Michael C. Zody Nature Biotechnology 28, 421-423 (2010)

195

RPKM (Reads per KB per million reads)

RNA-Seq provides quantitative approximations of the abundance of target transcripts in the

form of counts. However, these counts must be normalized to remove technical biases

inherent in the preparation steps for RNA-Seq, in particular the length of the RNA species

and the sequencing depth of a sample. The most commonly used is RPKM (Reads Per

Kilobase of exon model per Million mapped reads). The RPKM measure of read density

reflects the molar concentration of a transcript in the starting sample by normalizing for RNA

length and for the total read number in the measurement [8]. RPKM is mathematically

represented as:

RPKM =
𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑜𝑛 𝑟𝑒𝑎𝑑𝑠

𝑚𝑎𝑝𝑝𝑒𝑑 𝑟𝑒𝑎𝑑𝑠 (𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠) X 𝑒𝑥𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ (𝐾𝐵)

Total exon reads

This is the number of reads that have been mapped to a region in which an exon is annotated

for the gene or across the boundaries of two exons or an intron and an exon for an annotated

transcript of the gene. For eukaryotes, exons and their internal relationships are defined by

annotations of type mRNA.

Exon length

This is calculated as the sum of the lengths of all exons annotated for the gene. Each exon is

included only once in this sum, even if it is present in more annotated transcripts for the gene.

Partly overlapping exons will count with their full length, even though they share the same

region.

Mapped reads

The total gene reads for a gene is the total number of reads that after mapping have been

mapped to the region of the gene. A gene's region is that comprised of the flanking regions,

the exons, the introns and across exon-exon boundaries of all transcripts annotated for the

gene. Thus, the sum of the total gene reads numbers is the number of mapped reads for the

sample.

Applications of RNA-seq

This technique can be used to:

• Measure gene expression

• Transcriptome assembly, gene discovery and annotation

• Detect differential transcript abundances between tissues, developmental stages,

genetic backgrounds, and environmental conditions

• Characterize alternative splicing, alternative polyadenylation, and alternative

transcription.

Future Directions

Although RNA-Seq is still in the infancy stages of use, it has clear advantages over

previously developed transcriptomic methods. Compared with microarray, which has been

the dominant approach of studying gene expression in the last two decades, RNA-seq

technology has a wider measurable range of expression levels, less noise, higher throughput,

196

and more information to detect allele-specific expression, novel promoters, and isoforms [9].

For these reasons, RNA-seq is gradually replacing the array-based approach as the major

platform in gene expression studies. The next big challenge for RNA-Seq is to target more

complex transcriptomes to identify and track the expression changes of rare RNA isoforms

from all genes. Technologies that will advance achievement of this goal are pair-end

sequencing, strand-specific sequencing and the use of longer reads to increase coverage and

depth. As the cost of sequencing continues to fall, RNA-Seq is expected to replace

microarrays for many applications that involve determining the structure and dynamics of the

transcriptome.

References

1. https://www.genome.gov/13014330

2. Wang Z., Gerstein M., Synder M. (2009). Rna-seq: a revolutionary tool for

transciptomics, Nat Rev Genet 10(1): 57–63.

3. http://scienceblogs.com/digitalbio/2011/01/08/next-gene-sequencing-results-a/

4. Shendure J, Ji H (2008) Next-generation RNA sequencing. Nature Biotechnology 26:

2514-2521

5. Anders S, Huber W (2010). Differential expression analysis for sequence count data.

Genome Biol. 11:R106.

Illumina, Inc,. (2011). Getting started with RNA-Seq Data Analysis. Pub. No. 470-

2011-003.

6. Illumina, Inc,. (2011). RNA-Seq Data Comparison with Gene Expression

Microarrays. A cross-platform comparison of differential gene expression analysis.

Pub. No. 470-2011-004

7. Yaqing Si (2012). Statistical analysis of RNA-seq data from next-generation

sequencing technology. PhD thesis. Iowa State University, Ames, Iowa.

8. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B. (2008).

Mapping and quantifying mammalian transcriptomes by rna-seq. Nat Methods,

5(7):621-628.

9. Wang L., Si Y., Dedow L.K., Shao Y., Liu P., Brutnell T.P. (2010). A low-cost

library construction protocol and data analysis pipeline for Illumina-based strand-

specific multiplex RNA-seq. PLoS One 6(10):e26426.

10. Brian J. H. and Michael C. Z. (2010). Advancing RNA-Seq analysis Nature

Biotechnology 28, 421-423.

197

Hands-on Session for Transcriptomic Data Analysis

Soumya Sharma

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Identification of differentially expressed genes from the RNA-Seq data is an important area of

bioinformatics data analysis. There are several packages available in R to carry out the differential

gene expression analysis, like DESeq2 (Love et al., 2014), edgeR (Robinson et al., 2010), limma

(Smyth et al., 2005) etc. After preprocessing and quantification of reads in RNA-Seq data, we get

a matrix of read counts of each gene in every sample. Then we can use the “DESeq2” package to

identify differentially expressed genes. Here, we demonstrate the differential gene expression

analysis with R using a sample dataset available in the R package airway (Himes et al., 2014) in

following steps.

i) Download the sample dataset from the “airway” package. The package contains 2 data

files. One file contains read counts of 64102 genes in 8 samples obtained from the RNA-

Seq experiment on 4 primary human airway smooth muscle cell lines treated with 1

micromolar dexamethasone for 18 hours. Another file contains sample-wise metadata

information, viz., treated or untreated. Import the count matrix and metadata file into

RStudio.

R code to collect sample dataset from “airway” package:

installing Bioconductor packages
if (!requireNamespace("BiocManager", quietly=TRUE))

install.packages("BiocManager")

BiocManager::install("airway")

library(airway)

data(airway)

airway

sample_info <- as.data.frame(colData(airway))

sample_info <- sample_info[,c(2,3)]

sample_info$dex <- gsub('trt', 'treated', sample_info$dex)

sample_info$dex <- gsub('untrt', 'untreated', sample_info$dex)

198

names(sample_info) <- c('cellLine', 'dexamethasone')

Get the samplewise metadata file

write.table(sample_info, file = "/sample_info.csv", sep = ',', col.names = T, row.names = T, quote

= F)

Get the matrix of read counts for each gene in every sample

countsData <- assay(airway)

write.table(countsData, file = "/counts_data.csv", sep = ',', col.names = T, row.names = T, quote =

F)

ii) Then we have to load the package “DESeq2” to perform the subsequent differential

gene expression analysis. We have to create a DESeqDataSet object and then run the

‘DESeq()’ function to perform the said analysis.

Differential gene expression analysis using the “DESeq2” package in R

BiocManager::install("DESeq2")

library(DESeq2)

read in counts data

counts_data <- read.csv('/counts_data.csv')

read in sample info

colData <- read.csv('/sample_info.csv')

making sure the row names in colData matches to column names in counts_data

all(colnames(counts_data) %in% rownames(colData))

are they in the same order?

all(colnames(counts_data) == rownames(colData))

dds <- DESeqDataSetFromMatrix(countData = counts_data, colData = colData, design = ~

dexamethasone)

dds

#pre-filtering: removing rows with low gene counts

keeping rows that have at least 10 reads total

keep <- rowSums(counts(dds)) >= 10

dds <- dds[keep,]

set the factor level

199

dds$dexamethasone <- relevel(dds$dexamethasone, ref = "untreated")

--------Run DESeq ----------------------

dds <- DESeq(dds)

res <- results(dds)

res

summary(res)

res0.01 <- results(dds, alpha = 0.01) # When padj = 0.01

summary(res0.01)

Here, we are trying to find the genes which are differentially expressed in Dexamethasone treated

conditions as compared to untreated conditions. Hence, the reference level is set as ‘untreated’.

After the analysis, the result contains base means, log2FoldChange values, p-values, adjusted p-

values, etc. for each gene. If at 1% level, the adjusted p-value for a gene is found as > 0.01, it means

the result has been obtained purely by chance, i.e., a non-significant result. Otherwise, that gene is

differentially expressed if the adjusted p-value is < 0.01. In the latter case, if the log2FoldChange

value is > 0, the gene is upregulated and if it is < 0, then that gene is downregulated. Thus, we can

find out differentially expressed genes using R.

iii) Visualization of differentially expressed genes in R. After identifying differentially

expressed genes, we can visualize the result in terms of various plots such as MA plot,

volcano plot, heatmap, etc. Several R packages are available to develop these plots. MA

plot can be generated using the ‘plotMA()’ function. We can use the “ggplot2” package

to develop volcano plot. Similarly, R package “heatmap2”, “pheatmap” etc. are useful

to create heatmaps. MA plot (fig 1), volcano plot (fig 2) and heatmap (fig 3) created

from the result of the previous analysis.

R code to visualize the result of differential gene expression analysis

MA plot

plotMA(res)

Volcano plot

library(ggplot2)

library(tidyverse)

200

df<-as.data.frame(res)

df$diffexpressed <- "non-significant"

if log2Foldchange > 0 and padj < 0.01, set as "UP"

df$diffexpressed[df$log2FoldChange > 0 & df$padj < 0.01] <- "UP"

if log2Foldchange < 0 and padj < 0.01, set as "DOWN"

df$diffexpressed[df$log2FoldChange < 0 & df$padj < 0.01] <- "DOWN"

ggplot(df, aes(log2FoldChange, -log10(padj), col=

diffexpressed))+geom_point()+scale_color_manual(values = c("red", "black", "green"))

Developing Heatmap of first 10 genes for better demonstration

library(pheatmap)

library(RColorBrewer)

breaksList = seq(-0.4, 0.5, by = 0.04)

rowLabel = row.names(counts_data[1:10,])

pheatmap(df$log2FoldChange[1:10], color = colorRampPalette(c("dark blue", "white",

"yellow"))(25), breaks = breaksList, border_color = "black", cellheight = 25, cellwidth = 25,

cluster_rows = F,cluster_cols = F, fontsize = 12, labels_row = rowLabel)

Fig 1: MA plot showing significantly upregulated and downregulated genes as blue dots.

201

Fig 2: Volcano plot representing upregulated genes as green, downregulated genes as red and

non-significant genes as black dots.

Fig 3: Heatmap representing the expression levels of first 10 genes in terms of

log2FoldChange values in a scale of -0.4 to 0.4 where, blue colour represents downregulated

genes, yellow represents upregulated genes and expression levels of remaining genes are

represented by gradation of colour between blue and yellow.

202

References:

Himes, B. E., Jiang, X., Wagner, P., Hu, R., Wang, Q., Klanderman, B., & Lu, Q. (2014). RNA-

Seq transcriptome profiling identifies CRISPLD2 as a glucocorticoid responsive gene that

modulates cytokine function in airway smooth muscle cells. PloS one, 9(6), e99625.

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion

for RNA-seq data with DESeq2. Genome biology, 15(12), 1-21.

Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for

differential expression analysis of digital gene expression data. bioinformatics, 26(1), 139-140.

Smyth, G. K. (2005). Limma: linear models for microarray data. Bioinformatics and computational

biology solutions using R and Bioconductor, 397-420.

203

Introduction to Python Programming

U. B. Angadi and Sudhir Srivastava

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Python is an easiest and simple open source powerful programming language. It has efficient high-

level data structures with support of multiple programming paradigms, such as Procedural, Object

Oriented and Functional paradigms. it an ideal language for scripting and rapid application

development in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary

form specifically ML, AI and Data science in Python web site, https://www.python.org/, and may

be freely distributed. The Python interpreter is easily extended with new functions and data types

implemented in C or C++. This can be used as a scripting language or can be compiled to byte-

code for building large application like Perl, R, LINUX shell script. Python has been developed

under virtual machine concept and support.

Installing Python

The most up-to-date and current source code, binaries, documentation, news, etc., is available on

the official website of Python https://www.python.org/ and also available in many source for a

wide variety of platforms.

If the binary code for your platform is not available, you need a C compiler to compile the source

code manually. Compiling the source code offers more flexibility in terms of choice of features

that you require in your installation. Installation from source codes is better than binary.

Linux Installation

• Open a Web browser and go to https://www.python.org/downloads/. Or use wget command

with url of desire version of python.

• Follow the link to download zipped source code available for Unix/Linux.

• Download and extract files and change directory to python folder then run following

commands

• $./configure script

• $ make

• $ make install

 Or you can install though yum i.e. sudo yum install python3

Window installation

• Down load window version installation file

• Double click to installation file python-XYZ.msi such as python-3.10.2-amd64.exe

Setting up PATH

• Linux − type export PATH="$PATH:/usr/local/bin/python" and press Enter. Or make

entry the same entry in bashrc file

• Window- control panel→System Security→System→System Properties→ Environmental

variables→path→ add path at last in existing path

204

https://www.python.org/
https://www.python.org/downloads/

Running Python

You can start Python from Unix, DOS, or any other system that provides you a command-

line interpreter or shell window.

Enter python the command line and press enter

Or

Stored program or packages with py file extension

Enter python filename.py and press enter i.e. $python script.py in linux

Or

Make python file into standard scripting language file by adding #!/usr/bin/python in top of the

python code/scrip file

Add executable previlages to python file $ chmod +x pythonfile.py

Run python file by $./pythonefile.py (dot slash filename)

GUI - Integrated Development Environment

You can run Python from a Graphical User Interface (GUI) environment as well, if you have a

GUI application on your system that supports Python.

• Unix − IDLE is the very first Unix IDE for Python.

• Windows – PythonWin/pycharm/MSvisual studio are Windows interface for Python and

is an IDE with a GUI.

For these IDE need to be set python interpreter

Python Lines and Indentation

Python programming provides no braces to indicate blocks of code for class and function

definitions or flow control. Blocks of code are denoted by line indentation, which is rigidly

enforced.

The number of spaces in the indentation is variable, but all statements within the block must be

indented the same amount

Comments- non executable statement

Python comments are non-executable and readable explanation or annotations for programmer.

They are added with the purpose of making the source code easier for humans to understand and

are ignored by Python interpreter.

Single Line Comments

A hash sign (#) at beginning of a string. All characters after the # and up to the end of the physical

line are part of the comment.

This is a single line comment in python and below is print statement

205

print ("Hello, World! This print statement print constant and variable")

Multi-Line Comments

 Triple-quoted string can be used for multiline comments and it ignores by Python interpreter

''''''

This is first in multi-lines

This is 2nd in multi-lines

This is 3rd in multi-lines

''''''

Docstring Comments

Python docstrings provide a convenient way to provide a help documentation with Python

modules, functions, classes, and methods. The docstring is then made available via the __doc__

attribute.

def add(a, b):

 """Function to add the value of a and b"""

 return a+b

print(add.__doc__)

print(add.__doc__) # for help

print(add(10,20)) # for execution

Variables

Python variables are name of memory location, in which values are stored. This means that when

you create a variable you reserve some space in the memory to store values. Based on the data type

of a variable, Python interpreter allocates memory and decides what can be stored in the reserved

memory. Therefore, by assigning different data types to Python variables, you can store integers,

decimals or characters in these variables.

Python variables do not need explicit declaration like other language to reserve memory space or

to create a variable. A Python variable is created automatically when you assign a value to it. The

equal sign (=) is used to assign values to variables.

The operand to the left of the = operator is the name of the variable and the operand to the right of

the = operator is the value stored in the variable.

counter = 1000 # Creates an integer variable

miles = 11234.567 # Creates a floating point variable

name = "Arun Kumar" # Creates a string variable

print (counter)

print (miles)

print (name)

206

Delete a Variable

You can delete the reference to a number object by using the del statement.

del var1[,var2[,var3[....,varN]]]]

del var

del var_a, var_b

Local Variable

Python Local Variables are defined inside a function. We can not access variable outside the

function.

def sum(x,y):

 sum = x + y

 return sum

print(sum(5, 10))

Global Variable

Any variable created outside a function can be accessed within any function and so they have

global scope.

x = 5

y = 10

def sum():

 sum = x + y

 return sum

print(sum())

Data Types

Python has various built-in data types which we will discuss with in this tutorial:

• Numeric - int, float, complex

integer variable.

a=123

print("The type of variable having value", a, " is ", type(a))

float variable.

b=2345.345

print("The type of variable having value", b, " is ", type(b))

complex variable.

c=11+5j

print("The type of variable having value", c, " is ", type(c))

• String – str

str = 'Hello World!'

print (str) # Prints complete string

print (str[0]) # Prints first character of the string

print (str[2:5]) # Prints characters starting from 3rd to 5th

207

print (str[2:]) # Prints string starting from 3rd character

print (str * 2) # Prints string two times

print (str + "TEST") # Prints concatenated string

• Sequence - list, tuple, range

A Python list contains items separated by commas and enclosed within square brackets ([]). To

some extent, Python lists are similar to arrays in C. One difference between them is that all the

items belonging to a Python list can be of different data type

list = ['abcd', 786, 2.23, 'john', 70.2]

tinylist = [123, 'john']

print (list) # Prints complete list

print (list[0]) # Prints first element of the list

print (list[1:3]) # Prints elements starting from 2nd till 3rd

print (list[2:]) # Prints elements starting from 3rd element

print (tinylist * 2) # Prints list two times

print (list + tinylist) # Prints concatenated lists

Tuple is another sequence data type that is similar to a list. A Python tuple consists of a number of

values separated by commas. Unlike lists, however, tuples are enclosed within parentheses.

Lists are enclosed in brackets ([]) and their elements and size can be changed, while tuples are

enclosed in parentheses (()) and cannot be updated. Tuples can be thought of as read-only lists

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

tinytuple = (123, 'john')

print (tuple) # Prints the complete tuple

print (tuple[0]) # Prints first element of the tuple

print (tuple[1:3]) # Prints elements of the tuple starting from 2nd till 3rd

print (tuple[2:]) # Prints elements of the tuple starting from 3rd element

print (tinytuple * 2) # Prints the contents of the tuple twice

print (tuple + tinytuple) # Prints concatenated tuples

Range - range() is an in-built function in Python which returns a sequence of numbers starting

from 0 and increments to 1 until it reaches a specified number.

We use range() function with for and while loop to generate a sequence of numbers.

range(start, stop, step)

• Mapping - dict

Python dictionaries are kind of hash table type. They work like associative arrays or hashes found

in Perl and consist of key-value pairs. A dictionary key can be almost any Python type, but are

usually numbers or strings. Values, on the other hand, can be any arbitrary Python object.

208

Dictionaries are enclosed by curly braces ({ }) and values can be assigned and accessed using

square braces ([])

dict = {}

dict['one'] = "This is one"

dict[2] = "This is two"

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

print (dict['one']) # Prints value for 'one' key

print (dict[2]) # Prints value for 2 key

print (tinydict) # Prints complete dictionary

print (tinydict.keys()) # Prints all the keys

print (tinydict.values()) # Prints all the values

• Binary - bytes, bytearray, memoryview

hexStr = bytes.fromhex('A2f7 4509')

myByteArray = bytearray('String', 'UTF-8')

memView = memoryview(myByteArray)

• Boolean – bool

Boolean type is one of built-in data types which represents one of the two values

either True or False. Python bool() function allows you to evaluate the value of any expression

and returns either True or False based on the expression.

a = True

display the value of a

print(a)

display the data type of a

print(type(a))

• Set - set, frozenset- immutable

fruits = {"Apple", "Banana", "Cherry", "Apple", "Kiwi"}

fruits.add("Orange")

fruits.remove("Mango")

print('After removing element:', fruits)

l = ["Geeks", "for", "Geeks"]

fnum = frozenset(l)

Data Type Conversion

Sometimes, you may need to perform conversions between the built-in data types. To convert data

between different data types.

Function & Description

int(x [,base]) -Converts x to an integer. base specifies the base if x is a string.

long(x [,base]) -Converts x to a long integer. base specifies the base if x is a string.

209

float(x) -Converts x to a floating-point number.

complex(real [,imag]) -Creates a complex number.

str(x) -Converts object x to a string representation.

repr(x) -Converts object x to an expression string.

eval(str)-Evaluates a string and returns an object.

tuple(s)-Converts s to a tuple.

list(s)-Converts s to a list.

set(s)-Converts s to a set.

dict(d)-Creates a dictionary. d must be a sequence of (key,value) tuples.

frozenset(s)-Converts s to a frozen set.

chr(x)-Converts an integer to a character.

unichr(x)-Converts an integer to a Unicode character.

ord(x)-Converts a single character to its integer value.

hex(x)-Converts an integer to a hexadecimal string.

oct(x)-Converts an integer to an octal string.

Arithmetic Operators

Arithmetic operators are used to perform mathematical operations on numerical values. List is

given below table

Operator Name Example

+ Addition 10 + 20 = 30

- Subtraction 20 – 10 = 10

* Multiplication 10 * 20 = 200

/ Division 20 / 10 = 2

% Modulus 22 % 10 = 2

210

** Exponent 4**2 = 16

// Floor Division 9//2 = 4

Comparison/relational Operators

Python comparison operators compare the values on either sides of them and decide the relation

among them.

Operator Name Example

== Equal 4 == 5 is not true.

!= Not Equal 4 != 5 is true.

> Greater Than 4 > 5 is not true.

< Less Than 4 < 5 is true.

>= Greater than or Equal to 4 >= 5 is not true.

<= Less than or Equal to 4 <= 5 is true.

Assignment Operators

Python assignment operators are used to assign values to variables. These operators include simple

and complex with arithmetic operator.

Operator Name Example

= Assignment Operator a = 10

+= Addition Assignment a += 5 (Same as a = a + 5)

-= Subtraction Assignment a -= 5 (Same as a = a - 5)

*= Multiplication Assignment a *= 5 (Same as a = a * 5)

/= Division Assignment a /= 5 (Same as a = a / 5)

%= Remainder Assignment a %= 5 (Same as a = a % 5)

**= Exponent Assignment a **= 2 (Same as a = a ** 2)

//= Floor Division Assignment a //= 3 (Same as a = a // 3)

Bitwise Operators

211

Bitwise operator works on bits and performs bit by bit operation. Assume if a = 60; and b = 13;

Now in the binary format their values will be 0011 1100 and 0000 1101 respectively.

Operator Name Example

& Binary AND Sets each bit to 1 if both bits are 1

 a&b = 12 (0000 1100

| Binary OR Sets each bit to 1 if one of two bits is 1

a|b = 61 (0011 1101)

^ Binary XOR Sets each bit to 1 if only one of two bits is 1

 a^b = 49 (0011 0001)

~ Binary Ones Complement Inverts all the bits

~a = -61 (1100 0011)

<< Binary Left Shift Shift left by pushing zeros in from the right and let

the leftmost bits fall off

a << 2 = 240 (1111 0000)

>> Binary Right Shift Shift right by pushing copies of the leftmost bit in

from the left, and let the rightmost bits fall off

a>>2 = 15 (0000 1111)

Logical Operators

There are following logical operators supported by Python language. Assume variable a holds 10

and variable b holds 20 then

Operator Description Example

and Logical AND If both the operands are true then condition

becomes true.

(a and b) is true.

or Logical OR If any of the two operands are non-zero then

condition becomes true.

(a or b) is true.

not Logical NOT Used to reverse the logical state of its

operand.

Not(a and b) is false.

Membership Operators

Membership operators test for membership in a sequence, such as strings, lists, or tuples. There

are two membership operators as explained below −

Operator Description Example

212

in Evaluates to true if it finds a variable in the

specified sequence and false otherwise.

x in y, here in results in a 1 if

x is a member of sequence y.

not in Evaluates to true if it does not finds a variable

in the specified sequence and false otherwise.

x not in y, here not in results

in a 1 if x is not a member of

sequence y.

Identity Operators

Identity operators compare the memory locations of two objects.

Operator Description Example

is Evaluates to true if the variables on either side of

the operator point to the same object and false

otherwise.

x is y, here is results in 1 if

id(x) equals id(y).

is not Evaluates to false if the variables on either side of

the operator point to the same object and true

otherwise.

x is not y, here is

not results in 1 if id(x) is

not equal to id(y).

Decision making

Usual codes are executed sequentially, the first statement in a function is executed first, followed

by the second, and so on. Decision making is to change path on conditions while execution of the

program and specifying action/path taken according to the conditions result(TRUE/FALSE).

Sr.No. Statement & Description

1 if statements

An if statement consists of a boolean expression followed by one or more

statements.

2 if...else statements

213

https://www.tutorialspoint.com/python/python_if_statement.htm
https://www.tutorialspoint.com/python/python_if_else.htm

An if statement can be followed by an optional else statement, which executes

when the boolean expression is FALSE.

3 nested if statements

Again if or else can use in if statement inside another if or else if statement(s).

var = 100

if (var == 100) : print "Value of expression is 100"

print "Good bye!"

amount = 2000

if (amount <10000) : print "Interest rate is 10%"

else:

print "Interest rate is 20 %"

Loops

Generally statements are executed sequentially. There may be a situation when you need to

execute a block of code several number of times or based termination condition. A loop statement

allows us to execute a statement or group of statements multiple times.

Python programming language provides following types of loops to handle looping requirements.

Sr.No. Loop Type & Description

1 while loop

Repeats a statement or group of statements while a given condition is TRUE. It tests

the condition before executing the loop body.

2 for loop

Executes a sequence of statements multiple times and abbreviates the code that

manages the loop variable.

214

https://www.tutorialspoint.com/python/nested_if_statements_in_python.htm
https://www.tutorialspoint.com/python/python_while_loop.htm
https://www.tutorialspoint.com/python/python_for_loop.htm

3 nested loops

You can use one or more loop inside any another while, for or do..while loop.

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a

scope, all automatic objects that were created in that scope are destroyed.

Python supports the following control statements. Click the following links to check their detail.

Let us go through the loop control statements briefly

Sr.No. Control Statement & Description

1 break statement :Terminates the loop statement and transfers execution to the

statement immediately following the loop.

2 continue statement :Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

i = 1

while i < 6:

 print(i)

 if i == 3:

 break

 i += 1

Functions

A function is a block of organized, reusable code that is used to perform a single, related action.

Functions provide better modularity and a high degree of code reusing. You can define functions

to provide the required functionality with following simple rules.

• Function blocks begin with the keyword def followed by the function name and parentheses

() and then a colon (:)

• Input parameters should be placed within these parentheses. parameters can be defined

inside the parentheses.

• First statement of a function can be an optional statement - the documentation string of the

function or docstring.

• The statement return [expression] exits a function, optionally passing back an expression

to the caller. A return statement with no arguments is the same as return None.

def printme(str):

 "This prints a passed string into this function"

 print str

 return

215

https://www.tutorialspoint.com/python/python_nested_loops.htm
https://www.tutorialspoint.com/python/python_break_statement.htm
https://www.tutorialspoint.com/python/python_continue_statement.htm

Calling a Function

Defining a function only gives it a name, specifies the parameters that are to be included in the

function and structures the blocks of code.

printme("I'm first call to user defined function!")

printme("Again second call to the same function")

Required arguments

Required arguments are the arguments passed to a function in correct positional order. Here, the

number of arguments in the function call should match exactly with the function definition.

#!/usr/bin/python

Function definition is here

def printme(str1, str2):

 "This prints a passed string into this function"

 print str1

 print str2

 return “Success”;

Now you can call printme function

printme(“Hi”, “Good Morning”)

Keyword arguments

Keyword arguments are related to the function calls. When you use keyword arguments in a

function call, the caller identifies the arguments by the parameter name. This allows you to skip

arguments (if default is assigned) or place them out of order because the Python interpreter is able

to use the keywords provided to match the values with parameters

#!/usr/bin/python

Function definition is here

def printme(str1, str2):

 "This prints a passed string into this function"

 print str

 return;

Now you can call printme function

printme(str2 = "Good Morning", str1=”Hi!!”)

Default arguments

A default argument is an argument that assumes a default value if a value is not provided in the

function call for that argument. The following example gives an idea on default arguments, it prints

default age if it is not passed −

#!/usr/bin/python

Function definition is here

def printinfo(name, age = 35):

 "This prints a passed info into this function"

216

 print "Name: ", name

 print "Age ", age

 return;

Now you can call printinfo function

printinfo(age=50, name="miki")

printinfo(name="miki")

The Anonymous Functions

These functions are called anonymous because they are not declared in the standard manner by

using the def keyword. You can use the lambda keyword to create small anonymous functions.

• Lambda form is one-line statement and can take any number of arguments but return just one.

• An anonymous function cannot be a direct call to print because lambda requires an expression

• Can be own local namespace and cannot access variables other than those in their parameter list.

lambda [arg1 [,arg2,.....argn]]:expression

Modules

A module is a Python object with arbitrarily named attributes and logically organize python

code/functions. Grouping related code into a module makes the code easier to understand and use.

A module is a file consisting of Python code. A module can define functions, classes and variables.

The Python code for a module named aname normally resides in a file named aname.py. Here's an

example of a simple module, support.py

def print_func(par):

 print "Hello : ", par

 return

The import Statement

You can use any Python source file as a module by executing an import statement in some other

Python source file as below.

import module1[, module2[,... moduleN]

It imports the module if the module is present in the search path. A search path is a list of directories

that the interpreter searches before importing a module. Example, to import the module support.py,

need to put the following command at top of the script

#!/usr/bin/python

Import module support

import support

Now you can call defined function that module as follows

support.print_func("Zara")

A module is loaded only once, regardless of the number of times it is imported.

The from...import Statement

217

Python's from statement lets you import specific attributes from a module into the current

namespace. The from...import has the following syntax −

from modname import name1[, name2[, ... nameN]]

Import the function fibonacci from the module fib, use the following statement

from fib import fibonacci

This statement does not import the entire module fib into the current namespace; it just introduces

the item fibonacci from the module fib into the global symbol table of the importing module.

The from...import * Statement

It is also possible to import all names from a module into the current namespace.

from modname import *

Locating Modules

When you import a module, the Python interpreter searches for the module in the following

sequences.

• The current directory.

• If the module isn't found, Python then searches each directory in the shell variable

PYTHONPATH.

• If all else fails, Python checks the default path. On UNIX, this default path is normally

/usr/local/lib/python/.

The module search path is stored in the system module sys as the sys.path variable. The sys.path

variable contains the current directory, PYTHONPATH, and the installation-dependent default.

The PYTHONPATH Variable

The PYTHONPATH is an environment variable, consisting of a list of directories. The syntax of

PYTHONPATH is the same as that of the shell variable PATH.

Here is a typical PYTHONPATH from a Windows system −

set PYTHONPATH = c:\python20\lib;

And here is a typical PYTHONPATH from a UNIX system −

set PYTHONPATH = /usr/local/lib/python

#!/usr/bin/python

Money = 2000

def AddMoney():

 # Uncomment the following line to fix the code:

 # global Money

 Money = Money + 1

print Money

AddMoney()

print Money

218

The reload() Function

When the module is imported into a script, the code in the top-level portion of a module is executed

only once. if you want to reexecute the top-level code in a module while module development

stage or modified, you can use the reload() function. The reload() function imports a previously

imported module again.

reload(module_name)

Files I/O

Printing to the Screen

The simplest way to produce output is using the print statement where you can pass zero or more

expressions separated by commas. This function converts the expressions you pass into a string

and writes the result to standard output (screen)

#!/usr/bin/python

print "Python is really a great language,", "isn't it?"

Reading Keyboard Input

Python provides two built-in functions to read a line of text from standard input, which by default

comes from the keyboard.

• raw_input

• input

The raw_input Function

The raw_input([prompt]) function reads one line from standard input and returns it as a string

(removing the trailing newline).

#!/usr/bin/python

str = raw_input("Enter your input: ")

print "Received input is : ", str

Enter your input: Hello Python

Received input is : Hello Python

The input Function

The input([prompt]) function is equivalent to raw_input, except that it assumes the input is a valid

Python expression and returns the evaluated result.

#!/usr/bin/python

str = input("Enter your input: ")

print "Received input is : ", str

This would produce the following result against the entered input −

Enter your input: [x*5 for x in range(2,10,2)]

Recieved input is : [10, 20, 30, 40]

Opening and Closing Files

219

Until now, you have been reading and writing to the standard input and output. Now, we will see

how to use actual data files.

The open Function

Before you can read or write a file, you have to open it using Python's built-in open() function.

This function creates a file object, which would be utilized to call other support methods associated

with it.

file object = open(file_name [, access_mode][, buffering])

Here are parameter details −

• file_name − The file_name argument is a string that contains the name of the file that you

want to access.

• access_mode − The access_mode determines the mode in which the file has to be opened,

i.e., read, write, append, etc and details as below.

• buffering − If the buffering value is set to 0, no buffering takes place. If the buffering value

is 1, line buffering is performed while accessing a file. If you specify the buffering value as

an integer greater than 1, then buffering action is performed with the indicated buffer size.

If negative, the buffer size is the system default(default behavior).

Here is a list of the different modes of opening a file

Sr.No. Modes & Description

1 r

Opens a file for reading only. The file pointer is placed at the beginning of the file.

This is the default mode.

2 rb

Opens a file for reading only in binary format. The file pointer is placed at the

beginning of the file. This is the default mode.

3 r+

Opens a file for both reading and writing. The file pointer placed at the beginning

of the file.

4 rb+

Opens a file for both reading and writing in binary format. The file pointer placed

at the beginning of the file.

5 w

Opens a file for writing only. Overwrites the file if the file exists. If the file does

not exist, creates a new file for writing.

6 wb

Opens a file for writing only in binary format. Overwrites the file if the file exists.

If the file does not exist, creates a new file for writing.

220

7 w+

Opens a file for both writing and reading. Overwrites the existing file if the file

exists. If the file does not exist, creates a new file for reading and writing.

8 wb+

Opens a file for both writing and reading in binary format. Overwrites the existing

file if the file exists. If the file does not exist, creates a new file for reading and

writing.

9 a

Opens a file for appending. The file pointer is at the end of the file if the file exists.

That is, the file is in the append mode. If the file does not exist, it creates a new file

for writing.

10 ab

Opens a file for appending in binary format. The file pointer is at the end of the file

if the file exists. That is, the file is in the append mode. If the file does not exist, it

creates a new file for writing.

11 a+

Opens a file for both appending and reading. The file pointer is at the end of the

file if the file exists. The file opens in the append mode. If the file does not exist, it

creates a new file for reading and writing.

12 ab+

Opens a file for both appending and reading in binary format. The file pointer is at

the end of the file if the file exists. The file opens in the append mode. If the file

does not exist, it creates a new file for reading and writing.

The file Object Attributes

Once a file is opened and you have one file object, you can get various information related to that

file.

Here is a list of all attributes related to file object −

Sr.No. Attribute & Description

1 file.closed

Returns true if file is closed, false otherwise.

2 file.mode

Returns access mode with which file was opened.

3 file.name

Returns name of the file.

221

4 file.softspace

Returns false if space explicitly required with print, true otherwise.

#!/usr/bin/python

Open a file

fo = open("foo.txt", "wb")

print "Name of the file: ", fo.name

print "Closed or not : ", fo.closed

print "Opening mode : ", fo.mode

print "Softspace flag : ", fo.softspace

This produces the following result −

Name of the file: foo.txt

Closed or not : False

Opening mode : wb

Softspace flag : 0

The close() Method

The close() method of a file object closes the file object, after which no more access for read or

write. Python automatically closes a file when the reference object of a file is reassigned to another

file. It is a good practice to use the close() method to close a file.

fileObject.close()

#!/usr/bin/python

Open a file

fo = open("foo.txt", "wb")

print "Name of the file: ", fo.name

Close opend file

fo.close()

Name of the file: foo.txt

The write() Method

The write() method writes any string to the opened file. The write() method does not add a newline

character ('\n') to the end of the string

fileObject.write(string)

Here, passed parameter is the content to be written into the opened file.

#!/usr/bin/python

Open a file

fo = open("foo.txt", "wb")

fo.write("Python is a great language.\nYeah its great!!\n")

Close opend file

fo.close()

The read() Method

222

The read() method reads a string from an open file. It is important to note that Python strings can

have binary data. apart from text data.

fileObject.read([count])

Here, passed parameter is the number of bytes to be read from the opened file. This method starts

reading from the beginning of the file and if count is missing, then it tries to read as much as

possible, maybe until the end of file.

#!/usr/bin/python

Open a file

fo = open("foo.txt", "r+")

str = fo.read(10);

print "Read String is : ", str

Close opend file

fo.close()

File Positions

The tell() method tells you the current position within the file; in other words, the next read or

write will occur at that many bytes from the beginning of the file.

The seek(offset[, from]) method changes the current file position. The offset argument indicates

the number of bytes to be moved. The from argument specifies the reference position from where

the bytes are to be moved.

If from is set to 0, it means use the beginning of the file as the reference position and 1 means use

the current position as the reference position and if it is set to 2 then the end of the file would be

taken as the reference position.

#!/usr/bin/python

Open a file

fo = open("foo.txt", "r+")

str = fo.read(10)

print "Read String is : ", str

Check current position

position = fo.tell()

print "Current file position : ", position

Reposition pointer at the beginning once again

position = fo.seek(0, 0);

str = fo.read(10)

print "Again read String is : ", str

Close opend file

fo.close()

Read String is : Python is

Current file position : 10

Again read String is : Python is

223

Renaming and Deleting Files

Python os module provides methods that help you perform file-processing operations, such as

renaming and deleting files.

To use this module you need to import os module first and then you can call any related functions.

The rename() Method

The rename() method takes two arguments, the current filename and the new filename.

os.rename(current_file_name, new_file_name)

#!/usr/bin/python

import os

Rename a file from test1.txt to test2.txt

os.rename("test1.txt", "test2.txt")

You can use the remove() method to delete files by supplying the name of the file to be deleted as

the argument.

os.remove(file_name)

#!/usr/bin/python

import os

Delete file test2.txt

os.remove("text2.txt")

Directories in Python

All files are contained within various directories, and Python has handling these too.

The os module has several methods that help you create, remove, and change directories.

The mkdir() Method

You can use the mkdir() method of the os module to create directories in the current directory. You

need to supply an argument to this method which contains the name of the directory to be created.

os.mkdir("newdir")

#!/usr/bin/python

import os

Create a directory "test"

os.mkdir("test")

The chdir() Method

You can use the chdir() method to change the current directory. The chdir() method takes an

argument, which is the name of the directory that you want to make the current directory.

os.chdir("newdir")

#!/usr/bin/python

import os

Changing a directory to "/home/newdir"

224

os.chdir("/home/newdir")

The getcwd() Method

The getcwd() method displays the current working directory.

os.getcwd()

#!/usr/bin/python

import os

This would give location of the current directory

os.getcwd()

The rmdir() Method

The rmdir() method deletes the directory, which is passed as an argument in the method.

os.rmdir('dirname')

#!/usr/bin/python

import os

This would remove "/tmp/test" directory.

os.rmdir("/tmp/test")

Virtual environments

A virtual environment is a provision to keep dependencies required by different projects. For a

scenario, working on two python projects one of them uses Tensorflow 4.0 and another uses

Tensorflow 4.1. In this scenario tow environment may be created. When used from within a virtual

environment, common installation tools such as pip will install Python packages into a virtual

environment

Creating virtual environments

python3 -m venv /path/to/new/virtual/environment

usage: venv [-h] [--system-site-packages] [--symlinks | --copies] [--clear]

 [--upgrade] [--without-pip] [--prompt PROMPT] [--upgrade-deps]

 ENV_DIR [ENV_DIR ...]

Creates virtual Python environments in one or more target directories.

positional arguments:

 ENV_DIR A directory to create the environment in.

optional arguments:

 -h, --help show this help message and exit

 --system-site-packages

 Give the virtual environment access to the system

 site-packages dir.

 --symlinks Try to use symlinks rather than copies, when symlinks

 are not the default for the platform.

 --copies Try to use copies rather than symlinks, even when

 symlinks are the default for the platform.

 --clear Delete the contents of the environment directory if it

225

https://pypi.org/project/pip/

 already exists, before environment creation.

 --upgrade Upgrade the environment directory to use this version

 of Python, assuming Python has been upgraded in-place.

 --without-pip Skips installing or upgrading pip in the virtual

 environment (pip is bootstrapped by default)

 --prompt PROMPT Provides an alternative prompt prefix for this

 environment.

 --upgrade-deps Upgrade core dependencies: pip setuptools to the

 latest version in PyPI

Once an environment has been created, you may wish to activate it, e.g. by

sourcing an activate script in its bin directory.

source env/bin/activate

python3 -m pip install requests

deactivate

Using requirements files

Instead of installing packages individually, pip allows you to declare all dependencies in

a Requirements File. Example you could create a plain text file “requirements.txt” with following

requests==2.18.4

google-auth==1.1.0

python3 -m pip install -r requirements.txt

Some of python based Bioinformatics tools are given below:

Tool Description

vcfR Variant call format (VCF) files document the genetic variation observed

after DNA sequencing, alignment and variant calling of a sample cohort.

Given the complexity of the VCF format as well as the diverse variant

annotations and genotype metadata, there is a need for fast, flexible

methods enabling intuitive analysis of the variant data within VCF and

BCF files.

circexplorer2 it is a comprehensive and integrative circular RNA analysis toolset.

VCF-KIt VCF-kit is a command-line based collection of utilities for performing

analysis on Variant Call Format (VCF) files.

DMRfinder it is written in Python and R, DMRfinder efficiently identifies genomic

regions with differentially methylated CpG sites from high-throughput

MethylC-seq datasets

Trim Galore is a wrapper script to automate quality and adapter trimming as well as

quality control, with some added functionality to remove biased

methylation positions for RRBS sequence files

226

https://pip.pypa.io/en/latest/user_guide/#requirements-files

mltest A fast, robust and easy-to-use calculation of multiclass classification

evaluation metrics based on confusion matrix.

SqueezeMeta SqueezeMeta is a full automatic pipeline for

metagenomics/metatranscriptomics, covering all steps of the analysis.

checkM CheckM provides a set of tools for assessing the quality of genomes

recovered from isolates, single cells, or metagenomes.

Primer3 Primer3-py is a Python-abstracted API for the popular Primer3 library.

The intention is to provide a simple and reliable interface for automated

oligo analysis and design.

VCF-kit VCF-kit is a command-line based collection of utilities for performing

analysis on Variant Call Format (VCF) files.

gmx-MMPBSA gmx_MMPBSA is a new tool based on AMBER's MMPBSA.py aiming

to perform end-state free energy calculations with GROMACS files

MODELLER MODELLER is used for homology or comparative modeling of protein

three-dimensional structures

References

• Peter J. A. Cock, Tiago Antao, Jeffrey T. Chang, Brad A. Chapman, Cymon J. Cox, Andrew

Dalke, Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek Wilczynski, Michiel J. L. de

Hoon. Biopython: freely available Python tools for computational molecular biology and

bioinformatics, Bioinformatics, Volume 25, Issue 11, June 2009, Pages 1422–

1423, https://doi.org/10.1093/bioinformatics/btp163

• Brad Chapman and Jeff Chang. Biopython: Python tools for computational biology. ACM

SIGBIO Newsletter 20 (2): 15–19 (August 2000).

• https://docs.python.org/3/tutorial/

• https://en.wikipedia.org/wiki/Python_(programming_language)

• http://biopython.org/DIST/docs/tutorial/Tutorial.html

227

https://doi.org/10.1093/bioinformatics/btp163
https://en.wikipedia.org/wiki/Python_(programming_language)
http://biopython.org/DIST/docs/tutorial/Tutorial.html

Role of Machine Learning Techniques in Bioinformatics

Sanjeev Kumar

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Introduction

The main goal of learning theory is to provide a framework for studying the problem of

inference that is of gaining knowledge, making predictions, making decisions or

constructing models from a set of data. A theory of inference gives a formal definition

of words like learning, generalization, over fitting, and also to characterize the

performance of learning algorithms so that, ultimately, it may help design better

learning algorithms. There are thus two goals: make things more precise and derive new

or improved algorithms.

Learning

What is under study here is the process of inductive inference which can roughly be

summarized as the following steps:

 Observe a phenomenon

 Construct a model of that phenomenon

 Make predictions using this model

Though, this definition is very general and could be taken more or less as the goal of

Natural Sciences. The goal of Machine Learning is to actually automate this process

and the goal of Learning Theory is to formalize it. Given some training data, it is always

possible to build a function that fits exactly the data. But, in the presence of noise, this

may not be the best thing to do as it would lead to a poor performance on unseen

instances; this is usually referred to as over fitting. The general idea behind the design

of learning algorithms is thus to look for regularities in the observed phenomenon i.e.

training data. These can then be generalized from the observed past to the future.

Typically, one would look, in a collection of possible models, for one which fits well

the data. This immediately raises the question of how to measure and quantify

simplicity of a model.

It turns out that there are many ways to do so, but no best one. In classical statistics, the

number of free parameters of a model is usually a measure of its complexity.

Surprisingly as it may seem, there is no universal way of measuring simplicity or its

counterpart complexity and the choice of a specific measure inherently depends on the

problem at hand. It is actually in this choice that the designer of the learning algorithm

introduces knowledge about the specific phenomenon under study.

This lack of universally best choice can actually be formalized in what is called the No

Free Lunch theorem, which in essence says that, if there is no assumption on how the

past i.e. training data is related to the future i.e. test data, prediction is impossible. Even

more, if there is no a priori restriction on the possible phenomena that are expected, it

is impossible to generalize and there is thus no better algorithm. Hence there is a need

to make assumptions.

228

Assumptions

At the core of the theory is a probabilistic model of the phenomenon or data generation

process. Within this model, the relationship between past and future observations is that

they both are sampled independently from the identical distribution (i.i.d.). The

independence assumption means that each new observation yields maximum

information. The identical distribution means that the observations give information

about the underlying phenomenon i.e. a probability distribution. An immediate

consequence of this very general setting is that one can construct algorithms that are

consistent, which means that, as one gets more and more data, the predictions of the

algorithm are closer and closer to the optimal ones. So this seems to indicate that we

can have some sort of universal algorithm. Unfortunately, any (consistent) algorithm

can have an arbitrarily bad behavior when given a finite training set. Again, these

assumptions indicate that generalization can only come when one adds specific

knowledge to the data. Each learning algorithm encodes specific, and works best when

this assumption is satisfied by the problem to which it is applied.

Formulation of the Learning Problem

Let us consider a model of the learning and analysis of this model can be conducted in

the general statistical framework of minimizing expected loss using observed data. The

practical problems such as pattern recognition, regression estimation, and density

estimation are particular case of this general model.

Function Estimation Model

The model of learning from examples can be described using three components:

 A generator of random vectors x, drawn independently from a fixed but unknown

distribution P(x) ;

 A supervisor that returns an output vector y for every input vector x, according to

a conditional distribution function P(y/x) , also fixed but unknown;

 A learning machine capable of implementing a set of functions .),,(xf

The problem of learning is that of choosing from the given set of functions

),,(xf , the one which predicts the supervisor’s response in the best possible

way. The selection is based on a training set of l random independent identically

distributed (i.i.d.) observations drawn according to P(x,y)=P(x)P(y/x).

(x1,y1, …, xl,yl) (1)

Problem of Risk Minimization

In order to choose the best available approximation to the supervisor’s response, one

measures the loss or discrepancy)),(,(xfyL between the response y of the supervisor

to a given input x and the response),(xf provided by the learning machine. Consider

the expected value of the loss, given by the risk functional

),()),(,()(yxdPxfylR (2)

The goal is to find the function),(0xf which minimizes the risk functional)(R

(over the class of functions),,(xf in the situation where the joint probability

distribution P(x,y) is unknown and the only available information is contained in the

training set (1).

229

Three Main Learning Problems

This formulation of the learning problem is rather general. It encompasses many

specific problems; the important ones are the problems of pattern recognition,

regression estimation, and density estimation.

a) The Problem of Pattern Recognition:

Let the supervisor’s output y take on only two values y={0,1} and let),,(xf ,

be a set of indicator functions (functions which take on only two values zero and one).

Consider the following loss-function:

),(1

),(0
)),(,(

xfyif

xfyif
xfyL (3)

For this loss function, the functional (2) provides the probability of classification error.

The problem, therefore, is to find the function which minimizes the probability of

classification errors when probability measure P(x,y) is unknown, but the data (1) are

given.

b) The Problem of Regression Estimation:

 Let the supervisor’s answer y be a real value, and let),,(xf , be a set of real

functions which contains the regression function

)/(),(xyydPxf

It is known that if 2),(Lxf then the regression function is the one which minimizes

the functional (2) with the the following loss-function:

 2)),(()),(,(axfyxfyL (4)

Thus the problem of regression estimation is the problem of minimizing the risk

functional (2) with the loss function (4) in the situation where the probability measure

P(x,y) is unknown but the data (1) are given.

c) The Problem of Density Estimation

Finally, the problem of density estimation from the set of densities aaxp),,(. For

this problem we consider the following loss-function:

),(log)),((axpaxpL (5)

It is known that desired density minimizes the risk functional (2) with the loss-function

(5). Thus, again, to estimate the density from the data one has to minimize the risk-

functional under the condition where the corresponding probability measure P(x) is

unknown but i.i.d. data x1, … , xn are given.

The General Setting of the Learning Problem

230

The general setting of the learning problem can be described as follows. Let the

probability measure P(z) be defined on the space Z. Consider the set of functions

aazQ),,(. The goal is to minimize the risk functional

 azdPazQaR),(),()((6)

if probability measure P(z) is unknown but an i.i.d. sample

 z1,… , zl (7)

is given. The learning problems considered above are particular cases of this general

problem of minimizing the risk functional (6) on the basis of empirical data (7), where

z describes a pair (x,y) and Q(z,a) is the specific loss function. [for example, one of (3),

(4), or (5)].

Empirical Risk Minimization Induction Principle

In order to minimize the risk functional (6), for an unknown probability P(z) measure

the following induction principle is usually used. The expected risk functional R(a) is

replaced by the empirical risk functional

l

i

emp azQ
l

aR
1

),(
1

)((8)

constructed on the basis of the training set (7). The principle is to approximate the

function Q(z,a0) which minimizes risk (6) by the function Q(z,al) which minimizes

empirical risk (8). This principle is called the empirical risk minimization induction

principle (ERM principle).

Empirical Risk Minimization Principle and the Classical Methods

The ERM principle is quite general. The classical methods for solving a specific

learning problem, such as the least squares method in the problem of regression

estimation or the maximum likelihood method in the problem of density estimation are

realizations of the ERM principle for the specific loss functions considered above. In

order to specify the regression problem one introduces an n+1 dimensional variable z =

(x,y) = (x1, …, xn,y)and uses loss function (4). Using this loss function in the functional

(8) yields the functional

l

i

iemp azfy
l

aR
1

2)),((
1

)((9)

which one needs to minimize in order to find the regression estimate (i.e., the least

square method). In order to estimate a density function from a given set of functions

p(x,a) one uses the loss function (5). Putting this loss function into (8) one obtains the

maximum likelihood method: the functional

l

i

iemp axp
l

aR
1

),(ln
1

)(which one needs

to minimize in order to find the approximation to the density. Since the ERM principle

is a general formulation of these classical estimation problems, any theory concerning

the ERM principle applies to the classical methods as well.

Structural Risk Minimization Induction Principle

The ERM principle is intended for dealing with a large sample size. Indeed, the ERM

principle can be justified by considering the inequalities.

Theorem: With probability at least 1 , the inequality

231

B

aRB
aRaR

emp

emp

)(4
11

2
)()((10)

holds true simultaneously for all functions of the set aBazQ ,),(0 ,

When l/h is large, the second summand on the right hand side of inequality (10)

becomes small. The actual risk is then close to the value of the empirical risk. In this

case, a small value of the empirical risk provides a small value of (expected) risk.

However, if is small, then even a small Remp(al) does not guarantee a small value of risk.

In this case the minimization for R(a) requires a new principle, based on the

simultaneous minimization of two terms in (10) one of which depends on the value of

the empirical risk while the second depends on the VC-dimension of the set of

functions. To minimize risk in this case it is necessary to find a method which, along

with minimizing the value of empirical risk, controls the VC-dimension of the learning

machine. The following principle, which is called the principle of structural risk

minimization (SRM), is intended to minimize the risk functional with respect to both

empirical risk and VC-dimension of the set of functions.

Machine Learning

Learning denotes changes in a system that enable a system to do the same task more

efficiently the next time or Learning is constructing or modifying representations of

what is being experienced. Machine learning is a scientific discipline concerned with

the design and development of algorithms that allow computers to evolve behaviors

based on empirical data, such as from sensor data or databases. A learner can take

advantage of examples (data) to capture characteristics of interest of their unknown

underlying probability distribution. Data can be seen as examples that illustrate

relations between observed variables. Discover new things or structure that is unknown

to humans eg. data mining. A major focus of machine learning research is to

automatically learn to recognize complex patterns and make intelligent decisions based

on data.

Types of Machine Learning

Broadly, machine learning is classified into two categories i.e. supervised and

unsupervised learning. Supervised learning generates a function that maps inputs to

desired outputs based on labelled training data, where the desired output for each object

is known. Approaches of supervised learning are classification and prediction. The

prevalent techniques of supervised learning are Naïve Bayes classifier, Logistic

Regression, Linear Discriminant Analysis, K-Nearest-Neighbour classifiers, Artificial

Neural Networks, Support vector machine etc.

Unsupervised learning discovers underlying patterns in the data based on unlabelled

training data. In other words if data has to be processed by machine learning methods,

where the desired output is not known, then the learning task is called unsupervised.

Approaches to unsupervised learning include clustering (e.g., k-means, hierarchical

clustering)

Selection of learning algorithms

Major issues which needs special consideration in section of supervised learning

algorithms

232

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Sensor
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Unsupervised_learning

a) Tradeoff between bias and variance: The prediction error is sum of bias and

variance of the learning algorithms. Generally it is desirable that a learning algorithm

with low bias should be flexible such that it can fit the data set but it should not be that

flexible that it fit differently to each training data set due to its high variance. Therefore,

it is necessary to adjust this tradeoff between bias and variance.

b) Availability of dataset and complexity of function: In case, simple true function,

learning algorithm with high bias and low variance will results reliable inferred function

with the help of small amount of dataset. But in case of highly complex true function

resulting from interactions within different components needs large amount of training

dataset to build learning algorithm with low bias and high variance. Therefore, it is

desirable for good learning algorithms to automatically adjust the bias/variance tradeoff

based on the amount of data available and the apparent complexity of the function to be

learned.

c) Dimensions of input dataset: Large dimension of the dataset may create confusion

and it may become difficult learning problem even if the true function depends on only

small number of features. This will results in large variance. Hence, high input

dimensionality typically requires tuning the classifier to have low variance and high

bias. It is always desirable to apply feature selection procedures or dimensionality

reduction techniques to get desirable output.

d) Noisy output values: In case output values are incorrect beyond a limit due to

response errors then the learning algorithm is expected to lead to undesirable inferred

function. This is case where it is usually best to employ a high bias, low variance

classifier.

The selection of learning algorithms also depends on number of other factors such as

(i) heterogeneity of the data, (ii) redundancy of data and (iii) linear and non-linear

relationships among the factors etc.

Data Mining

The field of data mining and knowledge discovery is emerging as a new, fundamental

research area with important applications to science, engineering, medicine, business,

and education. Data mining attempts to formulate analyze and implement basic

induction processes that facilitate the extraction of meaningful information and

knowledge from unstructured data. Data mining extracts patterns, changes, associations

and anomalies from large data sets. Work in data mining ranges from theoretical work

on the principles of learning and mathematical representations of data to building

advanced engineering systems that perform information filtering on the web, find genes

in DNA sequences, help understand trends and anomalies in economics and education,

and detect network intrusion. Data mining is also a promising computational paradigm

that enhances traditional approaches to discovery and increases the opportunities for

breakthroughs in the understanding of complex physical and biological systems.

Researchers from many intellectual communities have much to contribute to this field.

These include the communities of machine learning, statistics, databases, visualization

and graphics, optimization, computational mathematics, and the theory of algorithms.

The Process of Data Mining

The data mining process is often characterized as a multi-stage iterative process

involving data selection, data cleaning, and application of data mining algorithms,

evaluation, and so forth. Here it is taken as process-oriented and break down into

different steps:

233

a) Exploring and Preprocessing: the initial steps of exploring, visualizing, and

querying the data, to gain insight into the data in an interactive manner. Preprocessing

steps such as variable selection, data focusing, and data validation can also be included

in these initial steps.

b) Modeling: the steps involved in (a) selecting the model representations that we seek

to fit to the data (e.g., a tree, a linear function, a probability density model, etc.), (b)

selecting the score functions that score different models with respect to the data, and (c)

specifying the computational methods and algorithms to optimize the score function

(e.g., greedy local search). These \components" combined together specify the data

mining algorithm to be used. The components may be \precompiled" into a specific

algorithm (e.g., CART or C4.5 decision tree implementations) or may be integrated in

a \customized" manner for a specific application (much more common in the sciences).

c) Mining: the step (often repeated) of actually running a particular data mining

algorithm on a particular data set.

d) Evaluating: the step (often ignored) of critically evaluating the quality of the output

of the data mining algorithm from step 3, both the predictions of the model and the

interpretation of the fitted model itself.

e) Deploying: the step (rarely achieved) of putting a model from a data mining

algorithm into routine predictive use, e.g., using the model continuously in real-time

for scoring customers visiting an ecommerce Web site. A challenging (and under-

appreciated) technical issue in this context is how and when models should be updated

for such continuous data stream" applications.

Recent Research Achievements

The opportunities today in data mining rest solidly on a variety of research

achievements, which were interdisciplinary in nature, resting on discoveries made by

researchers from different disciplines working together collaboratively.

Neural Networks: Neural networks are systems inspired by the human brain. A basic

example is provided by a back propagation network which consists of input nodes,

output nodes, and intermediate nodes called hidden nodes. Initially, the nodes are

connected with random weights. During the training, a gradient descent algorithm is

used to adjust the weights so that the output nodes correctly classify data presented to

the input nodes. The algorithm was invented independently by several groups of

researchers.

Data Pre processing

Raw Data

Target data

Preprocessed

 Data
Transformed

 Data Pattern
Knowledge

234

Tree-based Classifiers: A tree is a convenient way to break large data sets into smaller

ones. By presenting a learning set to the root and asking questions at each interior node,

the data at the leaves can often be analyzed very simply. For example, a classifier to

predict the likelihood that a credit card transaction is fraudulent may use an interior

node to divide a training data set into two sets, depending upon whether or not five or

fewer transactions were processed during the previous hour. After a series of such

questions, each leaf can be labeled fraud/no-fraud by using a simple majority vote. Tree

based classifiers were independently invented in information theory, statistics, pattern

recognition and machine learning.

Graphical Models and Hierarchical Probabilistic Representations: A directed graph is a

good means of organizing information about qualitative knowledge about conditional

independence and causality gleamed from domain experts. Graphical models generalize

Markov models and hidden Markov models, which have proved themselves to be a

powerful modeling tool. Graphical models were independently invented by

computational probabilists and artificial intelligence researchers studying uncertainty.

Ensemble Learning: Rather than use data mining to build a single predictive model, it

is often better to build a collection or ensemble of models and to combine them, say

with a simple, efficient voting strategy. This simple idea has now been applied in a wide

variety of contexts and applications. In some circumstances, this technique is known to

reduce variance of the predictions and therefore to decrease the overall error of the

model.

Linear Algebra: Scaling data mining algorithms often depends critically upon scaling

underlying computations in linear algebra. Recent work in parallel algorithms for

solving linear system and algorithms for solving sparse linear systems in high

dimensions are important for a variety of data mining applications, ranging from text

mining to detecting network intrusions.

Large Scale Optimization: Some data mining algorithms can be expressed as large-

scale, often non-convex, optimization problems. Recent work has provided parallel and

distributed methods for large-scale continuous and discrete optimization problems,

including heuristic search methods for problems too large to be solved exactly.

High Performance Computing and Communication: Data mining requires statistically

intensive operations on large data sets. These types of computations would not be

practical without the emergence of powerful SMP workstations and high performance

clusters of workstations supporting protocols for high performance computing such as

MPI and MPIO. Distributed data mining can require moving large amounts of data

between geographically separated sites, something which is now possible with the

emergence of wide area high performance networks.

Databases, Data Warehouses, and Digital Libraries: The most time consuming part of

the data mining process is preparing data for data mining. This step can be stream-lined

in part if the data is already in a database, data warehouse, or digital library, although

mining data across different databases, for example, is still a challenge. Some

algorithms, such as association algorithms, are closely connected to databases, while

some of the primitive operations being built into tomorrow's data warehouses should

prove useful for some data mining applications.

Visualization of Massive Data Sets: Massive data sets, often generated by complex

simulation programs, required graphical visualization methods for best comprehension.

235

Recent advances in multi-scale visualization allow the rendering to be done far more

quickly and in parallel, making these visualization tasks practical.

Research Challenges

The amount of digital data has been exploding during past decade, while the number of

scientists, engineers, and analysts available to analyze the data has been static. To

bridge this gap requires the solution of fundamentally new research problems, which

can be grouped into the following broad areas

 Developing a unifying theory of data mining

 Scaling up for high dimensional data and high speed data streams

 Mining sequence data and time series data

 Mining complex knowledge from complex data

 Data mining in a network setting

 Distributed data mining and mining multi-agent data

 Data mining for biological and environmental problems

 Data Mining process-related problems

 Security, privacy and data integrity

 Dealing with non-static, unbalanced and cost-sensitive data

Machine Learning and data miming in Bioinformatics

Machine learning techniques are widely accepted as tool to perform tasks of molecular

biology. Many machine learning approaches which have been used to solve important

biological problems are briefly described below.

Gene prediction

The problem of gene prediction is to first determine which regions in DNA are gene

regions, and then to determine which parts of the gene regions are introns and exons.

The predicted gene region is sensitive to the type of the algorithm. This is the typical

problem of classifying DNA bases according to how they participate during

transcription. Machine Learning techniques based on SVM have been successfully used

in classifying DNA bases according to their role in transcription in nematode genome.

A highly accurate gene-prediction system for eukaryotic genomes, called mGene which

combines in an unprecedented manner the flexibility of generalized hidden Markov

models (gHMMs) with the predictive power of modern machine learning methods, such

as SVMs.

Splice site prediction

Splice sites are locations in DNA which separate protein-coding regions (exons) from

noncoding regions (introns). Accurate splice site detectors thus form important

components of computational gene predictors. Splice site prediction can be considered

as a classification problem with the classifier learnt from a labeled data set consisting

of only local information around the potential splice site. Classification algorithms such

as ANN, SVM have been used extensively.

236

Single nucleotide polymorphism (SNP)

SNP is nothing but DNA sequence variation occurring in a single nucleotide in inter or

intra genomic sequences. SNPs are important in crop and livestock breeding programs

because a single or multiple SNPs may cause simple or complex diseases respectively.

Recent discovery of SNP in genome-wide association (GWA) studies to revolutionize

not only the process of genetic variation and disease detection but also the convention

of preventative and curative medicine for future prospects. Genes are classified for a

particular disease condition based on SNPs data. Various machine learning based

classifiers such as logistic regression, naïve bayes classifier, SVM etc. have been used

for this purpose.

Protein secondary structure prediction

Protein structure prediction is of great interest to biologists because proteins are able to

perform their functions based on their specific three-dimensional structures. Protein

structure prediction is a difficult task because the number of possible protein structures

is extremely large, and the physical basis of protein structural stability is not fully

understood till now. Therefore, computational approaches have been developed to

reveal the protein structure from the protein sequence information. Machine learning

approaches such as neural networks and support vector machines have been used in

protein secondary structure prediction with remarkable success.

Systems biology and modelling

Systems biology approach allows researchers to move beyond a reductionist approach.

This integrates and comprehends the interactions of multiple components interacting

within the system. Understanding of the specific roles of various metabolites will give

rise to strategy for the metabolic engineering to improve productivity. Large numbers

of approaches have been proposed to model the behaviour of gene regulatory networks.

These approaches are based on various machine learning methods along with other

methods, such as graph theory, neural network, fuzzy logic, hidden markov model,

bayesian belief network, boolean network and nonlinear ordinary differential equations.

237

Analysis of Non-Coding Sequencing Data

Sarika Sahu

ICAR- Indian Agricultural Statistics Research Institute, New Delhi

Abstract

Non-coding RNA (ncRNA) has emerged as a pivotal player in the intricate regulatory networks

governing gene expression in agriculturally important crops. The diverse roles and regulatory

mechanisms of ncRNAs in crop plants, shedding light on their impact on key biological

processes. From microRNAs (miRNAs) modulating post-transcriptional gene silencing to long

non-coding RNAs (lncRNAs) orchestrating chromatin remodelling and endogenous target

mimicking (eTMs), these molecular entities act as fine-tuners of gene expression, influencing

plant growth, development, and stress responses. Understanding the regulatory roles of

ncRNAs presents a promising avenue for enhancing crop yield, quality, and resilience in the

face of changing environmental conditions. The potential applications of ncRNAs in crop

improvement strategies, including the development of RNA-based tools for targeted gene

regulation. As researchers uncover the intricate web of non-coding RNA interactions from the

transcriptome data, future directions in agricultural research are poised to harness this

knowledge for the sustainable advancement of crop productivity, addressing global food

security challenges in the 21st century.

Keywords: ncRNAs, miRNAs, lncRNAs, eTMs

Introduction

Non-coding RNAs (ncRNAs) are RNA molecules that do not code for proteins. They are

transcribed from DNA and can be categorized into two main types: long non-coding RNAs

(lncRNAs) and small non-coding RNAs (sncRNAs). While sncRNAs are shorter than 200

nucleotides, lncRNAs are usually longer than 200 nucleotides. Non-coding RNAs have been

found to play important roles in a variety of cellular processes, including gene expression, cell

differentiation, and development.

One of the well-studied classes of sncRNAs are microRNAs (miRNAs). miRNAs are single-

stranded RNA molecules that are about 21-25 nucleotides long. They play important roles in

post-transcriptional regulation of gene expression by targeting mRNAs for degradation or

translational repression. This means that miRNAs can control the amount of protein that is

produced from a particular gene. miRNAs have been implicated in a variety of biological

processes, including cell proliferation, differentiation, and apoptosis. Dysregulation of miRNA

expression has been linked to various diseases, such as cancer, neurological disorders, and

cardiovascular disease. Another type of sncRNA is the small interfering RNA (siRNA). Like

miRNAs, siRNAs are about 21-25 nucleotides long and are involved in gene regulation by

inducing degradation of specific mRNAs. However, siRNAs are usually exogenously

introduced into cells for therapeutic purposes or for use in research. They can be used to

specifically target and silence disease-causing genes or to study gene function in experimental

238

systems. Piwi-interacting RNAs (piRNAs) are a class of sncRNAs that interact with a family

of proteins known as Piwi proteins. piRNAs are typically longer than miRNAs or siRNAs and

are expressed primarily in the germ cells of animals. They play important roles in protecting

the genome from transposable elements (mobile genetic elements that can cause mutations) by

inducing their silencing or degradation. piRNAs have also been implicated in other processes

such as epigenetic regulation and germ cell development.

In addition to sncRNAs, lncRNAs have also been found to play important roles in various

biological processes. They are involved in gene regulation at multiple levels, including

transcription, splicing, and chromatin remodelling. lncRNAs can interact with DNA, RNA, and

proteins to modulate gene expression. Dysregulation of lncRNA expression has been

implicated in a variety of diseases, such as cancer, cardiovascular disease, and neurological

disorders.

One example of a lncRNA is Xist, which is involved in X chromosome inactivation in female

mammals. Xist is expressed from one of the two X chromosomes in female cells and coats the

same chromosome it is transcribed from, leading to silencing of most genes on that

chromosome. Another example is HOTAIR, which is involved in regulating gene expression

during development and has been found to be dysregulated in various types of cancer.

In conclusion, non-coding RNAs are a diverse group of RNA molecules that play important

roles in a variety of cellular processes. While sncRNAs like miRNAs and siRNAs are involved

in post-transcriptional regulation of gene expression, piRNAs are involved in transposon

silencing in germ cells. lncRNAs, on the other hand, are involved in gene regulation at multiple

levels and have been implicated in various diseases. With the continued development of new

technologies for studying RNA, we can expect to uncover many more functions and roles for

these fascinating molecules in the future.

Long non-coding RNAs (lncRNAs) are a diverse class of RNA molecules that have been found

to play important roles in gene regulation and other biological processes in many different

organisms, including plants. In this discussion, we will explore the current understanding of

lncRNAs in plants, their functions, and their potential applications in agriculture.

Plant lncRNAs are typically longer than 200 nucleotides and are transcribed from intergenic

regions, introns, and other non-coding regions of the genome. They can be classified into

several different categories based on their genomic origin and structure, including natural

antisense transcripts (NATs) and long intergenic non-coding RNAs (lincRNAs). NATs are

RNA molecules that are complementary to other RNA transcripts and transcribed from the

opposite DNA strand. They may also overlapping with the sequence of protein-coding genes.

These antisense transcripts can be transcribed in the opposite direction to the sense (coding)

strand of the DNA, forming RNA-RNA duplexes with their complementary sense transcripts.

One of the most well-studied plant lncRNAs involved in growth and development is

COOLAIR, a NAT of the FLOWERING LOCUS C (FLC) gene in Arabidopsis thaliana. FLC

is a key regulator of flowering time, and the expression of COOLAIR promotes FLC mRNA

decay, leading to earlier flowering. COOLAIR is also involved in regulating the expression of

other genes related to plant development, such as genes involved in the biosynthesis of

239

gibberellins, a class of plant hormones that promote stem elongation and other growth

processes.

Moreover, LincRNAs are transcribed from intergenic regions of the genome and can interact

with DNA, RNA, and proteins to modulate gene expression. They can act as scaffolds for the

assembly of regulatory complexes, as well as serve as guides for chromatin-modifying

enzymes. In rice, a lincRNA called NERICA1 is involved in promoting nodulation in response

to symbiotic bacteria by interacting with chromatin-modifying enzymes to regulate gene

expression. In addition to their roles in plant growth and development, lncRNAs have also been

implicated in stress responses. For example, a lincRNA called COLDAIR in Arabidopsis is

involved in the regulation of the COLD-REGULATED (COR) genes in response to cold stress.

COLDAIR interacts with a transcription factor called CBF1 to promote the expression of COR

genes, which are involved in protecting plants from freezing damage. Another lncRNA

involved in the regulation of flowering time is IPS1 (Induced by Phosphate Starvation 1) in

Arabidopsis. IPS1 is a lincRNA that is induced by phosphate starvation and negatively

regulates the expression of miR399, a microRNA that targets a gene involved in phosphate

homeostasis. The downregulation of miR399 by IPS1 promotes the expression of genes

involved in phosphate uptake and transport, leading to earlier flowering.

LINC5 is another lincRNA involved in the regulation of flowering time in Arabidopsis. LINC5

is specifically expressed in the shoot apical meristem, where it interacts with the transcription

factor WUSCHEL (WUS) to promote its expression. WUS is a key regulator of stem cell

maintenance and differentiation in the shoot apical meristem, and the expression of LINC5 is

required for normal shoot development. Similarly, in rice, a lincRNA called LDMAR is

involved in the regulation of lateral root development. LDMAR is specifically expressed in

lateral root primordia and promotes the expression of genes involved in lateral root

development. Knockdown of LDMAR leads to a reduction in the number of lateral roots,

indicating its importance in this process.

The roles of plant lncRNAs in development have also been extensively studied. In maize, a

lincRNA called Zm401 is involved in regulating the expression of key genes during the

transition from vegetative growth to reproductive development. Zm401 interacts with a

chromatin-modifying complex to regulate the expression of genes involved in flowering and

other developmental processes.

One study identified 285 lncRNAs in potato leaves and tubers and analysed their expression

patterns during potato development. The researchers found that many lncRNAs were

differentially expressed in different tissues and developmental stages, indicating their potential

roles in regulating potato growth and development.

Another study investigated the role of a potato lncRNA called lncRNA1604 in response to

potato virus Y (PVY) infection. The researchers found that lncRNA1604 was induced in

response to PVY infection and was involved in regulating the expression of genes involved in

defence responses. Knockdown of lncRNA1604 resulted in increased susceptibility to PVY

infection, indicating its role in potato resistance to viral infections.

240

In addition to their roles in development and stress responses, lncRNAs in potato have also

been implicated in other biological processes. For example, a recent study identified a potato

lncRNA called StTILLING1 that was involved in regulating the production of starch in potato

tubers. Knockdown of StTILLING1 resulted in reduced starch content and altered starch

granule morphology, indicating its role in starch synthesis.

Overall, the study of lncRNAs in plants is still in its early stages, and much remains to be

learned about their functions and mechanisms of action. However, the identification of

lncRNAs involved in growth and development processes in plants provides new insights into

the regulatory networks underlying these processes and offers new targets for crop

improvement and genetic engineering.

Circular RNAs (circRNAs) are a relatively new class of ncRNAs that are formed by back-

splicing events, in which a downstream splice acceptor is joined to an upstream splice donor.

circRNAs can act as sponges for microRNAs (miRNAs) and other RNA-binding proteins,

thereby regulating gene expression. In tomato, a circRNA called ciRs-7 is involved in

regulating fruit ripening by sequestering miR-7, which targets several genes involved in fruit

ripening. Some of the known functions of circRNAs in plants include regulating gene

expression at both the transcriptional and post-transcriptional levels, modulating alternative

splicing, and participating in stress responses. For example, a circRNA called

circRNA_022653 has been shown to regulate the expression of the transcription factor

WRKY40 in response to salt stress in Arabidopsis thaliana. In addition, circRNAs have been

implicated in plant development, particularly in the regulation of flowering time. A circRNA

called circFTO has been found to play a role in the photoperiodic flowering pathway in

Arabidopsis, by regulating the expression of a key flowering-time regulator called

CONSTANS.

Conclusion

The intricate regulatory roles of ncRNAs (lncRNA, miRNAs, circRNAs) in agriculturally

important crops underscore their significance in shaping plant development, stress responses,

and overall productivity. As we unveil the complex interplay of these molecular entities, the

potential for harnessing ncRNAs as tools for crop improvement becomes increasingly evident.

Future research directions should focus on elucidating specific ncRNA functions and

developing innovative strategies to leverage their regulatory prowess for sustainable

agriculture, ultimately contributing to global food security in the face of environmental

challenges. The evolving landscape of ncRNA research holds promise for unlocking novel

avenues in crop science, paving the way for precision agriculture and resilient crop varieties.

References

1. Bader GD, Hogue CW. (2003). An automated method for finding molecular complexes

in large protein interaction networks. BMC bioinformatics. 4(1):1-27.

2. Baulcombe, D. (2004). RNA silencing in plants. Nature 431, 356–363.

241

3. Denman, R. B. (1993). Using RNAFOLD to predict the activity of small catalytic

RNAs. BioTechniques 15, 1090–5.

4. Dong, P., Wang, H., Fang, T., Wang, Y., and Ye, Q. (2019). Assessment of extracellular

antibiotic resistance genes (eARGs) in typical environmental samples and the

transforming ability of eARG. Environment International 125, 90–96.

5. Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M. M., Seki, M., et al. (2005).

AREB1 Is a Transcription Activator of Novel ABRE-Dependent ABA Signaling That

Enhances Drought Stress Tolerance in Arabidopsis. The Plant Cell 17, 3470–3488.

6. Gao Y, Wang J, Zheng Y, Zhang J, Chen S, Zhao F. (2016). Comprehensive

identification of internal structure and alternative splicing events in circular RNAs.

Nature Communications 7:12060

7. Gkirtzou K, Tsamardinos I, Tsakalides P, Poirazi P. (2010). MatureBayes: a

probabilistic algorithm for identifying the mature miRNA within novel precursors. PloS

one. 5(8):e11843.

8. Jain P., Sharma V., Dubey H., Singh P.K., Kapoor R., Kumari M., Singh J., Pawar D.,

Bisht D., Solanke A.U., Mondal T.K., Sharma T.R. (2017) Identification of long non-

coding RNA in rice lines resistant to Rice blast pathogen Magnaporthe oryzae.

Bioinformation. 13:249-55.

9. Jeyaraj, A., Liu, S., Zhang, X., Zhang, R., Shangguan, M., and Wei, C. (2017).

Genome-wide identification of microRNAs responsive to Ectropis oblique feeding in

tea plant (Camellia sinensis L.). Scientific Reports 7, 13634.

10. Liu, J., Jung, C., Xu, J., Wang, H., Deng, S., Bernad, L., Arenas-Huertero, C., and Chua,

N.H. (2012). Genome-wide analysis uncovers regulation of long intergenic noncoding

RNAs in Arabidopsis. Plant Cell 24, 4333–4345

11. Meng X, Li X, Zhang P, Wang J, Zhou Y, Chen M. (2017). Circular RNA: an emerging

key player in RNA world. Briefings in bioinformatics. 18(4):547-57.

12. Ramírez Gonzales L, Shi L, Bergonzi SB, Oortwijn M, Franco‐Zorrilla JM, Solano‐

Tavira R, Visser RG, Abelenda JA, Bachem CW. (2021). Potato CYCLING DOF

FACTOR 1 and its lncRNA counterpart StFLORE link tuber development and drought

response. The Plant Journal. 105(4):855-69.

13. Sahu, S, Rao, A R, Pandey, J, Gaikwad, K, Ghoshal, S, and Mohapatra, T (2018).

Genome-wide identification and characterization of lncRNAs and miRNAs in cluster

bean (Cyamopsis tetragonoloba). Gene 667, 112–121.

14. Tian R, Sun X, Liu C, Chu J, Zhao M, Zhang WH. A Medicago truncatula lncRNA

MtCIR1 negatively regulates response to salt stress. Planta. 2023, 257(2):32.

15. Zhang G, Diao S, Zhang T, Chen D, He C, Zhang J. (2019). Identification and

characterization of circular RNAs during the sea buckthorn fruit development. RNA

biology. 16(3):354-61.

242

PERL Programming for Bioinformatics

K. K. Chaturvedi

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Introduction

What is Perl?

Perl stands for “Practical Extraction and Report Language” Perl is the natural outgrowth of a

project started by Larry Wall in 1986. Originally intended as a configuration and control system

for six VAXes and six SUNs located on opposite ends of the country, it grew into a more general

tool for system administration on many platforms. Since its unveiling to programmers at large, it

has become the work of a large body of developers. Larry Wall, however, remains its principle

architect. Although the first platform Perl inhabited was UNIX, it has since been ported to over 70

different operating systems including, but not limited to, Windows 9x/NT/2000, MacOS, VMS,

Linux, UNIX (many variants), BeOS, LynxOS, and QNX.

Uses of Perl

1. Tool for general system administration

2. Processing textual or numerical data

3. Database interconnectivity

4. Common Gateway Interface (CGI/Web) programming

5. Driving other programs! (FTP, Mail, WWW, OLE)

Philosophy & Idioms

The Virtues of a Programmer

Perl is a language designed to cater to the three chief virtues of a programmer.

 Laziness - develop reusable and general solutions to problems

 Impatience - develop programs that anticipate your needs and solve problems for you.

 Hubris - write programs that you want other people to see (and be able to maintain)

There are many means to the same end

Perl provides you with more than enough rope to hang yourself. Depending on the problem, there

may be several “official” solutions. Generally those that are approached using “Perl idioms” will

be more efficient.

Resources

· The Perl Institute (http://www.perl.org)

· The Comprehensive Perl Archive Network (http://www.cpan.org)

· The Win32 port of Perl (http://www.activestate.com/ActivePerl/)

243

Perl Basics

Script names

While generally speaking you can name your script/program anything you want, there are a

number of conventional extensions applied to portions of the Perl bestiary:

.pm - Perl modules

.pl - Perl libraries (and scripts on UNIX)

.plx - Perl scripts

Language properties

 Perl is an interpreted language – program code is interpreted at run time. Perl is unique among

interpreted languages, though. Code is compiled by the interpreter before it is actually executed.

 Many Perl idioms read like English

 Free format language – whitespace between tokens is optional

 Comments are single-line, beginning with #

 Statements end with a semicolon (;)

 Only subroutines and functions need to be explicitly declared

 Blocks of statements are enclosed in curly braces {}

 A script has no “main()”

Data Types & Variables

Basic Types

The basic data types known to Perl are scalars, lists, and hashes. Scalar $foo Simple variables that

can be a number, a string, or a reference. A scalar is a “thingy.” List @foo An ordered array of

scalars accessed using a numeric subscript. $foo[0] Hash %foo An unordered set of key/value

pairs accessed using the keys as subscripts. $foo{key} Perl uses an internal type called a typeglob

to hold an entire symbol table entry. The effect is that scalars, lists, hashes, and filehandles occupy

separate namespaces (i.e., $foo[0] is not part of $foo or of %foo). The prefix of a typeglob is *, to

indicate “all types.” Literals are symbols that give an actual value, rather than represent possible

values, as do variables. For example in $foo = 1, $foo is a scalar variable and 1 is an integer literal.

Variables have a value of undef before they are defined (assigned). The upshot is that accessing

values of a previously undefined variable will not (necessarily) raise an exception.

Variable Contexts

Perl data types can be treated in different ways depending on the context in which they are

accessed. Scalar Accessing data items as scalar values. In the case of lists and hashes, $foo[0] and

$foo{key}, respectively. Scalars also have numeric, string, and don’t-care contexts to cover

situations in which conversions need to be done. List Treating lists and hashes as atomic objects

244

Boolean Used in situations where an expression is evaluated as true or false. (Numeric: 0=false;

String: null=false, Other: undef=false) Void Does not care (or want to care) about return value

Interpolative Takes place inside quotes or things that act like quotes

Special Variables (defaults)

Some variables have a predefined and special meaning to Perl. A few of the most commonly used

ones are listed below:

$_ The default input and pattern-searching space

$0 Program name

$$ Current process ID

$! Current value of errno

@ARGV Array containing command-line arguments for the script

@INC The array containing the list of places to look for Perl scripts to

be evaluated by the do, require, or use constructs

%ENV The hash containing the current environment

%SIG The hash used to set signal handlers for various signals

Scalars

Scalars are simple variables that are either numbers or strings of characters. Scalar variable names

begin with a dollar sign followed by a letter, then possibly more letters, digits, or underscores.

Variable names are case-sensitive.

Numbers

Numbers are represented internally as either signed integers or double precision floating point

numbers. Floating point literals are the same used in C. Integer literals include decimal (255), octal

(0377), and hexadecimal (0xff) values.

Strings

Strings are simply sequences of characters. String literals are delimited by quotes: Single quote

‘string’ Enclose a sequence of characters Double quote “string” Subject to backslash and variable

interpolation Back quote `command` Evaluates to the output of the enclosed command The

backslash escapes are the same as those used in C:

\n Newline \e Escape

\r Carriage return \\ Backslash

\t Tab \” Double quote

\b Backspace \’ Single quote

In Windows, to represent a path, use either “c:\\temp” (an escaped backslash) or

“c:/temp” (UNIX-style forward slash). Strings can be concatenated using the “.” operator: $foo =

“hello” . ”world”;

245

Basic I/O

The easiest means to get operator input to your program is using the “diamond” operator:

$input = <>;The input from the diamond operator includes a newline (\n). To get rid of this

peskycharacter, use either chop() or chomp(). chop() removes the last character of thestring, while

chomp() removes any line-ending characters (defined in the specialvariable $/). If no argument is

given, these functions operate on the $_ variable.To do the converse, simply use Perl’s print

function:

print $output.”\n”;

Basic Operators

Arithmetic

Example Name Result

$a + $b Addition Sum of $a and $b

$a * $b Multiplication Product of $a and $b

$a % $b Modulus Remainder of $a divided by $b

$a ** $b Exponentiation $a to the power of $b

String

Example Name Result

$a . “string” Concatenation String built from pieces

“$a string” Interpolation String incorporating the value of $a

$a x $b Repeat String in which $a is repeated $b times

Assignment

The basic assignment operator is “=”: $a = $b. Perl conforms to the C idiom that lvalue operator=

expression is evaluated as: lvalue = lvalue operator expression So that $a *= $b is equivalent to

$a = $a * $b $a += $b $a = $a + $b This also works for the string concatenation operator: $a .=

“\n”

Autoincrement and Autodecrement

The autoincrement and autodecrement operators are special cases of the assignment operators,

which add or subtract 1 from the value of a variable:

++$a, $a++ Autoincrement Add 1 to $a

--$a, $a-- Autodecrement Subtract 1 from $a

Logical

Conditions for truth:Any string is true except for “” and “0”Any number is true except for 0 Any

reference is trueAny undefined value is false Example Name Result $a && $b And True if both

246

$a and $b are true $a || $b Or $a if $a is true; $b otherwise !$a Not True if $a is not true $a and

$b And True if both $a and $b are true $a or $b Or $a if $a is true; $b otherwise not $a Not True

if $a is not true Logical operators are often used to “short circuit” expressions, as in:

open(FILE,”< input.dat”) or die “Can’t open file”;

Comparison

Comparison Numeric String Result Equal == eq True if $a equal to $b Not equal != ne True if $a

not equal to $b Less than < lt True if $a less than $bGreater than > gt True if $a greater than $b

Less than or equal <= le True if $a not greater than $b Comparison <=> cmp 0 if $a and $b equal1

if $a greater -1 if $b greater

Operator Precedence

Perl operators have the following precedence, listed from the highest to the lowest, where operators

at the same precedence level resolve according to associativity:

Associativity Operators Description

Left Terms and

list operators

Left -> Infix dereference operator

++

--

Auto-increment

Auto-decrement

Right

Right

Right

\

! ~

+ -

Reference to an object (unary)

Unary negation, bitwise complement

Unary plus, minus

Left

Left

=~

!~

Binds scalar to a match pattern

247

Same, but negates the result

Left * / % x Multiplication, Division, Modulo, Repeat

Left + - . Addition, Subtraction, Concatenation

Left >> << Bitwise shift right, left

< > <= >=

lt gt le ge

Numerical relational operators

String relational operators

== != <=>

eq ne cmp

Numerical comparison operators

String comparison operators

Left & Bitwise AND

Left | ^ Bitwise OR, Exclusive OR

Left && Logical AND

Left || Logical OR

In scalar context, range operator

In array context, enumeration

Right ?: Conditional (if ? then : else) operator

Right = += -= etc Assignment operators

Left ,

=>

Comma operator, also list element separator

Same, enforces left operand to be string

Right not Low precedence logical NOT

Right and Low precedence logical AND

Right or xor Low precedence logical OR

Parentheses can be used to group an expression into a term.

A list consists of expressions, variables, or lists, separated by commas. An array variable

or an array slice many always be used instead of a list.

248

Control Structures

Statement Blocks

A statement block is simply a sequence of statements enclose in curly braces:

{

first_statement;

second_statement;

last_statement

}

Conditional Structures (If/elsif/else)

The basic construction to execute blocks of statements is the if statement. The if statement permits

execution of the associated statement block if the test expression evaluates as true. It is important

to note that unlike many compiled languages, it is necessary to enclose the statement block in curly

braces, even if only one statement is to be executed.The general form of an if/then/else type of

control statement is as follows:

if (expression_one) {

true_one_statement;

} elsif (expression_two) {

true_two_statement;

} else {

all_false_statement;

}

Loops

Perl provides several different means of repetitively executing blocks of statements.

While

The basic while loop tests an expression before executing a statement block

while (expression) {

statements;

}

Until

The until loop tests an expression at the end of a statement block; statements will be

executed until the expression evaluates as true.

until (expression) {

statements;

249

}

Do while

A statement block is executed at least once, and then repeatedly until the test expression

is false.

do {

statements;

} while (expression);

Do until

A statement block is executed at least once, and then repeatedly until the test expression

is true.

do {

statements;

} until (expression);

For

The for loop has three semicolon-separated expressions within its parentheses. These

expressions function respectively for the initialization, the condition, and re-initialization

expressions of the loop. The for loop

for (initial_exp; test_exp; reinit_exp) {

statements;

}

This structure is typically used to iterate over a range of values. The loop runs until the

test_exp is false.

for ($i; $i<10;$i++) {

print $i;

}

250

Foreach

The foreach statement is much like the for statement except it loops over the elements of

a list:

foreach $i (@some_list) {

statements;

}

Indexed Arrays (Lists)

A list is an ordered set of scalar data. List names follow the same basic rules as for

scalars. A reference to a list has the form @foo.

List literals

List literals consist of comma-separated values enclosed in parentheses:

(1,2,3)

(“foo”,4.5)

A range can be represented using a list constructor function (such as “..”):

(1..9) = (1,2,3,4,5,6,7,8,9)

($a..$b) = ($a, $a+1, … , $b-1,$b)

In the case of string values, it can be convenient to use the “quote-word” syntax

@a = (“fred”,”barney”,”betty”,”wilma”);

@a = qw(fred barney betty wilma);

Accessing List Elements

List elements are subscripted by sequential integers, beginning with 0

$foo[5] is the sixth element of @foo

The special variable $#foo provides the index value of the last element of @foo.

A subset of elements from a list is called a slice.

@foo[0,1] is the same as ($foo[0],$foo[1])

You can also access slices of list literals:

@foo = (qw(fred barney betty wilma))[2,3]

251

List operators and functions

Many list-processing functions operate on the paradigm in which the list is a stack. The highest

subscript end of the list is the “top,” and the lowest is the bottom.

push Appends a value to the end of the list

push(@mylist,$newvalue)

pop Removes the last element from the list (and returns it)

pop(@mylist)

shift Removes the first element from the list (and returns it)

shift(@mylist)

unshift Prepends a value to the beginning of the list

unshift(@mylist,$newvalue)

splice Inserts elements into a list at an arbitrary position

splice(@mylist,$offset,$replace,@newlist)

The reverse function reverses the order of the elements of a list

@b = reverse(@a);

The sort function sorts the elements of its argument as strings in ASCII order. You can

also customize the sorting algorithm if you want to do something special.

@x = sort(@y);

The chomp function works on lists as well as scalars. When invoked on a list, it removes

newlines (record separators) from each element of its argument.

Associative Arrays (Hashes)

A hash (or associative array) is an unordered set of key/value pairs whose elements are

indexed by their keys. Hash variable names have the form %foo.

Hash Variables and Literals

A literal representation of a hash is a list with an even number of elements (key/value

pairs, remember?).

%foo = qw(fred wilma barney betty);

%foo = @foolist;

252

To add individual elements to a hash, all you have to do is set them individually:

$foo{fred} = “wilma”;

$foo{barney} = “betty”;

You can also access slices of hashes in a manner similar to the list case:

@foo{“fred”,”barney”} = qw(wilma betty);

Hash Functions

The keys function returns a list of all the current keys for the hash in question.

@hashkeys = keys(%hash);

As with all other built-in functions, the parentheses are optional:

@hashkeys = keys %hash;

This is often used to iterate over all elements of a hash:

foreach $key (keys %hash) {

print $hash{$key}.”\n”;

}

In a scalar context, the keys function gives the number of elements in the hash.

Conversely, the values function returns a list of all current values of the argument

hash:

@hashvals = values(%hash);

The each function provides another means of iterating over the elements in a hash:

while (($key, $value) = each (%hash)) {

statements;

}

You can remove elements from a hash using the delete function:

delete $hash{‘key’};

253

Overview of Metagenomics Data Analysis

Mohammad Samir Farooqi and Sudhir Srivastava

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Introduction

Metagenomics is the study of overall genomes present in any environment without the need for prior

individual identification or amplification. It encompasses microbial communities sampled directly from

their natural environment, without prior culturing. Community genomics, environmental genomics,

and population genomics are synonyms for the same approach. Metagenomics term was first used

by Jo Handelsman et al. and first appeared in publication in 1998. The field initially started with

the cloning of environmental DNA, followed by functional expression screening and was then

quickly complemented by direct random shotgun sequencing of environmental DNA. The idea of

cloning DNA directly from environmental samples was first proposed by Pace in 1991.There has

been remarkable progress in this field of research due to recent advances in Next Generation Sequencing

(NGS) technologies. Since over 99.8% of microbes in some environments are still far from culturing in the

media, metagenomics offers a path to the study of microbial community structure, phylogenetic

composition, species diversity and abundance, metabolic capacity and functional diversity.

Metagenomics helps in knowing about the functional gene composition of the microbial

communities and thus gives more information about the phylogenetic surveys, which are more

often based on the diversity of one gene like 16s rRNA gene. It gives genetic information on

potentially novel biocatalysts or enzymes, genomic linkages between function and phylogeny for

uncultured organisms, and evolutionary profiles of community function and structure. So it acts as

novel tool for generating novel hypothesis of microbial function.

Majority of microorganisms have not been cultivated in the laboratory, and almost all of our

knowledge of microbial life is based on organisms raised in pure culture. Metagenomics provides

an additional set of tools to study uncultured species. Metagenomics entails extraction of DNA

from a community so that all of the genomes of organisms in the community are pooled. These

genomes are usually fragmented and cloned into an organism that can be cultured to create

‘metagenomic libraries’, and these libraries are then subjected to analysis based on DNA sequence

or on functions conferred on the surrogate host by the metagenomic DNA.

For a typical sequence-based metagenome project one need to go through sampling and

processing, sequencing technology, assembly, binning, annotation, experimental design, statistical

analysis, and data storage and sharing.

These steps are described as follow:

Sampling and Processing

DNA extracted should represent all cell present in the sample and sufficient amount of high-quality

nucleic acids must be obtained for subsequent library production and sequencing. Also processing

requires specific protocols for each sample type. The physical and chemical structure of each

microbial community affects the quality, size, and amount of microbial DNA that can be extracted.

254

Sequencing Technology

High-throughput sequencing technologies has improved the capabilities of metagenomic studies to a greater

strength but at the same time, it has led to generation of huge and big data sets that largely require high end

algorithms and computational tools for data analysis and storage. Metagenome sequencing, also called

shotgun sequencing, refers to sequencing DNA fragments extracted from microbial populations.

Over the past few years metagenomic shotgun sequencing has gradually shifted from classical

Sanger sequencing technology to next-generation sequencing (NGS). However, Sanger

sequencing is still best because of its low error rate, long read length (> 700 bp) and large insert

sizes (e.g. >30 Kb for fosmids or bacterial artificial chromosomes (BACs)). The only drawback

associated is the labor intensive cloning process.

Bioinformatics Approach

Metagenomic projects running worldwide pose several levels of challenges with respect to the processing,

analyzing and storing huge data being accumulated. Some of the major computational challenges include

the assembly of the whole data, phylogenetic surveys, gene finding and comparative metagenomic analysis

for the metabolic pathways.

The data generated by metagenomics experiments are both enormous and inherently noisy.

Collecting, curating, and extracting useful biological information from datasets as well as pre-

filtering steps in which low-quality sequences and sequences of probable eukaryotic origin

(especially in metagenomes of human origin) are removed.

Assembly

DNA sequence data from genomic and metagenomic projects are essentially the same, but

genomic sequence data offers higher coverage while metagenomic data is usually highly non

redundant. Furthermore, the increased use of second-generation sequencing technologies with

short read lengths means that much of future metagenomic data will be error-prone. Taken in

combination, these factors make the assembly of metagenomic sequence reads into genomes

difficult and unreliable. Mis-assemblies are caused by the presence of repetitive DNA sequences

that make assembly especially difficult because of the difference in the relative abundance of

species present in the sample. Mis-assemblies can also involve the combination of sequences from

more than one species into chimeric contigs.

Two strategies can be employed for metagenomics samples:

i) Reference-based assembly (co-assembly)

ii) De novo assembly

Reference-based assembly can be done with software packages such as Newbler (Roche), AMOS

(http://sourceforge.net/projects/amos/), or MIRA. It works well, if the metagenomic dataset

contains sequences where closely related reference genomes are available. De novo assembly

typically requires larger computational resources. Tools based on the de Bruijn graphs was

specifically created to handle very large amounts of data. Machine requirements for the de Bruijn

assemblers Velvet or SOAP are still significantly higher than for reference-based assembly (co-

assembly), often requiring hundreds of gigabytes of memory in a single machine and run times

frequently being days.

255

http://sourceforge.net/projects/amos/

In metagenomics single reads have generally lower quality and hence lower confidence in accuracy

than do multiple reads that cover the same segment of genetic information. Therefore, merging

reads increases the quality of information. So in a complex community with low sequencing depth

or coverage, it is unlikely to actually get many reads that cover the same fragment of DNA. Hence

assembly may be of limited value for metagenomics. Hence there is a need for metagenomic

assembly to obtain high-confidence contigs that enable the study of, e.g., major repeat classes.

Binning

Taxonomic binning is another problem in metagenomics analysis. Sequence binning refers to the separation

of sequences into taxon specific groups. A binning step may be part of the assembly process of metagenomic

data or may be used for separating the genomes of a few members in order to study the biological processes

carried by each one of them. Various algorithms have been developed, which employ two types of

information contained within a given DNA sequence.

i) First compositional binning makes use of the fact that genomes have conserved nucleotide

composition (e.g. a certain GC or the particular abundance distribution of k-mers).

ii) Secondly, the unknown DNA fragment might encode for a gene and the similarity of this gene

with known genes in a reference database can be used to classify and hence bin the sequence.

Important considerations for using any binning algorithm are the type of input data available and

the existence of a suitable training datasets or reference genomes. In general, composition-based

binning is not reliable for short reads, as they do not contain enough information. It can however

be improved, if training datasets (e.g. a long DNA fragment of known origin) exist and that is used

to define a compositional classifier. These “training” fragments can either be derived from

assembled data or from sequenced fosmids and should ideally contain a phylogenetic marker (such

as rRNA gene) that can be used for high-resolution, taxonomic assignment of the binned fragment.

Annotation

For annotation of metagenomics two approaches are used for annotation of coding regions in the

assembled contigs. First, if assembly has produced large contigs and reconstructed genomes are

the objective of the study then it is preferable to use existing pipelines for genome annotation, such

as RAST or IMG. For this, minimal contigs length of 30,000 bp or longer are required. Second,

annotation can be performed on the entire community and relies on unassembled reads or short

contigs. Here the tools for genome annotation are significantly less useful than those specifically

developed for metagenomic analyses.

Experimental Design and Statistical Analysis

For the reduction of sequencing cost and a much wider appreciation of the utility of metagenomics

to address fundamental questions in microbial ecology require proper experimental designs with

appropriate replication and statistical analysis. The data from multiple metagenomic shotgun-

sequencing projects can be reduced to tables, where the columns represent samples and the rows

indicate either a taxonomic group or a gene function (or groups thereof) and the fields containing

abundance or presence/absence data. As metagenomic data often contain many more species or

gene functions then the number of samples taken, so appropriate corrections for multiple

hypothesis testing have to be implemented (e.g. Bonferroni correction for t-test based analyses).

Sometimes variation between sample types can be due to true biological variation and technical

variation and this should be carefully considered when planning the experiment. One should kept

256

in mind that many microbial systems are highly dynamic, so temporal aspects of sampling can

have a substantial impact on data analysis and interpretation. Taking multiple samples and then

pooling them will lose all information on variability and hence will be of little use for statistical

purposes. Ultimately, good experimental design of metagenomic projects will facilitate integration

of datasets into new or existing ecological theories. One of the ultimate aims of metagenomics is

to link functional and phylogenetic information to the chemical, physical, and other biological

parameters that characterize an environment.

Sharing and Storage of Data

Data sharing is important for the genomic research, there is a requirement for whole new level of

organization and collaboration to provide metadata and centralized services (e.g., IMG/M,

CAMERA and MG-RAST) as well as sharing of both data and computational results. Once this

has been achieved, researchers will be able to download intermediate processed results from any

one of the major repositories for local analysis or comparison. A suite of standard languages for

metadata is currently provided by the Minimum Information about any (x) Sequence checklists

(MIxS). MIxS is an umbrella term to describe MIGS (the Minimum Information about a Genome

Sequence), MIMS (the Minimum Information about a Metagenome Sequence) and MIMARKS

(Minimum Information about a MARKer Sequence) and contains standard formats for recording

environmental and experimental data. The latest of these checklists, MIMARKS builds on the

foundation of the MIGS and MIMS checklists, by including an expansion of the rich contextual

information about each environmental sample.

The US National Center for Biotechnology Information (NCBI) is mandated to store all

metagenomic data, however, the sheer volume of data being generated means there is an urgent

need for appropriate ways of storing vast amounts of sequences. As the cost of sequencing

continues to drop while the cost for analysis and storing remains more or less constant, selection

of data storage in either biological (i.e. the sample that was sequenced) or digital form in (de-)

centralized archives might be required. Ongoing work and successes in compression of (meta-)

genomic data, help in the storage of digital information cost-efficiently.

Applications of Metagenomics

Among the enormous applications of metagenomics the most important ones include environmental studies,

human health, identification of novel microbes, genes, pathways and mechanisms of their survival,

biodegradation of sewage, ocean pollutants, plastics, garbage, energy generation and bio-fuels and

biotechnological and industrial implications of the huge meta-sequence data coming out from the unseen

microbial communities.

Community Metabolism

In many bacterial communities, natural or engineered (such as bioreactors), there is significant

division of labor in metabolism (Syntrophy), during which the waste products of some organisms

are metabolites for others. Eg. in methanogenic bioreactor.

Metatranscriptomics

Metagenomics allows researchers to access the functional and metabolic diversity of microbial

communities, but it cannot show which of these processes are active. The extraction and analysis

of metagenomic mRNA (the metatranscriptome) provides information on the regulation and

expression profiles of complex communities apart from its technical difficulties (e g. the short half-

life of mRNA).

257

Viruses

Metagenomic sequencing is particularly useful in the study of viral communities. As viruses lack

a shared universal phylogenetic marker (as 16S RNA for bacteria and archaea, and 18S RNA for

eukarya), the only way to access the genetic diversity of the viral community from an

environmental sample is through metagenomics. Viral metagenomes (also called viromes) should

thus provide more and more information about viral diversity and evolution.

Advantages of Metagenomics in Different Areas

Metagenomics has the potential to advance knowledge in a wide variety of fields. It can also be

applied to solve practical challenges in medicine, engineering, agriculture, sustainability and

ecology.

Agriculture

As one gram of soil contains around 109-1010 microbial cells which comprise about one gigabase

of sequence information. They perform a wide variety of ecosystem services necessary for plant

growth, including fixing atmospheric nitrogen, nutrient cycling, disease suppression, and sequester

iron and other metals. Metagenomic approaches can contribute to improved disease detection in

crops and livestock and the adaptation of enhanced farming practices which improve crop health

by harnessing the relationship between microbes and plants.

Biotechnology

Recent progress in mining the rich genetic resource of non-culturable microbes has led to the

discovery of new genes, enzymes, and natural products. The application of metagenomics has

allowed the development of fine chemicals, agrochemicals and pharmaceuticals etc.

Ecology

Metagenomics can provide valuable insights into the functional ecology of environmental

communities. eg. Breaking down of defecations helps to release the nutrients in the faeces into a

bioavailable form that can be taken up into the food chain.

Environmental remediation

Metagenomics can improve strategies for monitoring the impact of pollutants on ecosystems and

for cleaning up contaminated environments. Increased understanding of how microbial

communities cope with pollutants improves assessments of the potential of contaminated sites to

recover from pollution and increases the chances of bioaugmentation or biostimulation trials to

succeed.

Medicine

Metagenomic sequencing of human microbiome helps to determine the core human microbiome.

It also helps to understand the changes in the human microbiome that can be correlated with human

health, and to develop new technological and bioinformatics tools to support these goals.

Biofuels

Biofuels are fuels derived from biomass conversion, as in the conversion of cellulose contained in

corn stalks, switchgrass, and other biomass into cellulosic ethanol. Metagenomic approaches helps

258

in the analysis of complex microbial communities thus allowing the targeted screening of enzymes

with industrial applications in biofuel production, such as glycoside hydrolases.

Conclusion

Metagenomics has changed the way microbiologists approach many problems, redefined the

concept of a genome, and accelerated the rate of gene discovery. The potential for application of

metagenomics to human benifit seems endless. Metagenomics gives genetic information on potentially

novel biocatalysts or enzymes, genomic linkages between function and phylogeny for uncultured organisms

and evolutionary profile of community function and structure. It can also be complemented with

metatranscriptomic or metaproteomic approaches to describe expressed activities. Metagenomics is also a

powerful tool for generating novel hypotheses of microbial functions, remarkable discoveries of

proteorhodopsin-based photoheterotrophy or ammonia-oxidizing Archaea. One of the primary goals of

metagenomics projects is to perform a comparative analysis of microbial communities residing in diverse

ecological niches. Assessing such differences can not only yield valuable insights into the inherent structure

of these microbial communities, but can also identify genes/proteins/organisms that may confer specific

functional characteristics to a given environment. Insights gained from such comparative studies are

expected to have immense potential in several important areas of biological research, ranging from

healthcare (e.g., disease diagnostics, detection of pathogenic contamination and characterization of novel

pathogens), industrial biotechnology (bio-prospecting) and bio-remediation studies.

References

1. Chen, K.; Pachter, L. (2005). "Bioinformatics for Whole-Genome Shotgun Sequencing of

Microbial Communities". PLoS Computational Biology, 1 (2): e24,

doi:10.1371/journal.pcbi.0010024

2. Field D, Amaral-Zettler L, Cochrane G, et al., (2011). The Genomic Standards Consortium:

Minimum information about a marker gene sequence (MIMARKS) and minimum information

about any (x) sequence (MIxS) specifications. PLoS Biol, 9(6):e1001088.

3. Gilbert J.A., Field D., Huang Y., Edwards R., Li W., Glina P. and Joint I. (2008). Detection of

large numbers of novel sequences in the metatranscriptomes of complex marine microbial

communities. PLoS ONE, 3: e3042.

4. Glass EM, Wilkening J, Wilke A, Antonopoulos D, Meyer F, 2010(1). Using the

metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring

Harb Protocol, pdb prot5368.

5. Huson DH, Auch AF, Qi J, Schuster SC, (2007). MEGAN analysis of metagenomic data.

Genome Research, 17(3):377-386.

6. Kristiansson E, Hugenholtz P, Dalevi D, (2009). ShotgunFunctionalizeR, An Rpackage for

functional comparison of metagenomes. Bioinformatics, 25(20):2737-2738.

7. Markowitz VM, Ivanova NN, et al. (2008). IMG/M: a data management and analysis system

for metagenomes. Nucleic Acids Res, 36 Database: D534-538.

8. Morris R. M., Nunn B. L., Frazar C., Goodlett D. R., Ting Y. S., Rocap G. (2010). Comparative

metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy

transduction. ISME Journal, 4: 673–685.

259

9. Rho M, Tang H, Ye Y, (2010). FragGeneScan: predicting genes in short and error prone reads.

Nucleic Acids Research, 38(20):e191.

10. Thomas et al., (2012). Metagenomics - a guide from sampling to data analysis. Microbial

Informatics and Experimentation 2:3.

11. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., & Glöckner, F. O. (2012).

The SILVA ribosomal RNA gene database project: improved data processing and web-based

tools. Nucleic acids research, 41(D1): D590-D596.

12. Z L Sabree, M R Rondon, and J Handelsman, University of Wisconsin-Madison, Madison,

WI, USA (2009). Metagenomics. Elsevier Inc.

260

Statistical Aspects on Analysis of Metagenomics Data

Sudhir Srivastava and Deepa Bhatt

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Introduction

The term “microbiome” is used to describe the community of microorganisms (such as fungi,

bacteria and viruses) that exists in a particular environment. The microbiome has been defined as

a characteristic microbial community occupying a reasonable well-defined habitat which has

distinct physio-chemical properties. The microbiota consists of all living members forming the

microbiome. The microbiome encompasses the microorganisms involved as well as their theatre

of activity, which results in the formation of specific ecological niches. Plants live in association

with diverse microbial consortia. In plants, the microbes live both inside (the endosphere) and

outside (the episphere) of plant tissues. The plant microbiome plays roles in plant health and

productivity and has received significant attention in recent years.

With the introduction of high-throughput DNA sequencing technologies, there is advancement in

microbiome research which enables the study of the genomes of all microbes of a given

environment and a precise quantification of microbiome abundances and function. The basic

steps of a microbiome study are as follows:

1. Extraction of microbial DNA followed by sequencing: There are two main types of

sequencing:

(i) Amplicon sequencing (reads belong to a fixed gene of each species, most commonly

16S rRNA)

(ii) Shotgun sequencing (random sequences for the totality of the genetic material are

obtained)

2. Sequence processing by using bioinformatics tools

3. Statistical analysis

Amplicon sequencing relies on sequencing a phylogenetic marker gene (e.g. 16S, 18S, ITS).

For bacteria and archaea, the marker gene is the 16S ribosomal RNA. There are various

bioinformatic pipelines available for processing microbiome 16S sequence data such as mothur,

QIIME (Quantitative Insights into Microbial Ecology), BioMaS, etc. Main steps involved in

most of the bioinformatics pipelines are given below:

1. Preprocessing and quality control

The sequences are assigned to the samples (Demultiplexing). Quality control is performed to

remove too short sequences, ambiguous base pairs and chimeras.

261

2. Operational taxonomic unit (OTU) binning

Binning refers to the process of clustering similar DNA sequences into OTUs. Usually, group of

DNA sequences should have at least 97% similarity.

3. Taxonomy assignment

Taxanomy assisgnment is obtained by comparing OTU consensus sequences to microbial 16S

rRNA reference databases such as GreenGenes (http://greengenes.second.genome.com), SILVA

(http://www.arbsilva.de), RDP (http://rdp.cme.msu.edu), etc. It provides the available annotation

of each OTU to the different taxonomy levels (domain, kingdom, phylum, class, order, family,

genus, and species).

4. Construction of the abundance table

An OTU abundance table is constructed where each entry in the table corresponds to the number

of sequences (reads) observed for each sample corresponding to each OTU. Many OTUs are

observed in a few samples. In this situation, it is better to agglomerate OTUs at broader

taxonomic groups or taxa.

5. Phylogenetic analysis

It is the study of evolutionary relatedness among biological groups. Phylogenetic trees are used

to obtain phylogenetic distances between samples.

Shotgun metagenomics sequencing involves sequencing the total microbial DNA of a

sample. By using this technique, one can

• Infer the relative abundance of each microbial gene.

• Quantify specific metabolic pathways to predict the potential functionality of the entire

community – by mapping the obtained sequences against a database [e.g., Kyoto

Encyclopedia of Genes and Genomes (KEGG);

http://www.genome.jp/kegg/pathway.html]

Examples of bioinformatics pipelines for metagenomics analysis: HumanN2, MetaPhlAn 2,

SqueezeMeta, etc.

The output (abundance table of counts) of both the approaches (amplicon and shotgun

sequencing) is similar. The main element of a microbiome study is the abundance table of counts

which represents the number of sequences per sample for a specific taxon. A microbiome

abundance table is a matrix of counts, X, with n rows (samples) and k columns (taxa) where each

entry xij provides the number of sequences (reads) corresponding to taxon j in sample i.

Sometimes, abundance tables are transposed where rows are taxa and columns are samples. In R

and Bioconductor packages such as phyloseq, besides abundance table, other elements are also

available such as sample data, taxonomy table, phylogenetic tree and DNA String Set (reference

sequences).

262

Figure 1. Abundance table of counts

Figure 2. Sample data

Figure 3. Taxonomy table

263

Statistical Analysis of Microbiome Data

A microbiome statistical analysis consists of the following major steps:

▪ Normalization

▪ Diversity analysis

▪ Ordination

▪ Differential abundance testing

The statistical analysis of microbiome abundance data starts with the normalization of the data

followed by an exploratory study of the microbiome composition for the identification of

possible data structures. The exploratory part consists of the analysis of diversity measures and

their visualization through ordination plots. There are many challenges involved in the analysis

of microbiome count data. One of the challenges is related to count data analysis which involves

skewed distribution, zero inflation and over-dispersion.

Normalization

The microbiome data is very noisy due variations caused during the execution of experiment and

preprocessing steps such as quality control filtering. The total number of counts per sample is

highly variable which may arise due to biological and technical issues. Therefore, some

normalization is required prior to the analysis so that the microbiome abundances among the

different samples are comparable. Abundance tables are usually sparse since many species are

infrequent. Further, there is much redundant information because of co-abundance of many

species. Various approaches of normalization are as follows:

▪ Computation of relative abundances: The simplest way is the computation of relative

abundances by dividing the raw abundances by the total number of counts per sample.

▪ Rarefaction: It consists of subsampling the same number of reads for each sample so that

all samples have the same number of total counts. However, this method is not

recommended as it entails loss of important information and precision of measurement is

decreased. Further, the random choice of reads decreases repeatability of experiment and

adds bias.

▪ Sophisticated techniques implemented in some R packages for RNA-seq data analysis

such as DESeq2 and edgeR:

• TMM (Trimmed Mean of M-values)

• TMMwsp (TMM with singleton pairing)

• RLE (relative log expression)

Compositional Data Analysis (CoDA) techniques such as log-ratio approach can be used as an

alternative because these do not require the normalization step.

264

Examples:

• Additive log-ratio transformation (alr)

• Centered log-ratio transformation (clr)

• Isometric log-ratio transformation (ilr)

Microbiome abundance tables are sparse and contain many zeros. This should be properly

addressed before CoDA methods can be applied. One of the simplest approaches is to replace

zeros by a small pseudo-count or to add a small constant (e.g. 1) to all the elements of the

abundance matrix.

Diversity Analysis

Microbiome diversity can be measured through multiple ecological indices. There are basically

two kind of measures:

• Alpha diversity (within sample variability)

• Beta diversity (between samples variability)

Alpha diversity (within sample variability)

The simplest measure of alpha diversity is richness. Richness is estimated by the observed

richness, Robs, the number of different species observed in the sample. The observed richness

tends to underestimate the real richness in the environment, where the less frequent species are

likely to be undetected. There are different indices that adjust for less frequent or undetected

species.

Chao1 index, 𝑅𝐶ℎ𝑎𝑜1 = 𝑅𝑜𝑏𝑠 +
𝑓1(𝑓1−1)

2(𝑓2+1)

where 𝑓1 is the number of species observed only once and 𝑓2 is the number of species observed

twice.

Another important measure of alpha diversity is evenness which measures the homogeneity in

abundance of different species in a sample. Most commonly used measure of evenness is the

Shannon index:

𝑅𝑆ℎ𝑎𝑛𝑛𝑜𝑛 = − ∑ 𝑝𝑖 log(𝑝𝑖)

𝑘

𝑖=1

where 𝑝𝑖 represents the relative abundances of the ith taxon.

Beta diversity (between samples variability)

It measures the differences in microbiome composition between samples. It provides a measure

of similarity, or dissimilarity, of one microbial composition to another. There is a wide range of

265

ecological distances or dissimilarities for measuring beta diversity such as Bray-Curtis, UniFrac,

weighted UniFrac distances, Aitchison distance, etc.

The R package “vegan” provides a large set of diversity measures.

Let 𝑝1 = (𝑝11, 𝑝12, … , 𝑝1𝑖) an 𝑝2 = (𝑝21, 𝑝22, … , 𝑝2𝑖) denote the microbiome relative abundance

of two different samples. Bray-Curtis is defined as

𝑑𝐵𝐶(𝑝1, 𝑝2) =
∑ |𝑝1𝑖 − 𝑝2𝑖|

𝑘
𝑖=1

∑ (𝑝1𝑖 + 𝑝2𝑖)
𝑘
𝑖=1

Consider a phylogenetic tree with r branches. Let 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑟) denotes the length of the

different branches in the phylogenetic tree. Let 𝑞1 = (𝑞11, 𝑞12, … , 𝑞1𝑟) and 𝑞2 =

(𝑞21, 𝑞22, … , 𝑞2𝑟) denote the relative abundances associated to each branch for the first and the

second sample, respectively. The unweighted UniFrac distance is defined as

𝑑𝑣(𝑏, 𝑞1, 𝑞2) =
∑ 𝑏𝑖|𝐼(𝑞1𝑖 > 0) − 𝐼(𝑞2𝑖 > 0)|𝑟

𝑖=1

∑ 𝑏𝑖𝐼(𝑞1𝑖 + 𝑞2𝑖 > 0)𝑟
𝑖=1

The weighted UniFrac distance is defined as

𝑑𝑊(𝑏, 𝑞1, 𝑞2) =
∑ 𝑏𝑖|𝑞1𝑖 − 𝑞2𝑖|𝑟

𝑖=1

∑ (𝑞1𝑖 + 𝑞2𝑖)𝐼(𝑞1𝑖 + 𝑞2𝑖 > 0)𝑟
𝑖=1

Given two compositions x1 and x2, the Aitchison distance is defined as

𝑑𝐴(𝑥1, 𝑥2) = 𝑑𝐸(𝑐𝑙𝑟(𝑥1), 𝑐𝑙𝑟(𝑥2))

where dE denotes Euclidean distance.

Ordination

The purpose of ordination plots is to visualize beta diversity for identification of possible data

structures. The multidimensional data is represented into a reduced number of orthogonal axes

while keeping the main trends of the data and preserving the distances among samples as much

as possible. Two most commonly used ordination methods for microbiome data are

• Principal coordinates analysis (PCoA) or multidimensional scaling (MDS)

• Non-metric multidimensional scaling (NMDS)

PCoA is an extension of Principal Components Analysis (PCA). PCoA results exactly the same

as PCA. In PCoA, some eigenvalues may be negative and the graphical representation will not

perform properly. Therefore, in such case, NMDS is more commonly used. It maximizes the

rank-based correlation between the original distances and the distances between samples in the

new reduced ordination space. Ordination plots can be obtained using R and Bioconductor

packages such as vegan, phyloseq, etc.

266

Differential abundance testing

An inference analysis is performed where microbiome composition is tested for association with

a variable of interest. Differential abundance testing is usually done when the outcome of interest

is dichotomous (e.g., healthy and diseased). These association tests can be:

1. Univariate - aim is to identify which taxa are differentially abundant between sample groups

2. Multivariate - assess for global differences in microbial composition between sample groups

1. Univariate differential abundance testing: Every taxa is separately tested for association

with the response variable. Various methods for univariate abundance testing are given below.

(i) Nonparametric tests, e.g., Wilcoxon rank-sum test or Kruskal-Wallis test

(ii) Parametric approaches

• Available in the Bioconductor packages such as edgeR and DESeq2, initially proposed

for RNA-Seq data analysis can be used.

• Both fit a generalized linear model and assume that read counts follow a Negative

Binomial distribution.

CoDA methods such as ANCOM and ALDEx2 can be applied.

▪ ANCOM - the log-ratio of all pairs of variables is tested for differences in means.

▪ ALDEx2 algorithm

✓ It uses a Dirichlet-multinomial model to infer the multivariate abundance distribution

from counts.

✓ After clr transformation, it performs the Wilcoxon rank test (two groups) or Kruskal-

Wallis tests (more than two groups).

2. Multivariate differential abundance testing

It refers to a global test of differences in microbial composition between two or more groups of

samples. Some of the methods for multivariate differential abundance testing are given below:

(i) Permutational Multivariate Analysis of Variance Using Distance Matrices (PERMANOVA)

• The null hypothesis of no differences in composition among groups is formulated by the

condition that the different groups of samples have the same center of masses.

• Implemented in function “adonis” of R package “vegan”.

• Consists of a multivariate ANOVA based on dissimilarities.

• Significance is evaluated through permutations to generate a distribution of pseudo F

statistic under the null hypothesis.

(ii) A popular distance-based approach is the analysis of similarities implemented in the function

“anosim” of R package “vegan”.

(iii) Kernel machine regression (KMR)

267

• A model-based approach for multivariate microbiome analysis that extends

PERMANOVA to a regression framework.

• A semi-parametric regression model that includes a nonparametric component.

(iv) Model-based methods for hypothesis testing, power and sample size calculations based on

Dirichlet-Multinomial distribution:

• Proposed by La Rosa et al.

• The methods are implemented in the R package “HMP”.

(v) Multivariate statistical framework mixMC

• Proposed by Le Cao et al. where sparse partial least squares discriminant analysis (sPLS-

DA) is performed.

• The proposed method has been implemented in the R package “mixOmics”.

References

1. Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C., Charles, T., Chen, X.,

Cocolin, L., Eversole, K., Corral, G. H., Kazou, M., Kinkel, L., Lange, L., Lima, N., Loy,

A., Macklin, J. A., Maguin, E., Mauchline, T., McClure, R., Mitter, B., … Schloter, M.

(2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome,

8(1), 103. https://doi.org/10.1186/s40168-020-00875-0

2. Calle M. L. (2019). Statistical Analysis of Metagenomics Data. Genomics & informatics,

17(1), e6. https://doi.org/10.5808/GI.2019.17.1.e6

3. Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello,

E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T.,

Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D.,

Pirrung, M., Reeder, J., … Knight, R. (2010). QIIME allows analysis of high-throughput

community sequencing data. Nature methods, 7(5), 335–336.

https://doi.org/10.1038/nmeth.f.303

4. Khondoker M.G. Dastogeer, Farzana Haque Tumpa, Afruja Sultana, Mst Arjina Akter,

Anindita Chakraborty (2020). Plant microbiome–an account of the factors that shape

community composition and diversity, Current Plant Biology, 23, 100161, ISSN 2214-

6628. https://doi.org/10.1016/j.cpb.2020.100161.

5. La Rosa, P. S., Brooks, J. P., Deych, E., Boone, E. L., Edwards, D. J., Wang, Q.,

Sodergren, E., Weinstock, G., & Shannon, W. D. (2012). Hypothesis testing and power

calculations for taxonomic-based human microbiome data. PloS one, 7(12), e52078.

https://doi.org/10.1371/journal.pone.0052078

268

6. Lê Cao, K. A., Boitard, S., & Besse, P. (2011). Sparse PLS discriminant analysis:

biologically relevant feature selection and graphical displays for multiclass problems.

BMC bioinformatics, 12, 253. https://doi.org/10.1186/1471-2105-12- 253

7. McMurdie, P. J., & Holmes, S. (2013). phyloseq: an R package for reproducible

interactive analysis and graphics of microbiome census data. PloS one, 8(4), e61217.

https://doi.org/10.1371/journal.pone.0061217

8. Odintsova, V., Tyakht, A., & Alexeev, D. (2017). Guidelines to Statistical Analysis of

Microbial Composition Data Inferred from Metagenomic Sequencing. Current issues in

molecular biology, 24, 17–36. https://doi.org/10.21775/cimb.024.017

9. Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B.,

Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B.,

Thallinger, G. G., Van Horn, D. J., & Weber, C. F. (2009). Introducing mothur: open-

source, platform-independent, community-supported software for describing and

comparing microbial communities. Applied and environmental microbiology, 75(23),

7537–7541. https://doi.org/10.1128/AEM.01541-09

269

Metagenomics Data Analysis using QIIME 2

Anu Sharma

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

1. Introduction

QIIME 2 is a completely reengineered microbiome bioinformatics platform based on the

popular QIIME platform, which it has replaced. QIIME 2 facilitates comprehensive and fully

reproducible microbiome data science, improving accessibility to diverse users by adding

multiple user interfaces.

Fig. 1: Pipeline for amplicon data analysis

Key features:

• Integrated and automatic tracking of data provenance

• Semantic type system

• Plugin system for extending microbiome analysis functionality

• Support for multiple types of user interfaces (e.g. API, command line, graphical)

2. Data files: QIIME 2 artifacts

Data produced by QIIME 2 exist as QIIME 2 artifacts. A QIIME 2 artifact contains data and

metadata. The metadata describes things about the data, such as its type, format, and how it

was generated (provenance). A QIIME 2 artifact typically has the .qza file extension when

stored in a file.

Since QIIME 2 works with artifacts instead of data files (e.g. FASTA files), data can be

imported at any step in an analysis, though typically it start by importing raw sequence data.

QIIME 2 also has tools to export data from an artifact. By using QIIME 2 artifacts instead of

simple data files, QIIME 2 can automatically track the type, format, and provenance of data for

270

researchers. Using artifacts instead of data files enables researchers to focus on the analyses

they want to perform, instead of the particular format the data needs to be in for an analysis.

2.1 Data files: visualizations

Visualizations are another type of data generated by QIIME 2. When written to disk,

visualization files typically have the .qzv file extension. Visualizations contain similar types of

metadata as QIIME 2 artifacts, including provenance information. Similar to QIIME 2 artifacts,

visualizations are standalone information that can be archived or shared with collaborators.

In contrast to QIIME 2 artifacts, visualizations are terminal outputs of an analysis, and can

represent, for example, a statistical results table, an interactive visualization, static images, or

really any combination of visual data representations. Since visualizations are terminal outputs,

they cannot be used as input to other analyses in QIIME 2.

2.2 Semantic types

Every artifact generated by QIIME 2 has a semantic type associated with it. Semantic types

enable QIIME 2 to identify artifacts that are suitable inputs to an analysis. For example, if an

analysis expects a distance matrix as input, QIIME 2 can determine which artifacts have a

distance matrix semantic type and prevent incompatible artifacts from being used in the

analysis (e.g. an artifact representing a phylogenetic tree). Semantic types also help users avoid

semantically incorrect analyses. For example, a feature table could contain presence/absence

data (i.e., a 1 to indicate that an OTU was observed at least one time in a given sample, and a

0 to indicate than an OTU was not observed at least one time in a given sample). However, if

that feature table were provided to an analysis computing a quantitative diversity metric where

OTU abundances are included in the calculation (e.g., weighted UniFrac), the analysis would

complete successfully, but the result would not be meaningful.

This guide assumes that QIIME 2 have been installed using one of the procedures in the install

documents at https://docs.qiime2.org/2022.8/install/.

3. Obtaining and importing data

wget \

 -O 'emp-single-end-sequences.zip' \

 'https://docs.qiime2.org/2021.11/data/tutorials/moving-pictures-usage/emp

-single-end-sequences.zip'

unzip -d emp-single-end-sequences emp-single-end-sequences.zip

qiime tools import \

 --type 'EMPSingleEndSequences' \

 --input-path emp-single-end-sequences \

 --output-path emp-single-end-sequences.qza

4. Demultiplexing sequences

To demultiplex sequences we need to know which barcode sequence is associated with each

sample. This information is contained in the sample metadata file. You can run the following

commands to demultiplex the sequences (the demux emp-single command refers to the fact

that these sequences are barcoded according to the Earth Microbiome Project protocol, and are

single-end reads). The demux.qza QIIME 2 artifact will contain the demultiplexed sequences.

271

https://docs.qiime2.org/2022.8/install/
https://data.qiime2.org/2022.8/tutorials/moving-pictures/sample_metadata
http://earthmicrobiome.org/

qiime demux emp-single \

 --i-seqs emp-single-end-sequences.qza \

 --m-barcodes-file sample-metadata.tsv \

 --m-barcodes-column barcode-sequence \

 --o-per-sample-sequences demux.qza \

 --o-error-correction-details demux-details.qza

After demultiplexing, it’s useful to generate a summary of the demultiplexing results. This

allows you to determine how many sequences were obtained per sample, and also to get a

summary of the distribution of sequence qualities at each position in your sequence data.

qiime demux summarize \

 --i-data demux.qza \

 --o-visualization demux.qzv

5. Sequence quality control and feature table construction

QIIME 2 plugins are available for several quality control methods, including DADA2, Deblur,

and basic quality-score-based filtering. In this tutorial we present this step using DADA2. These

steps are interchangeable, so you can use whichever of these you prefer. The result of both of

these methods will be a FeatureTable[Frequency] QIIME 2 artifact, which contains counts

(frequencies) of each unique sequence in each sample in the dataset, and

a FeatureData[Sequence] QIIME 2 artifact, which maps feature identifiers in

the FeatureTable to the sequences they represent.

qiime dada2 denoise-single \

 --i-demultiplexed-seqs demux.qza \

 --p-trim-left 0 \

 --p-trunc-len 120 \

 --o-representative-sequences rep-seqs.qza \

 --o-table table.qza \

 --o-denoising-stats stats.qza

qiime metadata tabulate \

 --m-input-file stats.qza \

 --o-visualization stats.qzv

6. FeatureTable and FeatureData summaries

qiime feature-table summarize \

 --i-table table.qza \

 --m-sample-metadata-file sample-metadata.tsv \

 --o-visualization table.qzv

qiime feature-table tabulate-seqs \

 --i-data rep-seqs.qza \

 --o-visualization rep-seqs.qzv

7. Generate a tree for phylogenetic diversity analyses

qiime phylogeny align-to-tree-mafft-fasttree \

272

https://www.ncbi.nlm.nih.gov/pubmed/27214047
http://msystems.asm.org/content/2/2/e00191-16
https://www.nature.com/nmeth/journal/v10/n1/abs/nmeth.2276.html
https://www.ncbi.nlm.nih.gov/pubmed/27214047

 --i-sequences rep-seqs.qza \

 --output-dir phylogeny-align-to-tree-mafft-fasttree

8. Alpha and beta diversity analysis

qiime diversity core-metrics-phylogenetic \

 --i-phylogeny phylogeny-align-to-tree-mafft-fasttree/rooted_tree.qza

\

 --i-table table.qza \

 --p-sampling-depth 1103 \

 --m-metadata-file sample-metadata.tsv \

 --output-dir diversity-core-metrics-phylogenetic

9. Taxonomic analysis

wget \

 -O 'gg-13-8-99-515-806-nb-classifier.qza' \

 'https://docs.qiime2.org/2021.11/data/tutorials/moving-pictures-usage

/gg-13-8-99-515-806-nb-classifier.qza'

qiime feature-classifier classify-sklearn \

 --i-classifier gg-13-8-99-515-806-nb-classifier.qza \

 --i-reads rep-seqs.qza \

 --o-classification taxonomy.qza

qiime metadata tabulate \

 --m-input-file taxonomy.qza \

 --o-visualization taxonomy.qzv

qiime taxa barplot \

 --i-table table.qza \

 --i-taxonomy taxonomy.qza \

 --m-metadata-file sample-metadata.tsv \

 --o-visualization taxa-bar-plots.qzv

References:

1. https://docs.qiime2.org/2022.8/tutorials/moving-pictures-usage/

2. https://docs.qiime2.org/2022.8/concepts/#data-files-qiime-2-artifacts

3. Mehrbod Estaki,Lingjing Jiang,Nicholas A. Bokulich,Daniel McDonald,Antonio

González,Tomasz Kosciolek,Cameron Martino,Qiyun Zhu,Amanda Birmingham,Yoshiki

Vázquez-Baeza,Matthew R. Dillon,Evan Bolyen,J. Gregory Caporaso,Rob Knight (2020).

QIIME 2 Enables Comprehensive End-to-End Analysis of Diverse Microbiome Data and

Comparative Studies with Publicly Available Data. Current Protocols in Bioinformatics.

Current Protocols in Bioinformaticse100, Volume 70, Published in Wiley Online Library

(wileyonlinelibrary.com).doi: 10.1002/cpbi.100

273

https://docs.qiime2.org/2022.8/tutorials/moving-pictures-usage/
https://docs.qiime2.org/2022.8/concepts/#data-files-qiime-2-artifacts

Statistical Analysis of Metagenomics Data

Ritwika Das

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

❑ Statistical Analysis of Metagenomic Profiles

Taxonomic and functional differences between metagenomic samples can highlight the

influence of ecological factors on patterns of microbial life in a wide range of habitats.

Statistical hypothesis tests help to distinguish ecological influences from sampling

artifacts, but knowledge of only the p-value is insufficient to make inferences about

biological relevance. Biological relevance of a feature requires consideration of effect

sizes and their associated confidence intervals. Interpretation of statistical results can also

benefit from transforming raw p-values to superior interpretations and by allowing

interactive filtering that permits focusing on features with specific statistical properties.

p-value indicates the probability of an observed difference occurring simply by chance.

Features in a profile with p-values below 0.05 are termed as statistically significant and

can reasonably be assumed to be enriched in one of the metagenomes due to ecological or

taxonomic differences as opposed to being the result of a sampling artifact. Fisher’s exact

test uses hypergeometric distribution to efficiently calculate the exact p-value without the

requirement of all possible permutation of sequences in a pair of metagenomic samples.

The chi-square test and G-test are well-known large sample approximations to Fisher’s

exact test. Barnard’s test is computationally prohibitive for the majority of features in a

typical metagenomic profile. So, we need to decide between an approximation to

Barnard’s exact test (e.g., bootstrapping) and Fisher’s exact test.

A typical metagenomic profile consists of several hundred features. When performing

multiple hypothesis tests, it is useful to modify the p-values so that they reflect a particular

interpretation. If we wish to examine a list of features where the probability of observing

one or more false positive is less than a specified probability, we can use a correction

method. Commonly applied correction methods include Bonferroni, Holm-Bonferroni and

Šidák (Abdi, 2007). Alternatively, during exploratory analysis, we may be willing to

accept a specific percentage of false positives. This can be achieved using the Benjamini–

Hochberg false discovery rate (FDR) procedure (Benjamini and Hochberg, 1995) or the

Storey FDR approach (Storey and Tibshirani, 2003). These approaches complement each

other while performing an exploratory analysis. The list of significant features obtained

without any multiple test correction method gives us an initial global look at those features

which may be differentially abundant between our samples. An FDR approach can be used

to refine this initial list and to make the number of expected false positives explicit. Finally,

a correction technique can be applied to focus our attention to only those features where

the observed enrichment or depletion is highly unlikely to be a sampling artifact.

❑ Effect Size and Confidence Intervals

To assess if a feature is of biological relevance, we should consider the magnitude of the

observed difference (i.e., an effect size statistic). An arbitrarily small effect can be

statistically significant if the sample sizes are sufficiently large. So, biological significance

of a feature must be supported by effect size statistics as well as p-values.

274

Table 1: Contingency table summarising data for a feature of interest

Table 2: Effect size statistics of a feature of interest

The most intuitive effect size statistic is the difference between proportions (DP) of

sequences assigned to a given feature in the two samples. Ratio of proportions (RP) is also

a measure that provides complementary information to the DP. Consideration of multiple

effect size statistics is often essential while assessing biological relevance as features can

have a small (or, large) DP, but a large (or, small) RP. The odds ratio (OR) has many

desirable mathematical properties. However, RP is preferred over OR due to the difficulty

in interpretation of the latter.

Confidence interval (CI) indicates the range of effect size values that have a specified

probability of being compatible with the observed data. A 95% CI gives a lower and upper

bound in which the true effect size will be contained 19 times out of 20. There is a close

relationship between p-values and CI. CI that encompasses the identity effect size (e.g.,

DP = 0 or RP = OR = 1) will have a p-value > (1 – the coverage of the CI) (i.e., a p-value

≥ 0.05 for a 95% CI). If the identity effect size is outside the CI, the p-value will be ≤ 0.05

for a 95% CI. Critically, CI provides a mean to infer the biological relevance of a feature

even when it is marginally statistically significant.

❑ Software: STAMP (Parks et al., 2010)

❑ Concept of STAMP

STAMP is a open source software package for analyzing various metagenomic profiles,

viz., taxonomic profiles indicating the number of marker genes assigned to different

taxonomic units or functional profiles indicating the number of sequences assigned to

different subsystems or pathways. A user-friendly, graphical interface permits easy

exploration of statistical results and generation of publication quality plots for inferring

biological relevant features present in a metagenomic profile. STAMP facilitates statistical

hypothesis tests to identify features (e.g., taxa or metabolic pathways) that differ

significantly between

275

1. Pairs of profiles (Two Sample)

2. Sets of profiles organized into two groups (Two Groups)

3. Sets of profiles organized into multiple groups (Multiple Groups)

❑ Software Installation

STAMP is implemented in Python and can be installed in any operating system, i.e.,

Windows/ MacOS/Linux. Source codes and executable binary file can be downloaded

from the following link:

https://github.com/dparks1134/STAMP/releases/tag/v2.1.3

Upon installation of the software, some example datasets also get downloaded in the

installation folder. Here, profile and metadata for the dataset EnterotypeArumugam is used

for the demonstration of this software.

❑ Input files

STAMP requires 2 input files:

1. Metagenomic profile file

2. Metadata file

276

https://github.com/dparks1134/STAMP/releases/tag/v2.1.3

1. Metagenomic profile file:

STAMP can analyze both taxonomic and functional profiles. User defined input files

should be text files in tab-separated values (TSV) format. It can contain hierarchical

profile information for two or more samples. The first row of the file contains headers

for each column. First few columns indicate the hierarchical structure of a feature in

an arrangement of the highest to the lowest level. There are no restrictions on the depth

of the hierarchy but it must form a strict tree structure. Reads that have an unknown

classification at any point in the hierarchy should be marked as unclassified (case

insensitive). The parent of a classified child in the hierarchy must also be classified.

Other columns contain abundance values of features in different samples.

STAMP can analyze taxonomic or functional profiles obtained from MG-RAST

software in .tsv format. First column of this MG-RAST profile is the metagenome

column. To perform statistical analysis using STAMP, MG-RAST profile needs to be

converted into a STAMP compatible profile (.spf) using: File → Create STAMP profile

from... → MG-RAST profile

Similarly, taxonomic and functional profiles from BIOM, Rita, CoMet and mothur can

also be analyzed using STAMP. It can directly process abundance profiles for multiple

samples obtained from the JGI IMG/M web portal. COG profiles from IMG/M do not

contain information about which COG category or higher level class a COG belongs

to. STAMP can add this information using: Append COG categories to IMG/M profile.

2. Metadata file:

STAMP requires additional data associated with each sample to perform statistical

analysis of metagenomic samples organized in two or more groups. These additional

information are provided in a metadata file in .tsv format. First column of this file

indicates Sample Ids. Other columns provide information about various grouping

categories and corresponding values.

277

If metadata file is not provided, STAMP assumes all samples contained in a single

group and performs only “Two Sample” tests.

❑ Analyzing Metagenomic Profiles:

Upload both profile file and metadata file to the STAMP software to perform various

statistical analysis for multiple groups/ two groups/ two samples.

❖ Statistical Analysis for Multiple Groups

Statistical properties can be set through the Properties window. It helps to set a number

of properties related to performing statistical tests:

• Parent Level: The proportion of sequences assigned to a feature will be calculated

relative to the total number of sequences assigned to its parent category. By default,

it is set as Entire sample.

• Profile Level: The hierarchical level at which statistical tests will be performed. It

facilitates analysis of metagenomic profile at different depths of the hierarchy.

• Unclassified: Unclassified sequences can be handled in 3 ways: a) retained in the

profile (Retain unclassified reads), removed from the profile (Remove unclassified

reads), or removed from consideration except when calculating a profile (Use only

for calculating frequency profiles).

• Statistical Properties: The statistical test, post-hoc test along with the confidence

interval width, effect size, and multiple test correction method to use can be

specified in this section. A list of methods provided in STAMP for analyzing

multiple groups is given in Table 3.

278

• Filtering: This section provides a number of filters for identifying features that

satisfy a set of criteria (i.e., desired p-value and effect size).

Table 3: Multiple groups statistical techniques available in STAMP

279

❖ Graphical exploration of results:

Statistical analysis results can be graphically represented with the help of various

plots. The Group legend window helps to select the particular grouping category for

which we want to explore the results.

The following plots can be generated for exploring the analysis results of multiple

groups:

• PCA plot: Principal component analysis (PCA) plot of the samples. Clicking on a

marker within the plot indicates the sample represented by the marker. Markers of

different colours belong to different groups.

280

• Heatmap plot: It represents the proportion of sequences assigned to each feature

in every sample. Dendrograms can be shown along the sides of the heatmap and

are used to cluster both the features and samples.

• Bar plot: Bar plot represents the proportion of sequences assigned to a particular

feature in every sample.

281

• Box plot: It is similar to a bar plot. Box plot provides a more concise summary of

the distribution of sequence proportions of a feature in various groups. The box-

and-whiskers graphics show the median of the data as a line, the mean of the data

as a star, the 25th and 75th percentiles of the data as the top and bottom of the box,

and uses whiskers to indicate the most extreme data point within 1.5*(75th – 25th

percentile) of the median. Data points outside of the whiskers are shown as crosses.

• Post hoc plot: Upon rejection of the null hypothesis, post hoc tests are performed

to identify which pairs of groups are differing significantly from each other. Post

hoc plot shows the results of such a test. It provides p-value and effect size measure

for each pair of groups for a particular feature.

Each of these plots provides a number of customization options. To customize a plot,

click the Configure plot button below the plot. Plots can also be sent to a new window

using the Send plot to window command under the View menu. This allows multiple

plots to be viewed at once. Plots can be saved in raster (PNG) and vector (PDF, PS,

EPS, SVG) formats (File → Save plot).

282

❖ Statistical Analysis for Two Groups

To analyze a pair of groups, click on the Two groups tab in the Properties window. In

the Profile section, we have to specify which pair of groups will be analyzed. Data

points of these 2 groups will be represented by 2 different colours. Groupings are

determined by the value of the Group field present in the Group legend window. Here,

the filtering section provides a large number of filters for identifying features that

satisfy a set of criteria.

Sequence filter removes features that have been assigned fewer than the specified

number of sequences. Parent sequence filter does the filtering of sequence counts

within parental categories. Effect size filters remove features with small effect sizes.

Here, two different effect size statistics are used. It allows one to filter features based

on both absolute (i.e., difference between proportions) and relative (i.e., ratio of

proportions) measure of effect size.

A list of methods for statistical analysis of metagenomic profiles present in two groups

is given in Table 4.

283

Table 4: Two groups statistical techniques available in STAMP

❖ Graphical exploration of results:

Similar to multiple groups, here, bar plot, box plot, PCA plot and heatmap plot can be

generated to explore the result of statistical analysis for two groups.

284

Other plots:

• Scatter plot:

It indicates the mean proportion of sequences within each group which are assigned

to each feature. This plot is useful for identifying features that are clearly enriched

in one of the two groups. The spread of the data within each group can be shown

in various ways (e.g., standard deviation, minimum and maximum proportions).

• Extended error bar plot:

It indicates the difference in mean proportion between two groups along with the

associated confidence interval of this effect size and the p-value of the specified

statistical test. In addition, a bar plot indicates the proportion of sequences assigned

to a feature in each group of samples.

285

❖ Statistical Analysis for Two Samples

To analyze a pair of samples, click on the Two samples tab in the Properties window.

The Profile section is used to specify which pair of samples will be analyzed. Data

points (features) belonging to these 2 samples will be represented by 2 different

colours.

Similar to the previous analyses, various statistical properties and filtering criteria can

be explicitly mention for the analysis of metagenomic profiles belonging to two

different samples.

A list of statistical techniques for the analysis of metagenomic profiles belonging to

two different samples is given in Table 5.

286

Table 5: Two samples statistical techniques available in STAMP

❖ Graphical exploration of results:

Similar to the statistical analysis for two groups, here, bar plot, scatter plot and

extended error bar plot can be generated to explore the result of statistical analysis of

metagenomic profiles belonging to two different samples.

Other plots:

• Profile bar plot: It is a grouped bar plot indicating the proportion of sequences

assigned to each feature in the two selected samples. It is recommended for

investigating higher hierarchical levels of a profile where the number of features is

relatively small. Confidence intervals for each proportion are calculated using the

Wilson score method.

287

• Sequence histogram: It gives a general overview of the number of sequences

assigned to each feature in both the samples.

• Multiple comparison plots: It can be used to analyze the results of applying a

multiple test correction technique, e.g., Benjamini-Hochberg FDR.

288

• p-value histogram: It shows the distribution of p-values and corrected p-values

(i.e., number of features corresponding to a particular p-value) in a metagenomic

profile.

References:

Abdi, H. (2007). Encyclopedia of Measurement and Statistics. Sage, Thousand Oaks, CA.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and

powerful approach to multiple testing. Journal of the Royal Statistical Society: Series

B, 57, 289 – 300.

Parks, D. H. and Beiko, R. G. (2010). Identifying biologically relevant differences between

metagenomic communities. Bioinformatics, 26, 715 – 721.

Storey, J. D. and Tibshirani, R. (2003). Statistical significance for genomewide studies.

Proceedings of the National Academy of Sciences of the United States of America,

100, 9440 – 9445.

289

Protein Structure Prediction

Sunil Kumar

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Protein structure prediction is one of the most significant technologies pursued by

computational structural biologist and theoretical chemist. It has the aim of determining the

three-dimensional structure of proteins from their amino acid sequences. In other words, this

is expressed as the prediction of protein tertiary structure from primary structure.

The practical role of protein structure prediction is now more important than ever.

Massive amounts of protein sequence data have been derived from modern large-scale DNA

sequencing efforts such as the Human Genome Project. But, the output of experimentally

determined protein structures, by time-consuming and relatively expensive X-ray

crystallography or NMR spectroscopy, is lagging far behind the output of protein sequences.

Due to exponentially improving computer power, and new algorithms, much

progress is being made to overcome these factors by the many research groups that are

interested in the task. Prediction of structures for small proteins is now a perfectly realistic

goal. A wide range of approaches are routinely applied for such predictions. These

approaches may be classified into two broad classes; ab initio modeling and comparative or

homology modeling.

Ab initio Method

Ab initio- or de novo- protein modeling methods seek to build three-dimensional

protein models "from scratch", i.e., based on physicochemical principles rather than

(directly) on previously solved structures. There are many possible procedures that either

attempt to mimic protein folding or apply some stochastic method to search possible

solutions (i.e., global optimization of a suitable energy function). These procedures tend to

require vast computational resources, and have thus only been carried out for tiny proteins.

To attempt to predict protein structure de novo for larger proteins, we will need better

algorithms and larger computational resources like those afforded by either powerful

supercomputers (such as Blue Gene or MDGRAPE-3).

290

Comparative protein modeling

Comparative protein modeling uses previously solved structures as starting points, or

templates. This is effective because it appears that although the number of actual proteins is

vast, there is a limited set of tertiary structural motifs to which most proteins belong. It has

been suggested that there are only around 2000 distinct protein folds in nature, though there

are many millions of different proteins.

These methods may also be split into two groups:

 Homology modeling is based on the reasonable assumption that two homologous

proteins will share very similar structures. Because a protein's fold is more

evolutionarily conserved than its amino acid sequence, a target sequence can be

modeled with reasonable accuracy on a very distantly related template, provided that

the relationship between target and template can be discerned through sequence

alignment. It has been suggested that the primary bottleneck in comparative

modeling arises from difficulties in alignment rather than from errors in structure

prediction given a known-good alignment. Homology modeling is most accurate

when the target and template have similar sequences.

 Protein Threading scans the amino acid sequence of an unknown structure against a

database of solved structures. In each case, a scoring function is used to assess the

compatibility of the sequence to the structure, thus yielding possible three-

dimensional models. This type of method is also known as 3D-1D fold recognition

due to its compatibility analysis between three-dimensional structures and linear

protein sequences. This method has also given rise to methods performing an inverse

folding search by evaluating the compatibility of a given structure with a large

database of sequences, thus predicting which sequences have the potential to produce

a given fold.

Homology Modeling: General Procedures

The steps to creating a homology model are as follows:

1) Identify homologous proteins and determine the extent of their sequence similarity

with one another and the unknown.

291

2) Align the sequences.

3) Identify structurally conserved and structurally variable regions.

4) Generate coordinates for core (structurally conserved) residues of the unknown

structure from those of the known structure(s).

5) Generate conformations for the loops (structurally variable) in the unknown

structure.

6) Build the side-chain conformations.

7) Refine and evaluate the unknown structure.

1) Identifying Homologues

Several computerized search methods are available to assist in identifying

homologues. In most cases of homology modeling, we have the sequence of a protein for

which we want to model the three-dimensional structure (the unknown or target). We then

apply sequence search methods to identify proteins with which the unknown has some

degree of sequence similarity and for which the three-dimensional structures are available

(the templates). We then assume that these proteins are homologous with our unknown and

use the three-dimensional structures of these proteins to develop a model of the structure of

our unknown. Ideally, one should have several homologues with which to develop a

homology model, but modeling can be done with only one known structure.

2) Aligning Sequences

 A critical step in the development of a homology model is the alignment of the

unknown sequence with the homologues. Many methods are available for sequence

alignment. Factors to be considered when performing an alignment are-

1) Which algorithm to use for sequence alignment,

2) Which scoring method to apply, and

3) Whether and how to assign gap penalties.

Algorithms for Alignments

292

Sequence alignments generally are based on the dynamic programming algorithm of

Needleman and Wunsch. Current methods include FASTA, Smith-Waterman, and BLASTP,

with the last method differing from the first two in not allowing gaps.

Scoring Alignments

Scoring of alignments typically involves construction of a 20x20 matrix in which

identical amino acids and those of similar character (i.e., conservative substitutions) may be

scored higher than those of different character. Four general types of scoring have been

applied to alignments:

Identity: considers only identical residues

Genetic Code: considers the number of base changes in DNA or RNA to interconvert the

codons for the amino acids

Chemical Similarity: considers the physico-chemical properties (e.g., polarity, size, charge)

with greater weight given to alignment of similar properties

Observed Substitutions: considers substitution frequencies observed in alignments of

sequences. The substitution schemes are generally considered to be the best methods for

scoring alignments. These methods are based on an analysis of the frequency with which a

given amino acid is observed to be replaced by other amino acids among proteins for which

the sequences can be aligned.

PAM Matrices

One of the first substitution scoring schemes to be developed was the Dayhoff

mutation data matrix. Dayhoff and co-workers developed this method during analysis of the

evolution of proteins. The mutation probability matrix that they derived gives the probability

of one amino acid mutating to a second amino acid within a particular evolutionary time.

The scoring schemes are denoted PAM (Percentage of Acceptable point Mutations)

followed by a number. For example, if alignments were scored using PAM40 and PAM250,

293

the lower PAM matrix would recognize short alignments of highly similar sequences and the

higher PAM matrix would find longer, weaker local alignments

BLOSUM Matrices

The PAM substitution matrix is based on substitution frequencies from global

alignments of very similar sequences. Henikoff and Henikoff extended this approach by

developing substitution matrices using local multiple alignments of more distantly related

sequences. A database was assembled that contained multiple alignments (without gaps) of

short regions of related sequences. These sequences were clustered into groups (blocks)

based on their similarity at some threshold value of percentage identity. Blocks substitution

matrices (BLOSUM) were derived based on substitution frequencies for all pairs of amino

acids within a group. The different BLOSUM matrices were obtained by varying the

threshold. For example, a BLOSUM80 matrix is derived using a threshold of 80% identity.

Evaluating the Alignment

The final aspect of sequence alignment that should be considered is evaluation of the

accuracy of the alignment. The best way to assess the accuracy is to compare alignments

from sequence comparisons with alignments from protein three-dimensional structures. Of

course this assessment is possible only if you are working with a family of proteins for

which three-dimensional structures are known for at least two members of the family. In

fact, this approach to evaluation of alignments can be applied during the alignment process.

3) Identification of Structurally Conserved and Structurally Variable

Regions

After the known structures are aligned, they are examined to identify the structurally

conserved regions (SCRs) from which an average structure, or framework, can be

constructed for these regions of the proteins. Variable regions (VRs), in which each of the

known structures may differ in conformation, also must be identified because special

techniques must be applied to model these regions of the unknown protein.

294

When only one known structure is available for homology modeling, it is more

difficult to identify the SCRs. Based on analyses of other homologues for which multiple

structures are available; we know that the SCRs generally correspond to the elements of

secondary structure, such as alpha-helices and beta-sheets, and to ligand- and substrate-

binding sites. Thus, these regions are used as the SCRs in the cases where only one structure

is available. The VRs usually lie on the surface of the proteins and form the loops where the

main chain turns.

4) Generate coordinates for core (structurally conserved) residues of the

unknown structure from those of the known structure(s)

 When generating coordinates for the unknown structure, one needs to model main

chain atoms and side chain atoms, both in SCRs and VRs.

For the SCRs, it is straightforward to generate the coordinates of the main chain

atoms of the unknown structure from those of the known structure(s). Side chain coordinates

are copied if the residue type in the unknown is identical or very similar to that in the known

homologues. For other side chain coordinates one can apply a side chain rotamer library in a

systematic approach to explore possible side chain conformations. It may be desirable to

weight the contribution of each homologue in each SCR based on the extent of similarity

with the unknown. In the event that some coordinates in the unknown are undefined in the

SCRs, regularization can be used to build and relax both main chain and side chain atoms in

those regions. Note that this procedure should be used only if the region of undefined atoms

is one or two residues in length.

5) Generate conformations for the loops (structurally variable) in the

unknown structure

For the VRs, a variety of approaches may be applied in assigning coordinates to the

unknown. These regions will correspond most often to the loops on the surface of the

protein. If a loop in one of the known structures is a good model for that of the unknown,

then the main chain coordinates of that known structure can be copied. Side chain

295

coordinates of residues that are similar in length and character also may be copied. Rotamer

libraries can be used to define other side chain coordinates.

 When a good model for a loop cannot be found among the known structures, one can

search fragment databases for loops in other proteins that may provide a suitable model for

the unknown. A residue range is chosen to include the undefined loop as well as a few

residues (e.g., three) on either side of the loop for which coordinates have been defined.

Fragments are examined for their ability to fit in the undefined region without making bad

contacts with other atoms and to overlap well with the residues on either side of the loop.

The loop may then be subjected to conformational searching to identify low energy

conformers if desired. Coordinates for side chain atoms in these loop regions may be copied

if residues are similar, though it is likely that considerable application of side chain rotamer

libraries will be required to define coordinates in these regions.

6) Evaluation and Refinement of the Structure

For a homology model from any source, it is important to demonstrate that the

structural features of the model are reasonable in terms of what is know about protein

structures in general. That is, researchers have analyzed three-dimensional structures of

proteins from which basic principles of protein structure and folding have been developed.

Several programs are available to assist in this analysis of correctness of a homology model.

The criteria for analysis of correctness can include:

1) Main chain conformations in acceptable regions of the Ramachandran map.

2) Planar peptide bonds.

3) Side chain conformations that correspond to those in the rotamer library

4) Hydrogen-bonding of polar atoms if they are buried

5) Proper environments for hydrophobic and hydrophilic residues

6) No bad atom-atom contacts

7) No holes inside the structure.

Programs that provide structure analysis along with output includePROCHEK and 3D-

Profiler. PROCHECK is based on an analysis of (phi, psi) angles, peptide bond planarity,

bond lengths, bond angles, hydrogen-bond geometry, and side-chain conformations of

known protein structures as a function of atomic resolution. Thus, the expected values of

296

these parameters are known and can be compared to a modeled structure based on the

atomic resolution of the structures from which the model was developed. 3D-profiler

compares a homology model to its sequence using a 3D profile. The profile is based on the

statistical preferences of each of the 20 amino acids for particular environments within the

protein. Each residue position in a 3D model can be characterized by its environment.

Preferred environments for amino acids are derived from known three-dimensional

structures and are defined by three parameters: (1) the area of each residue that is buried, (2)

the fraction of side-chain area that is covered by polar atoms (i.e., O and N), and (3) the

local secondary structure. Based on these environment variables, a 3D structure is converted

into a 1D profile that describes each residue in the folded protein structure. Examination of

these profiles reveals which regions of a sequence appear to be folded correctly and which

do not.

Once any irregularities have been resolved, the entire structure may then be subjected to

further refinement. This process may consist of energy minimization with restraints,

especially for the SCRs. The restraints then may be gradually removed for subsequent

minimizations. It also may be advantageous to apply molecular dynamics in conjunction

with energy minimization. For any of these refinement procedures, the structure should be

solvated, using for example crystallographic waters from the known homologues, a solvent

shell, or a periodic box of pre-equilibrated water molecules.

Databases of Structures from Homology Modeling

Databases are now available that contain large numbers of protein structures that

have been obtained by comparative (homology) modeling. Two of these databases are listed

here:

1) ModBase - It is a query able database of annotated protein structure models. The

models are derived by Modpipe,an automated modeling pipeline relying on the

programs PSI-BLAST and MODELLER.The database also includes fold

assignments and alignments on which the models were based.MODBASE

contains theoretically calculated models, which may contain significant errors,

not experimentally determined structures.

297

2) 3DCrunch - It is a large scale modeling project that aims to submit all entries

from protein sequence databases to SWISS-MODEL. Currently the database

contains 64,000 entries.

Automated Web-Based Homology Modeling

Web-based tools are now available to generate models of protein 3-dimensional

structures using comparative modeling techniques.

1) SWISS-MODEL - It is a fully automated protein structure homology-modeling

server, accessible via the ExPASy web server, or from the program Deep View

(Swiss Pdb-Viewer). The purpose of this server is to make Protein Modeling

accessible to all biochemists and molecular biologists World Wide. The present

version of the server is 3.5 and is under constant improvement and debugging.

SWISS-MODEL was initiated in 1993 by Manuel Peitsch

2) WHAT IF - It is available on EMBL servers, includes three components, one to

generate the homology models, one to evaluate the quality of the homology

models, and one to evaluate models of proteins for which the structure is already

known, thereby providing for evaluation of the quality of the modeling program.

Source:-

1) http://en.wikipedia.org/wiki/Homology_modeling

2) http://en.wikipedia.org/wiki/Protein_structure_prediction

3) http://cmbi.kun.nl/gvteach/hommod/index.shtml

4) http://bioinfo.se/kurser/swell/homology.html

5) Sali A, Blundell TL. (1993). Comparative protein modelling by satisfaction of spatial

restraints. J Mol Biol 234(3):779-815

6) Fiser A, Sali A. (2003). ModLoop: automated modeling of loops in protein structures.

Bioinformatics 19(18):2500-2510

7) John B, Sali A. (2003). Comparative protein structure modeling by iterative alignment,

model building and model assessment. Nucleic Acids Res 31(14):3982-3992

298

http://www.bioinfo.se/kurser/swell/homology.html

Molecular Docking

Sunil Kumar

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Objective:

To find the interaction between the protein and a ligand molecule by performing docking studies.

Theory

A molecule is a small chemical element that is made up of two or more atoms held together by

chemical bonds. A molecule can be composed of either single kind of element (e.g. H2) or different

kinds of elements (e.g. CO2). Molecules can be found in both living things and non living things.

A drug is a small molecule that can interact, bind and control the function of biological receptors

that helps to cure a disease. Receptors are proteins that interact with other biological molecules to

maintain various cellular functions in plants. Enzymes, hormone receptors, cell signaling

receptors, neurotransmitter receptors etc. are some important receptors in plants.

Drug designing is a process of designing a drug molecule that can interact and bind to a target.

Receptors are molecules which can be seen on the surface of the cell which receives signals and

can be defined as a molecule which recognizes a small molecule, which on binding triggers a

cellular process. In an unbounded state receptor, functionalities of the receptor remain silent.

Hence this definition says that receptor binds specifically to a particular ligand or vice versa, but

in some cases high concentrations of ligands will binds to a multiple receptor sites.

Drug receptors usually remain without endogenous ligand. The receptors for these drugs molecules

can be an enzyme, an ion channels, proteins, nucleic acids etc. Hence the drug molecule will go

and cross link the DNA and stops DNA replication. Receptors for endogenous regulatory ligands

are hormones, growth factors etc. Hence the function of these receptors is to sense the ligands and

to initiate the response. For example, Aspirin is a small pain killer drug molecule which contains

nine carbon atoms, eight hydrogen atoms and four oxygen atoms. Design of the molecules should

be complementary in shape and charge to the target.

Molecular modeling includes computational techniques that are used to model a molecule. Drug

designing by using these modeling techniques is referred to as computer-aided drug design.

Computer based drug design is a fast, automatic, very low cost process. It can be done either by

Ligand based drug design or Structure based drug design. Ligand based drug design purely based

on the model which is going to bind to the target, defining of pharmacophoric regions are necessary

for the molecule in order to bind the target but Structure based drug design is based on the 3

dimensional structure of the target. If any target is not available it can be created by using

299

homology modeling. Using the structure of the target predict the drug molecules binding affinity

to the target. Building a molecule using computer techniques is a very important step in drug

deigning. There are so many computational tools available for building a molecule.

After modeling a molecule, check where the ligand get docked onto the receptor, and check

whether the ligand fits for the target molecule and go for Docking studies.

Protein ligand interaction:

Proteins are the fundamental units of all living cells and play a vital role in various cellular

functions. Each protein has specific function in plants. The structure of the protein determines its

function. The binding of a protein with other molecules is very specific to carry out its function

properly. For this reason every protein has a particular structure. A molecule is a small chemical

element that is made up of two or more atoms held together by chemical bonds. A drug is a small

molecule that can interact, bind and control the function of biological receptors that helps to cure

a disease.

Protein–ligand interactions are essential for all processes happening in living organisms. Ligand-

mediated signal transmission through molecular complementary is essential to all life processes;

these chemical interactions comprises biological recognition at molecular level. The evolution of

the protein functions depends on the development of specific sites which are designed to bind

ligand molecules. Ligand binding capacity is important for the regulation of biological functions.

Protein-Ligand interactions occur through the molecular mechanics involving the conformational

changes among low affinity and high affinity states. Ligand binding interactions changes the

protein state and protein function.

Key concepts of protein ligand interaction:

1. Every biological reaction is initiated by protein-ligand interaction step. Such reactions

never involve in the binding of single ligand or single step.

2. Binding of two or more ligands to a same protein indicates mutual interaction.

3. Ligand binding plays an important role in regulation of biological function.

4. Ligand binding may leads to the conformational changes in proteins.

5. Ligand and macromolecule interaction provides the strength of the interaction.

What is Docking?

Docking is a method which predicts the preferred orientation of one molecule to another molecule

when they are bound together to form a stable complex. Molecular docking can be referred as

“lock and key” model. Here the protein can be called as a lock and the ligand can be called as key,

which describes the best fit orientation of the ligand which it goes and binds to a particular protein.

300

To perform a docking, first one may require a protein molecule. The protein structures and ligands

are the inputs for the docking.

Figure1: Example of Docking

Docking can be based on two separate platforms.

1. Search algorithm

Search algorithm creates an optimum number of configurations that includes the binding modes

which are determined experimentally. Configurations are evaluated using scoring functions to

differentiate the binding modes from the other modes.

The common search algorithms are:

1. Monte Carlo methods

2. Genetic algorithms

3. Fragment-based methods

4. Point complimentary methods

5. Tabu searches

6. Systematic searches

7. Molecular dynamics.

301

2. Scoring function:

Scoring functions are developed to find the interactions between the protein- protein interactions

and protein-DNA interactions. Scoring methods are the mathematical methods used to predict the

strength of interaction between two molecules.

Steps for Docking:

1. Preparation of the Protein molecule :

Download the protein structure to the working directory. Remove the water molecules and

add hydrogens to the molecule to satisfy the valances of the molecule. X-ray

crystallographic structures cannot resolove the hydrogen, so in most of the PDB structures

hydrogens are absent. Remove the disulphide and trisulphide bonds of a protein using

AutoDock. After the preparation of the molecules, molecules has to be minimized.

2. Preparation of ligand molecules :

Prepare a ligand molecule which is going to bind to the target add hydrogen atoms to the

molecule and filter the unwanted molecules based on their properties like water and small

ions. If the stereoisomers are missing from the Molecule it requires adding stereo chemical

information. Optimize the geometry of the molecule. Take the molecule for docking

studies.

3. Surface representation:

Take a receptor and ligand molecule for studies, receptor as a static and ligand molecule as

flexible. Find the Surface of the molecules by using geometric features of the molecules.

Grid points are used to find the surface area.

4. Feature calculation

Features are the methods which are used to find the potential docking sites that are derived

from surface representation.

5. Docking

It is important to find the cavities on the surface of the receptor in protein Ligand

interaction.

6. Evaluation of Docking result:

Dock the each individual parts, docking of each segments gives the total score.

Types of Docking:

302

Rigid Docking: In a rigid molecular docking the molecules are referred as rigid objects they cannot

change their shape during the docking

Flexible Docking: In a flexible docking the molecules are referred as flexible objects that they can

change their shapes according to the ligand and the target during docking process.

 AutoDock:

AutoDock is a docking tool, which is designed to predict the behavior of the small molecules and

helps user to perform the docking of ligands to a set of grids which describes the target, once

docking completes result can visualize in 3D view. AutoDock 4 is freely available under the GNU

General Public License. AutoDock uses a Monte Carlo simulation with a rapid energy evaluation

using grid based molecular affinity potentials. It is given a volume around the protein, the rotatable

bonds for the substrate, and an arbitrary starting configuration, and the procedure produces a

relatively unbiased docking.

 Different applications of AutoDock:

1. Structure based drug design.

2. X-ray crystallography

3. Lead optimization

4. Combinatorial library design

5. Protein-Protein docking.

6. Chemical mechanism studies.

Home page of AutoDock:

Procedure

303

Here one can perform rigid docking where the protein and the ligand molecule are non flexible.

Here phosphatidyl-inositol-3-kinases (PDB ID -1E7U) is used as an example for receptor and its

ligand KWT. Autodock Tools can be used to prepare PDBQT molecules of the receptor and ligand

with PDBQT format, in which PDB format contains partial charges (“Q”) and atom types (“T”).

1. Open the Autodock software by clicking on Autodock icon from your desktop. (Figure 1).

Figure 1: AutoDock GUI

2. Read the downloaded PDB molecule 1E7U in the work space panel by clicking on the tab

“File“ and then select “Read molecules” as shown in Figure 2.

Figure 2: To read a molecule

304

Figure 3: 1E7U

3. PDB files can have errors such as missing atoms, chain breaks, water molecules etc. which is

needed to be corrected. Select all water molecules which obstruct the accuracy of docking

procedure.

4. Click on the “Edit” tab and select “Delete Water” to delete the water molecules from the receptor

molecule as shown in Figure 4.

Figure 4: Deleting water molecule

305

5. For adding Hydrogens to satisfy valency, Click on the “Edit” tab and select “Hydrogen” and

then select “Add” option as shown in Figure 5.

Figure 5: Adding Hydrogen to the receptor

6. Now select “Polar Only” -> “noBondOrder”->”Yes” respectively and then click on the “Ok”

option as shown in Figure 6.

Figure 6: Adding Hydrogen

306

7. Click on the “Grid” option and select “Macromolecules” and select Choose option for

selecting the molecule as shown in Figure 7 and 8.

Figure 7 and 8: Selecting the receptor molecule for applying grid

307

8. By clicking on the respective molecule will display the details of non bonded atoms, non polar

hydrogen atoms and non integral charge on the molecule. After that save the molecule in

PDBQT format.(Figure 9)

9. To set grid parameters, go to “Grid” -> “Grid Box” as shown in Figure 10. A “Grid Option”

message appears which helps the user to change the grid point per map in all positions. It sets

the 3D space for better binding conformation as shown in the figure. The maximum value that

can be given by the Autogrid is 126.

Figure 10: Grid Option box

308

Figure 11: Assigning 3D space for better binding conformation

10. Next step is to prepare the ligand molecule for docking. Open the ligand miolecule by clicking

on the “Ligand” option and select “Input” and click on “Open”. Select the downloaded

molecule and open it in the work space panel as shown in Figure 12.

Figure 12: Reading ligand molecule

309

Figure 13: KWT opened in work space panel

11. The receptor molecule and ligand molecule can be viewed separately by clicking on dashboard

which is displayed on the left side of the work space panel. By selecting the required molecule

will display it in work space panel. The other options will enable us to view in other formats

too as shown in Figure 14.

Figure 14: Dashboard with other options

310

12. To choose Torsions, click on the “ligand “ -> “Torsion Tree” ->”Choose Torsions” which will

display the number of rotatable bonds. The rotatable bonds is displayed in green color, non-

rotatable bonds in magenta color and unrotatable bonds in red color. To make a non - rotatable

bond to rotatable, click on the bond itself as shown in Figure 15.

Figure 15: Selecting torsions to view rotatable bonds

13. The output can be saved inPDBQT format. For that click on the “Ligand” -> “Output” ->”Save

as PDBQT” , so that it can be saved along with the receptor molecule in the same folder itself as

shown in Figure 16.

Figure 16: Output saved as PDBQT format

311

14. For running the Vina program, command prompt is used, “vina help” prints the different

options necessary for running the program. It includes commands for receptor, ligand and so

on. The configuration file is wriiten in a text document with the following format as shown in

Figure 17.

Figure 17: Configuartion file saved as a text document

15. For running Autodock Vina, vina.exe --config conf.txt --log log.txt can be used as the

script as shown in figure 14, which will create an outout file of the ligand and a log file along

with other files. (Figure 18)

Figure 18: Output in Command prompt

312

Reference:

This Experiment uses: Trott, O. and Olson, A. J. (2010), AutoDock Vina: Improving the speed

and accuracy of docking with a new scoring function, efficient optimization, and multithreading.

J. Comput. Chem., 31: 455–461. doi: 10.1002/jcc.21334,

onlinelibrary.wiley.com/doi/10.1002/jcc.21334/abstract

Webliography:

1. Autodock Vina : vina.scripps.edu/

2. Autodock Vina Download : mgltools.scripps.edu/

3. metavo.metacentrum.cz/en/docs/aplikace/software/Autodock-vina.html

4. Autodock Vina Manual: vina.scripps.edu/manual.html

Videos:

1. Autodock Vina Tutorial: vina.scripps.edu/tutorial.html

313

http://onlinelibrary.wiley.com/doi/10.1002/jcc.21334/abstract
http://vina.scripps.edu/
http://mgltools.scripps.edu/
http://metavo.metacentrum.cz/en/docs/aplikace/software/Autodock-vina.html
http://vina.scripps.edu/manual.html
http://vina.scripps.edu/tutorial.html

Molecular Dynamics and Simulation

Sneha Murmu, U. B. Angadi and Sudhir Srivastava

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Introduction

Molecular dynamics (MD) simulation is a computational technique used to study the behavior

of atoms and molecules over time. It is based on the laws of classical mechanics, which describe

how particles move and interact with each other under the influence of forces. In an MD

simulation, the positions, velocities, and accelerations of the atoms or molecules are calculated

at each time step, and the system is evolved forward in time.

The basic principle of MD simulation is based on the integration of Newton's second law of

motion, which states that the force acting on an object is proportional to its mass times its

acceleration. In MD, the forces acting on each atom or particle are calculated using a force

field, which describes the interactions between the atoms or particles in the system. The force

field is typically based on empirical or theoretical models, which consider the van der Waals

forces, electrostatic interactions, and bonded interactions such as covalent bonds, hydrogen

bonds, and torsional angles. The motion of the atoms or particles is then simulated using

numerical integration of Newton's equations of motion. This process involves calculating the

position and velocity of each atom or particle at each time step, based on the forces acting on

it, and then updating the forces based on the new positions and velocities.

MD simulations can provide detailed information on the structure, dynamics, and

thermodynamics of a system. They can be used to study the behavior of molecules, proteins,

and materials in different environments, such as solvents, membranes, or under mechanical

stress. MD simulations can also be used to predict the behavior of systems under different

conditions or to explore the effects of mutations or drug interactions on protein structures.

Force Fields

Force fields are critical components of molecular dynamics (MD) simulations. They provide a

mathematical description of the interatomic or intermolecular forces that govern the behavior

of the simulated system. Force fields specify the potential energy and its corresponding force

as a function of the coordinates of the atoms or molecules, which is used to calculate the motion

314

of the system over time. They are mathematical models that include parameters for the bond

stretching, bond bending, torsion, and non-bonded interactions between atoms (Figure 1). The

accuracy of the force field determines the accuracy of the MD simulations.

There are two primary types of force fields used in molecular dynamics simulations: classical

and quantum mechanical. Classical force fields are most commonly used in biomolecular

simulations and are based on a set of mathematical functions and empirical parameters to

describe the interactions between atoms. These force fields are computationally efficient and

can simulate systems up to millions of atoms. Quantum mechanical force fields, on the other

hand, consider the electronic structure of atoms and molecules and are computationally more

intensive but can provide higher accuracy in describing the system.

A functional form for a force field (also called Potential Energy Function) that can be used to model

single molecule or assemblies of atoms and / or molecules is as shown below:

𝜓(𝐫𝑁) = ∑
𝑘𝑖

2𝑏𝑜𝑛𝑑𝑠 (𝑙𝑖 − 𝑙𝑖,0)
2 + ∑

𝑘𝑖

2𝑎𝑛𝑔𝑙𝑒𝑠 (𝜃𝑖 − 𝜃𝑖,0)
2 + ∑

𝑉𝑛

2𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠 (1 + 𝑐𝑜𝑠(𝑛𝜔 − 𝛾)) +

∑ ∑ (4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)
12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)
6

+
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
])𝑁

𝑗=𝑖+1
𝑁
𝑖=1 … Equation 1

𝜓(𝑟𝑁) denotes the potential energy, which is a function of the positions (r) of N particles (usually

atoms).

The first term in the Equation 1 models the interaction between pairs of bonded atoms, here modelled

by a harmonic potential that gives the increase in energy as the bond length li deviates from the reference

value li,0. The second component is a summation over all valence angles in the molecule, modelled using

a harmonic potential. A valence bond angle is the angle formed between three atoms A-B-C in which

A and C are both bonded to B. The third component is a torsional potential that models how the energy

changes as a bond rotates. The fourth component is the non-bonded term. It is calculated between all

pairs of atoms (i and j) that are in different molecules or that are the same molecule but separated by at

least three bonds (1, n relationship where n ≥ 4). In a simple force field, the non-bonded term is modelled

using a Coulomb potential term for electrostatic interactions and a Lennard-Jones potential for van der

Waals interactions.

The first three are the components of covalent (or bonded) contribution and the last one is the component

of non-covalent (or non-bonded) contribution.

315

A simple form of the above equation:

A potential function or force field calculates the molecular system's potential energy (E) in a given

conformation as a sum of individual energy terms,

E = ECovalent + ENon-covalent … Equation 2

where, ECovalent = Ebond + Eangle + Edihedral

ENon-covalent = Eelectrostatic + Evan der Waals

Figure 1: Schematic representation of bonded (upper row) and non-bonded (lower row) components

contributing to a molecular mechanics force field.

There are several different force fields that have been developed over the years, each with its own

strengths and limitations. Here are some examples:

CHARMM (Brooks et al., 2009): The Chemistry at Harvard Macromolecular Mechanics (CHARMM)

force field is widely used for biomolecular simulations. It includes parameters for all of the major types

of interactions, including covalent bonds, angles, dihedrals, van der Waals forces, and electrostatics. It

is known for its accuracy in reproducing protein structures and dynamics.

Bond stretching

Angle bending Bond rotation

(torsion)

Non-bonded interactions

(electrostatic)
Non-bonded interactions

(van der Waals)

δ+

δ+

δ-

316

AMBER (Case et al., 2010): The Assisted Model Building with Energy Refinement (AMBER) force

field is also widely used in biomolecular simulations. It includes parameters for bond stretching, bond

bending, torsion, and non-bonded interactions, and is known for its accuracy in reproducing

experimental structures and dynamics.

OPLS (Damm et al., 1997): The Optimized Potentials for Liquid Simulations (OPLS) force field was

originally developed for liquid simulations, but has also been used in biomolecular simulations. It

includes parameters for bond stretching, bond bending, torsion, and non-bonded interactions, and is

known for its accuracy in reproducing thermodynamic properties of liquids.

GROMOS (Scott et al., 1999): The Groningen Molecular Simulation (GROMOS) force field is widely

used in simulations of small molecules and peptides. It includes parameters for bond stretching, bond

bending, torsion, and non-bonded interactions, and is known for its accuracy in reproducing

thermodynamic properties of small molecules.

Conclusion

In summary, the principle of molecular dynamics simulation is based on the integration of

classical mechanics, which involves calculating the positions, velocities, and forces of all atoms

or particles in a system as a function of time. MD simulations can provide detailed information

on the structure, dynamics, and thermodynamics of a system and can be used to study a wide

range of molecular and material systems.

**********************************Practical*********************************

The purpose of this hands-on is to provide an introduction to the fundamental commands

needed to set up, run, and analyze MD simulations using a suitable simulation tool. GROMACS

which is one of the most popular Molecular Dynamics (MD) simulation software, will be used

for the practical session. Before starting with the steps of typical MD simulation, let us have a

quick look on how to install GROMACS in linux (here, Ubuntu).

Installation

To install GROMACS, we need the following software installed on our system:

i. C & C++ Compiler which comes built-in with Ubuntu.

ii. CMake – A linux software to make binaries

iii. BuildEssential – It is a reference for all the packages needed to compile a package.

iv. FFTW Library: a library used by Gromacs to compute discrete Fourier transform

317

v. DeRegressionTest Package

Following are commands to install above mentioned pre-requisites:

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install cmake

sudo apt-get install build-essential

wget http://gerrit.gromacs.org/download/regressiontests-5.1.1.tar.gz

tar xvzf regressiontests-5.1.1.tar.gz

sudo apt-get install libfftw3-dev

wget ftp://ftp.gromacs.org/pub/gromacs/gromacs-5.1.1.tar.gz

tar xvzf gromacs-5.1.1.tar.gz

cd gromacs-5.1.1/

mkdir build

cd build

sudo cmake .. -DGMX_BUILD_OWN_FFTW=OFF -

DREGRESSIONTEST_DOWNLOAD=OFF -DCMAKE_C_COMPILER=gcc -

DREGRESSIONTEST_DOWNLOAD=ON

make

make check

sudo make install

source /usr/local/gromacs/bin/GMXRC

If the execution of above commands was successful, the installation is complete. You may

check the version of your Gromacs with a command to make sure the installation finished as

expected.

318

gmx pdb2gmx --versionource /usr/local/gromacs/bin/GMXRC

MD Simulation protocol

Following steps are involved in simulating a protein structure.

▪ Create initial state

i. Generate topology of protein

ii. Add box and solvation to the system

iii. Add ions to the solved system

▪ Introduction to the interaction potentials

iv. Energy minimization

▪ Predict how the particles move

v. Equilibration of system

vi. MD Production run

Now, we will see how to perform each step in more details. For the purpose of demonstrating

simulation of protein, a small protein structure of ubiquitin (PDB code 1UBQ) was downloaded

from RCSB PDB.

1. Generate topology

The obtained protein structure must be checked for the following things:

▪ Remove the water molecules if present

▪ Non-standard residues like heteroatoms must be removed

▪ Residues with missing atoms must be fixed beforehand

If water molecules are present, we can simply use the grep command to search for “HOH” in

the PDB file and then remove them. The following command can be used for removing water

molecules:

grep -v HOH 1UBQ.pdb > 1UBQ_clean.pdb

The next step is to use the pdb2gmx module of GROMACS. The pdb2gmx module generates

three files:

 The topology for the molecule.

319

 A position restraint file.

 A post-processed structure file.

The topology (topol.top by default) contains all the information necessary to define the

molecule within a simulation. This information includes nonbonded parameters as well as

bonded parameters. The following command was used to execute pdb2gmx:

gmx pdb2gmx -f 1UBQ_clean.pdb -o 1UBQ_processed.gro -water spce

The structure is processed by pdb2gmx, and we are prompted to choose a force field. We will

use the all-atom OPLS force field, so ‘15’ was typed at the command prompt

The force field will contain the information that will be written to the topology.

2. Solvation

To simulate proteins and other molecules we need to define the box dimensions around the

protein and fill in the box with solvent. The box was defined using the following command:

gmx editconf -f 1UBQ_processed.gro -o 1UBQ_newbox.gro -c -d 1.0 -bt cubic

-c : centers the protein in the box

-d 1.0 : places the protein at least 1.0 nm from the box edge

-bt cubic : The box type is defined as a cube

Specifying a solute-box distance of 1.0 nm will mean that there are at least 2.0 nm between any

two periodic images of a protein. This distance will be sufficient for just about any cut off

scheme commonly used in simulations.

The box is filled with solvent (water) by using the command below:

gmx solvate -cp 1UBQ_newbox.gro -cs spc216.gro -o 1UBQ_solv.gro -p topol.top

-cp : this parameter takes as input the configuration of the protein which is contained in the

output file obtained from the previous step

-cs : configuration of the solvent is part of the standard GROMACS installation. We are using

spc216.gro, which is a generic equilibrated 3-point solvent model.

320

3. Adding Ions

Neutralizing a system is a practice carried out for obtaining correct electrostatic values during

the simulation. This is done because under periodic boundary and using PME electrostatics -

the system has to be neutral. Therefore, we are adding ions to neutralization purpose only. The

tool for adding ions within GROMACS is called genion which reads through the topology and

replace water molecules with the ions that the user specifies. The input is called a run input

file, which has an extension of. tpr. The .tpr file contains all the parameters for all of the atoms

in the system.ed by the GROMACS grompp module (GROMACS pre-processor).

Assemble .tpr file with the following command:

gmx grompp -f ions.mdp -c 1UBQ_solv.gro -p topol.top -o ions.tpr

Now we have an atomic-level description of our system in the binary file ions.tpr. We will pass

this file to genion:

gmx genion -s ions.tpr -o 1UBQ_solv_ions.gro -p topol.top -pname NA -nname CL -neutral

-s : input file given as structure/state file (.tpr file)

-pname and -nname : define the positive and negative ion names

-neutral : add only the ions necessary to neutralize the net charge on the protein by adding the

correct number of negative ions (in this case will add 8 Cl- ions to offset the +8 charge on the

protein)

4. Energy minimization (EM)

EM is done to ensure there that the system has no steric clashes or inappropriate geometry.

First, we need to assemble structure, topology, and simulation parameters into a binary input

file (.tpr file):

gmx grompp -f minim.mdp -c 1UBQ_solv_ions.gro -p topol.top -o em.tpr

Here, minim.mdp is the file containing information regarding molecular dynamics parameter.

It is not inherently present in the GROMACS distribution; hence it needs to be created before

the execution of above command. An mdp file contain following parameters,

321

; minim.mdp - used as input into grompp to generate em.tpr

; Parameters describing what to do, when to stop and what to save

integrator = steep ; Algorithm (steep = steepest descent minimization)

emtol = 1000.0 ; Stop minimization when the maximum force < 1000.0 kJ/mol/nm

emstep = 0.01 ; Minimization step size

nsteps = 50000 ; Maximum number of (minimization) steps to perform

; Parameters describing how to find the neighbors of each atom and how to calculate

the interactions

nstlist = 1 ; Frequency to update the neighbor list and long range forces

cutoff-scheme = Verlet ; Buffered neighbor searching

ns_type = grid ; Method to determine neighbor list (simple, grid)

coulombtype = PME ; Treatment of long range electrostatic interactions

rcoulomb = 1.0 ; Short-range electrostatic cut-off

rvdw = 1.0 ; Short-range Van der Waals cut-off

pbc = xyz ; Periodic Boundary Conditions in all 3 dimensions

Next, we have to invoke mdrun to carry out the EM:

gmx mdrun -v -deffnm em

The output em.edr file contains all of the energy terms that GROMACS collects during EM.

We can analyze any .edr file using the GROMACS energy module:

gmx energy -f em.edr -o potential.xvg

At the prompt, type "10 0" to select Potential (10); zero (0) terminates input. The average of

Epot is shown, and a file called "potential.xvg" is written. To plot this data, we need the

Xmgrace plotting tool.

5. Equilibration

Since the objective of MD simulation is to study the dynamics of a particular system, we have

to suit the in-silico environment of our simulation system as close as possible to the real system

(e.g. experimental job in wet laboratory). Therefore, in equilibration step we optimize the

322

temperature to 300K since we assumed that we do the experimental job at room temperature,

and pressure value at 1 atm.

Equilibration will be carried out in two steps. First, an NVT (constant Number of atoms,

Volume, and Temperature) simulation will be performed in order to bring the system to the

target temperature. Second, an NPT (constant Number of atoms, Pressure, and Temperature)

simulation will be performed to allow the system to find the correct density.

5. a) Temperature Equilibration

We will call grompp and mdrun just as we did at the EM step and run the following two

commands:

gmx grompp -f nvt.mdp -c em.gro -r em.gro -p topol.top -o nvt.tpr

gmx mdrun -deffnm nvt

To analyze the temperature progression, using energy we use the command given below:

gmx energy -f nvt.edr -o temperature.xvg

Type "16 0" at the prompt to select the temperature of the system and exit and the

temperature.xvg can be plotted by Xmgrace tool.

5. b) Pressure Equilibration

We had included the -t flag to include the checkpoint file from the NVT equilibration. This file

contains all the necessary state variables to continue our simulation. To conserve the velocities

produced during NVT, we must include this file. The coordinate file (nvt.gro) is the final output

of the NVT simulation.

gmx grompp -f npt.mdp -c nvt.gro -r nvt.gro -t nvt.cpt -p topol.top -o npt.tpr

gmx mdrun -deffnm npt

To analyze the pressure progression, again by using energy:

gmx energy -f npt.edr -o pressure.xvg

Type "18 0" at the prompt to select the pressure of the system and exit. ‘pressure.xvg’ file will

be created which can be plotted through Xmgrace.

323

To take a look at density as well using energy, we need to enter "24 0" at the prompt while

running the following command:

gmx energy -f npt.edr -o density.xvg

6. Production MD

After running the two equilibration phases, the system is now well equilibrated at desired

temperature and pressure. To run the production MD, we will make use of the checkpoint file

to grompp and run a 1 ns MD simulation:

gmx grompp -f md.mdp -c npt.gro -t npt.cpt -p topol.top -o md_0_1.tpr

To execute mdrun:

gmx mdrun -deffnm md_0_1

Analysis

GROMACS comes equipped with many analysis tools, a complete list of which can be found

in the manual. Here you will be exposed to a few useful analysis tools: 'rms', 'rmsf', and 'gyrate.

But first, it is useful to learn how to process the trajectory file to only keep the components of

interest. Use trjconv, which is a post-processing tool to strip out coordinates, correct for

periodicity, or manually alter the trajectory (time units, frame frequency, etc). trjconv accounts

for any periodicity in the system.

gmx trjconv -s md_0_1.tpr -f md_0_1.xtc -o md_0_1_noPBC.xtc -pbc mol –center

Select 1 ("Protein") as the group to be centered and 0 ("System") for output. Downstream

analyses will be conducted on this "corrected" trajectory.

For checking the structural stability GROMACS has a built-in utility for RMSD calculations

called rms. Root mean square deviation (RMSD) is used for measuring the difference between

the backbones of a protein from its initial structural conformation to its final position. The

command to plot rmsd graph is as follows:

gmx rms -s md_0_1.tpr -f md_0_1_noPBC.xtc -o rmsd.xvg -tu ns

When prompted choose 4 ("Backbone") for both the least-squares fit and the group for RMSD

calculation.

324

The radius of gyration of a protein is a measure of its compactness. If a protein is stably folded,

it will likely maintain a relatively steady value of Rg. If a protein unfolds, its Rg will change

over time. The command to plot radius of gyration graph is as follows:

gmx gyrate -s md_0_1.tpr -f md_0_1_noPBC.xtc -o gyrate.xvg

When prompted choose group 1 (Protein) for analysis.

With this, we have now completed molecular dynamics simulation of a protein with

GROMACS, and analyzed some of the results.

References

Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005).

GROMACS: fast, flexible, and free. Journal of computational chemistry, 26(16), 1701-1718.

Case, D. A., Darden, T. A., Cheatham, T. E., Simmerling, C. L., Wang, J., Duke, R. E., ... &

Kollman, P. A. (2008). Amber 10 (No. BOOK). University of California.

Brooks, B. R., Brooks III, C. L., Mackerell Jr, A. D., Nilsson, L., Petrella, R. J., Roux, B., ...

& Karplus, M. (2009). CHARMM: the biomolecular simulation program. Journal of

computational chemistry, 30(10), 1545-1614.

Damm, W., Frontera, A., Tirado–Rives, J., & Jorgensen, W. L. (1997). OPLS all‐atom force

field for carbohydrates. Journal of computational chemistry, 18(16), 1955-1970.

Scott, W. R., Hünenberger, P. H., Tironi, I. G., Mark, A. E., Billeter, S. R., Fennen, J., ... &

Van Gunsteren, W. F. (1999). The GROMOS biomolecular simulation program package. The

Journal of Physical Chemistry A, 103(19), 3596-3607.

325

Online Resources of Proteomics Data

K. K. Chaturvedi and Sudhir Srivastava

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

1. Introduction

The field of proteomics is based on the systematic, large-scale characterization and analysis

of the complete set of proteins produced by a given cell, tissue or organism under a defined

set of conditions [1]. It covers the exploration of proteomes from the overall level of protein

composition, structure, and activity, and is an important component of functional genomics. It

was coined in 1994 by then Ph.D. student Marc Wilkins at Macquarie University.

After genomics and transcriptomics, proteomics is the next step in the study of biological

systems, but it is more complex than genomics because an organism's genome is more or less

constant, whereas proteomes differ from cell to cell and from time to time [2].

Proteins also are subjected to a wide variety of chemical modifications after translation. The

most common and widely studied post-translational modifications include phosphorylation

and glycosylation. Many of these post-translational modifications are critical to the protein's

function. In addition to phosphorylation and ubiquitination, proteins may be subjected to

methylation, acetylation, glycosylation, oxidation, and nitrosylation. Some proteins undergo

all these modifications, often in time-dependent combinations [3]. Proteomics generally

refers to the large-scale experimental analysis of proteins and proteomes, but often refers

specifically to protein purification and mass spectrometry.

2. Mass spectrometry data format

Mass spectrometry (MS) has recently emerged as a major discovery tool in the life sciences.

This analytical technique is used to analyze the molecular composition of a biological sample

by ionizing the sample or analyze molecules and then measuring the mass-to-charge ratios of

the resulting ions. The data from an MS experiment consist of mass spectra that are used to

identify, characterize, and quantify the abundance of the molecules of interest [4].

Many open, XML-based data formats have recently been developed by the Trans-Proteomic

Pipeline at the Institute for Systems Biology for global data exchange to facilitate integration

and comparison of data stored in various databases. These data formats are described here.

2.1 JCAMP-DX

This format was one of the earliest attempts to supply a standardized file format for in mass

spectrometry based data exchange. It was initially developed for infrared spectrometry. It is

an ASCII based format and therefore not very compact although it provides standards for file

compression [5].

2.2 mzData

mzData was the first attempt by the Proteomics Standards Initiative (PSI) from the Human

Proteome Organization (HUPO) to create a standardized format for Mass Spectrometry data,

primarily as a data exchange and archive format [6]. The mzData format is quite flexible as it

326

uses controlled vocabulary extensively. This controlled vocabulary could be frequently

updated to support new technologies, instruments, and methods of acquiring data while XML

schema remains stable.

2.3 mzXML

mzXML is a XML (eXtensible Markup Language) based common file format

for proteomics mass spectrometric data [7]. mzXML format was developed at the Institute

for Systems Biology (ISB), primarily in order to streamline data processing

software. mzXML have a very strict schema with most auxiliary information described in

enumerated attributes.

2.4 YAFMS

YAFMS (Yet Another Format for Mass Spectrometry) is light, serverless, relational database

format for proteomics data exchange purposes. Here file format is highly efficient in

processing time, as well as in storage space. YAFMS allows data extraction and updates by

writing simple SQL queries. Also, this format provides the flexibility to add tables that

contain, processed data, deconvolution results, or even images used in publications.[8].

2.5 mzML

Both mzData and mzXML data formats used to represent same information, therefore

HUPO-PSI, the SPC/ISB and instrument vendors made a joint effort to create a unified

standard called mzML. It includes the best aspects of both mzData and mzXML data

formats and replace these two formats. It was first published in 2008 [9].

Figure 1. Example top and bottom of an mzML document with the middle segment removed for display

purposes. The main part of the mzML document is contained within the <mzML></mzML> tags. It is wrapped

within an <indexedmzML></indexedmzML> construct, which contains the random access index at the bottom.

(Source: Deutsch, 2010)

327

2.6 mzAPI

It is common API (application program interface) proposed by a group of scientists to shift

the burden of standards compliance to the instrument manufacturers' existing data access

libraries [10].

2.7 mzIdentML

mzIdentML is one of the standards developed by the Proteomics Informatics working group

of the PSI and the mzIdentML 1.0 specification was published in August 2009. The

mzIdentML format is XML-based, meaning the files are XML files but with additional

structure [11]. It is a data standard that contains the peptide/protein identification

information of a proteomics experiment, but not the quantification information.

Figure 2. Detailed structure of mzIdentML file format (Source: Jones et al. 2012)

2.8 mzTab

mzTab is also XML-based one of the standards developed by the Proteomics Informatics

working group of the PSI [12]. mzTab files can contain protein, peptide, and small molecule

identifications together with experimental metadata and basic quantitative information.

2.9 imzML

The imzML standard is used to exchange data from mass spectrometry imaging in a

standardized XML file. It splits experimental data into XML and spectral data in a binary file.

Both files are linked by a universally unique identifier [13].

2.10 mzDB

mzDB consists of a standardized and portable server-less single-file database. It relies on the

SQLite software library. An optimized 3D indexing approach is adopted, where the LC-MS

coordinates (retention time and m/z), along with the precursor m/z for SWATH-MS data, are

used to query the database for data extraction. In comparison with XML formats, mzDB

saves storage space and improves access times. [14].

328

2.11 HDF5

Hierarchical Data Format (HDF) is a set of file formats (HDF4, HDF5) to store and organize

large amounts of data ,developed at the National Center for Supercomputing Applications

[15]. The Hierarchical Data Format version 5 (HDF5), is an open source file format that

supports large, complex, heterogeneous data. HDF5 uses a file directory like structure that

allows you to organization of data within the file in many different structured ways.

2.12 Toffee

Toffee is an open file format for data-independent acquisition mass spectrometry. It

supports HDF5 [16].

2.13 mzMLb

mzMLb also uses HDF5 backend for raw data storage. It, however, preserves the mzML

XML data structure and stays compliant to the existing standard [17].

2.14 mz5

It is mzML based format, but uses HDF5 backend for reducing storage space requirements

and improved read/write speed [18].

3. Databases for raw data storage, data submission and analysis

Here, we are providing details of important web resources for MS-based proteomics:

Table 1: Various MS-based proteomics databases.

Database Name Facilities Link

PRIDE Data storage and data submission http://www.ebi.ac.uk/pride/archive

PeptideAtlas

Data storage, data submission and

data analysis

http://www.peptideatlas.org

Human

Proteinpedia

Data storage, data submission and

data analysis

http://www.humanproteinpedia.org

ProteomicsDB Data submission and data analysis https://www.proteomicsdb.org/

MassIVE

Access public datasets, reanalyze

spectra, submit data, results

comparison and search

identifications

https://massive.ucsd.edu

3.1 Human Proteinpedia

Human Proteinpedia is a resource to integrate, store, and share proteomic data [19]. It is a platform for

collecting human proteomic data using a distributed annotation system, which allows the research

community to contribute protein annotations. It also provides a panorama of the human proteome.

329

3.2 Proteomics IDEntification (PRIDE) database

The PRoteomics IDEntifications (PRIDE) database (https://www.ebi.ac.uk/pride/) is the

world's largest data repository of mass spectrometry-based proteomics data. PRIDE is one of

the founding members of the global ProteomeXchange (PX) consortium and an ELIXIR core

data resource. It has played an important role in the nascent Human Proteome Project (HPP)

[20]. It provides a standardised way for submitting mass spectrometry based proteomics data

to public-domain repositories and provides access to published experimental data [21].

PRIDE resources

PRIDE Archive

User can search Original mass spec projects used by PRIDE Peptidome project in the PRIDE

Archive. The PRIDE PRoteomics IDEntifications (PRIDE) Archive database is a centralized,

standards compliant, public data repository for mass spectrometry proteomics data, including

protein and peptide identifications and the corresponding expression values, post-translational

modifications and supporting mass spectra evidence (both as raw data and peak list files).

Datasets are submitted to ProteomeXchange via PRIDE and are handled by expert bio-

curators. All PRIDE public datasets can also be searched in ProteomeCentral, the portal for

all ProteomeXchange datasets.

PRIDE Archive Spectra

PRIDE Spectra Archive provides direct access to the submitted mass spectra by either

selecting peptide or USI Universal Spectrum Identifiers. The USI is multi-part key identifier

for identifying mass spectra contained in public data repositories, primarily focused on

proteomics).

PRIDE Spectrum Libraries

These spectrum libraries are derived from the PRIDE Cluster results. They contain the

consensus spectra of all reliable clusters generated from the public experiments in PRIDE

Archive. Therefore, they also contain consensus spectra from labelled experiments as well as

a wider array of species. These spectral libaries can be read and processed by most spectral

libary search tools.

PRIDE TOOLS

PRIDE Submission Tool

PRIDE Submission Tool enables the user to submit proteomics datasets to PRIDE Archive.

[21]. Complete Process of Submission of dataset to PRIDE Archive explained in case study.

PRIDE Inspector Tool Suite

The PRIDE Inspector Toolsuite is the main tool used to review and download the proteomics

data from PRIDE Archive. The stand-alone tool provides different panels or view focuses on

a particular aspect of the data [22].

330

Dataset search in PRIDE Archive

The search can support dataset identifiers ProteomeXchange dataset (PXD) identifiers or

PRIDE assay/experiment numbers, PubMed identifiers, sample details (e.g. organisms,

organism part, diseases), instruments, post-translational modifications and any word/phrase

included in the title or description of a given dataset.

Figure 3. Search results using dataset identifiers, PubMed identifiers, or sample details (Source:
https://www.ebi.ac.uk/pride).

The search terms will be matched against the records in PRIDE Archive and a list of dataset

summaries, if any records match, will be shown as a result. A project summary includes the

following default information:

1. Project accession (dataset identifier)

2. Project Title

3. Project description (shortened)

4. Organism

5. Project publication date

Filtering Search Results

Through filtering we can ensure that some information will be present in our search results.

The available filters types are: Organism, Organism Part, Diseases, Modification, Instrument,

Experiment Type etc.

3.3 ProteomicsDB

ProteomicsDB is an in-memory database that was originally created to explore massive

amounts of quantitative human mass spectrometry-based proteomics data. ProteomicsDB

offers a wide range of data types and use cases across disciplines, including tandem mass

spectra, peptide identifications, and peptide proteotypicity values, which can be used as

starting points for developing focused mass spectrometry assays [23].

It allows the real-time exploration and retrieval of protein abundance values across different

tissues, cell lines, and body fluids via interactive expression heat maps and body maps.

331

ProteomicsDB supports multiple use cases across different disciplines and covering a wide

range of data e.g. tandem mass spectra, peptide identifications etc. Both experimental and

reference spectra can be used for assay development and to validate the identification of so

far unobserved proteins [23].

ProteomicsDB Tools

Data upload: Users can temporarily upload their expression profiles and optionally normalize

them to the data stored in ProteomicsDB. Data stored in such sessions are available via

ODATA (https://www.odata.org) services within ProteomicsDB and will ultimately allow the

integration into any existing analytical pipeline. The first use case which can be highlighted is

the comparison of custom expression data to expression data stored in ProteomicsDB. For

this to be successful, the normalization features available upon upload. By uploading an

expression dataset, heat maps will be generated. The heat map allows interactive visualization

of expression patterns of multiple groups of proteins.

Searching Peptides/Proteins

User can enter peptide sequence or mass and will get a list of peptides containing the

sequence. Information such as unique identifier, protein name, protease mass, start position

and end position can be seen.

Figure 4. Peptide details (Source: https://www.proteomicsdb.org).

Detailed information can be seen by clicking the protein from the list such as localization,

gene name organism name etc.

Figure 5. Protein summary details (Source: https://www.proteomicsdb.org).

332

Proteins can be searched by name to get the information about accession number, identifier,

description about protein, etc.

Figure 6. Protein details (Source: https://www.proteomicsdb.org).

3.4 MassIVE

MassIVE (Mass Spectrometry Interactive Virtual Environment) is a community resource

developed by the NIH-funded Center for Computational Mass Spectrometry which ease

exchange of mass spectrometry data. Various datasets present in the database can be

downloaded, submitted identifications can be searched and result comparison can be done

[24].

MassIVE Tools

Access Public Datasets

User can Browse publically available datasets or search by dataset metadata (e.g., species, PI,

etc.). Datasets are available for download as well as for online browsing of submitted

identifications (for complete datasets). Dataset owners can also add missing/requested files,

update metadata and add publications to their datasets. Registered users can comment on

datasets so others in the community can see updates or find pointers to new analyses of the

data.

Submit Data

User can submit data to share with the community as a MassIVE dataset. Reviewer access

credentials and ProteomeXchange identifiers can be requested to meet publication guidelines

of proteomics datasets. Workflows are also available to convert raw files (mass spectrometry

data) to the open mzML format and to convert from common tab-separated

formats (identifications data) into the open mzTab format.

Search Identifications

 All submitted identifications can be searched in complete datasets and dataset reanalyses.

Over 300 million peptide-spectrum matches submitted with at most 1% false discovery rate

333

are accessible through this simple interface to search for peptides, proteins and post-

translational modifications.

Reanalyze Spectra

Online MassIVE workflows can be used to reanalyse public datasets for analysis of mass

spectrometry data: MSGF+ database search, MSPLIT spectral library search, MODa open

modification search, Maestro spectral networks search and MSPLIT-DIA for search of data-

independent acquisition (DIA) spectra.

Result Comparison

 User can compare identification results between datasets or against any reanalyses of public

data. Venn diagrams are used to compare results at the level of protein, peptide and spectrum

identifications. Agreements, disagreements and unique identifications can be interactively

inspected for assessment of quality of identifications.

Share Reanalysis

User can share dataset reanalysis results with the community or reveal new identifications

with novel algorithms / analysis pipelines or challenge previously submitted identifications

with alternative interpretations for the same data.

Protein Explorer

Translated evidence and sequence coverage of nearly every human protein, can be explored,

as defined by systematic reanalysis of 31 terabytes of public data from >20,000 LC/MS runs

and including over 1 million synthetic peptide spectra. Interactive exploration of protein

evidence includes coverage maps, functional sites, and full provenance and dataset mapping

of every identified peptide.MassIVE Knowledge Base

Browse the community big data derived MassIVE Knowledge Base (MassIVE-KB) peptide

spectral libraries. Distilled from 31TB of human proteomics HCD data. Users can peak at the

inside of these libraries, browse the source data, and track full provenance of analysis tasks

that created these libraries.

MassIVE quant

MassIVEquant is an extension of the Mass Spectrometry Interactive Virtual Environment

(MassIVE) to provide the opportunity for large-scale deposition of data from quantitative

mass spectrometry-based proteomic experiments. MassIVEquant is compatible with all mass

spectrometry data acquisition types and all computational analysis tools. For each dataset,

MassIVEquant systematically stores the raw experimental data, the annotations of the

experimental design, the scripts (or descriptions) of every step of the quantitative analysis

workflow, and the intermediate input and output files. A branch structure enables

MassIVE.quant to store and view alternative reanalyses of the same dataset with various

combinations of methods and tools in a way which allows the user to inspect, reproduce or

modify any component of the workflow, beginning with well-defined intermediate files.

MassIVEquant supports infrastructure to fully automate analysis workflow, or to store, and to

browse the intermediate results.

CoronaMassKB

CoronaMassKB is an open-data community resource for sharing of mass spectrometry data

and (re)analysis results for all experiments pertinent to the global SARS-CoV-2 pandemic.

334

CoronaMassKB is designed for the rapid exchange of data and results among the global

community of scientists working towards understanding the biology of SARS-CoV-

2/COVID19 and thus accelerating the emergence of effective responses to this global

pandemic.

3.5 PeptideAtlas

PeptideAtlas is a database that stores various formats of output files and metadata from MS-

based experiments , it also allows users to submit raw data. These raw data are periodically

analyzed for identification and statistical analysis purposes. The results are made available

back to the researchers by web-based presentation systems. PeptideAtlas can help plan

targeted proteomics experiments, improve genome annotation, and support data mining

projects [25]. PeptideAtlas is a multi-organism, publicly accessible compendium of peptides

identified in a large set of tandem mass spectrometry proteomics experiments [26]. Mass

spectrometer output files are collected for human, mouse, yeast, and several other organisms,

and searched using the latest search engines and protein sequences. All results of sequence

and spectral library searching are subsequently processed through the Trans Proteomic

Pipeline to derive a probability of correct identification for all results in a uniform manner to

insure a high quality database, along with false discovery rates at the whole atlas level.

Results may be queried and browsed at the PeptideAtlas web site. The raw data, search

results, and full builds can also be downloaded for other uses.

PeptideAtlas tools

PeptideAtlas Tiered Human Integrated Search Proteome (THISP)

There is an automated system that integrates all of the major sources of human protein

sequences into a collection of search databases in order to provide well-defined,

comprehensive, and often updated human proteomics MS/MS search databases. These

databases are tiered into several levels (given below) of complexity from which researchers

may choose depending on the goal of the experiment and the data processing resources

available [26]. On the first of every month, all protein lists are pulled down from their

original sources. If any of them have changed, they are integrated and released.

ProteoMapper Online

ProteoMapper is a software which efficiently maps observed sequences to all possible

variants. There are two components to ProteoMapper: an indexer, and a mapper. A protein

sequence database in either FASTA or PEFF format must first be indexed by the indexer.

Once the index is built, the mapper can quickly and efficiently map all locations of the input

peptide sequence(s) to the proteome. Multiple parallel indices are supported, and input can be

in the form of a pepXML file, a simple text file with peptide sequences, or a single sequence

via the command-line. There are also options to map using wildcards as well as fuzzy

mapping (where one or more amino acids and their positions within the peptide sequence are

unknown). User can enter a peptide sequence or list of sequences (maximum upto 5000

sequences) and can select one of the database (All human Peptide Atlas, Yeast, C. elegans

and Mouse database) [26].

335

Here, in example below we have taken a peptide sequence i.e.

STHTGSSCIGTDPNRNFDAGWCEIGASR and searched against All human Peptide Atlas

database and found two proteins (NX_P15086-1 and NP_001862.2) along with their

positions.

Figure 7. ProteoMapper showing result of mapping of a peptide sequence (Source:

http://www.peptideatlas.org/map/).

CASE STUDY

PRIDE Submission Tool

The stand-alone ProteomeXchange (PX) Submission tool allows the researchers to perform the

data submissions to PRIDE Archive.

Here we are describing all the steps to submit proteomics datasets to PRIDE Archive in brief:

(i) Login Panel

The first step to submit a dataset to PRIDE Archive is to log into PRIDE using an existing

account or register as a new user .

Figure 8. Showing login window (Source: https://www.ebi.ac.uk/pride).

(ii) Submission Details

Users are to provide some basic details about the uploaded dataset such as the title, a list of

keywords (in a comma separated format), and a brief description of the dataset (similar to the

336

abstract of the corresponding publication), a sample processing and a data processing

protocol. Also, users have to pick a mass spectrometry experiment type from a drop-down

menu (shotgun proteomics, SRM/MRM, CX-MS etc) [24].

Figure 9. Basic details about the uploaded dataset (Source: https://www.ebi.ac.uk/pride).

(iii) Adding Files and assigning file types

In this stage, user should choose the files to be submitted. Files can be added by clicking on

the highlighted button.

Figure 10. Showing how to add files (Source: https://www.ebi.ac.uk/pride).

File formats supported in PRIDE Archive:

RESULT: Standard file formats from HUPO-PSI to report peptide/protein identification and

quantification results: mzIdentML and mzTab.

337

https://www.ebi.ac.uk/pride

There are two relevant PSI file formats:

mzIdentML: mzIdentML is a data standard that contains the peptide/protein identification

information of a proteomics experiment, but not the quantification information

mzTab: mzTab files can contain protein, peptide, and small molecule identifications together

with experimental metadata and basic quantitative information.

RAW: These are original proprietary files (e.g. Thermo RAW).

SPECTRUM_LIBRARY: Spectrum libraries used to perform spectrum search.

PEAK: The peak file contains the set of MS/MS peaks used for peptide/protein identification

(e.g. mgf Mascot generic files).

SEARCH: Files from the software analysis tool (e.g. .dat from Mascot).

Submissions that provide RESULT files are called COMPLETE submissions. These files are

the one, PRIDE ecosystem (resources, tools) is able to read, write and transform. When a

Complete submission is performed using mzIdentML or files mzTab files (identification

files), the dataset should contains at least one ‘PEAK’ list associated with the identification

file. mzIdentML only contain the identified peptides/proteins and the corresponding spectra

For Quantitative Complete experiments, users should use mzTab files. mzTab is a data

standard which represent both identification and quantification data [24].

Figure 11. Showing different supported file formats (Source: https://www.ebi.ac.uk/pride).

(iv) Assign the relationships between the submitted files

This mapping step consists of assigning the relations between the ‘RESULT’ files and the

other types of files included in the submission, for example, which ‘RAW’ (mandatory),

‘PEAK’ (mandatory for mzIdentML and mzTab), ‘SEARCH’, ‘QUANT’, ‘FASTA’,

‘SPECTRUM_LIBRARY’, ‘GEL’ or ‘OTHER’ files can be linked to a given ‘RESULT’ file

or are associated with it [24].

338

https://www.ebi.ac.uk/pride

Figure 12. Mapping relation between result file and other files (Source: https://www.ebi.ac.uk/pride)

By default, the tool makes an attempt to generate the mapping between the ‘RESULT’ and

the other, most importantly RAW’ files. If there is one ‘RESULT’ file found then all the

other files will be mapped to this file. But in case if multiple ‘RESULT’ files found then the

tool maps other files with the same name prefix, but without the file extension, to the

corresponding ‘RESULT’ file.

(v) Additional submission metadata

Additional metadata need to be provided for each ‘RESULT’ file in the case of a Complete

submission, both for mzTab or mzIdentML files.

Figure 13. Annotation data is provided in case of complete submission (Source: https://www.ebi.ac.uk/pride).

User need to click ‘Annotate’ button for each ‘RESULT’ file. This information is usually

imported automatically in the case of mzTab file. For mzIdentML files, the information

needs to be annotated manually.

339

https://www.ebi.ac.uk/pride

The following additional metadata is Mandatory:

• Species: The species of the samples used in a given dataset.

• Tissue: Tissue (“not applicable” should be used in case other types of experiments are

performed).

• Instrument information (mass spectrometer).

Figure 14. Metadata annotation with the drop-down menu (Source: https://www.ebi.ac.uk/pride).

Information should be provided using controlled vocabularies terms from a drop-down menu,

providing information about the cell type, disease and quantification method etc.

In most cases the metadata annotation is available in the drop-down menu, since the elements

of the drop-down menus have been selected based on frequency of these terms in existing

datasets. However, sometimes the annotations you are looking for may not be available from

the drop-down lists. If that’s the case, we need to select the OLS (Ontology Lookup Service)

panel and search for the corresponding annotation we want to provide. In the case of the more

extensive searches we need to click on the “other” options on the bottom of the drop-down

menu. For example, if we have samples coming from e.g. the fish Grayling (Thymallus

thymallus) this species name is not available from the drop-down list menu. We have to click

on other species and search for ‘Thymallus thymallus’ in the OLS panel [24].

Figure 15. Ontology Lookup Service panel providing search for the corresponding annotation (Source:

https://www.ebi.ac.uk/pride).

340

https://www.ebi.ac.uk/pride

(vi) Providing contact details for the Lab Head

Details of sender are to be provided for further reference.

Figure 16. Contact details of the sender (Source: https://www.ebi.ac.uk/pride).

This is the final step before the real file upload begins. Before moving on to the upload phase,

double-check that the submission summary contains all of the essential files. An example of a

mzIdentML-based 'Complete' submission is shown below.

Figure 17. Submission summary mzIdentML based complete submission (Source: https://www.ebi.ac.uk/pride).

(vii) Uploading all files

Uploading all files to PRIDE (as part of ProteomeXchange) is the final step. Once the upload

is complete, you will receive an email confirming that all of your files have been successfully

uploaded and are awaiting validation. By default, dataset will be made publicly available

after manuscript has been accepted, or when submitter instructs to do so or there is

acceptance notification from some journals.

341

4. Discussion

In this chapter, we have listed some commonly used and important proteomics databases

which have proved to be very useful for molecular biologists. These resources which include

original raw data and the accompanying results have led to high-throughput proteomics

research and large-scale genome annotation efforts. In future, the exchanges of information

and metadata between these repositories will become highly relevant, and therefore, the

proteomics repositories need to evolve a focused approach to data accessibility among

different repositories. Conversely, with the advent of new instruments, new techniques of

sample preparation, data analytics, and new forms of data will be continuously generated. It

is clear that the amount of data in the currently available repositories is just a small fraction

of the actually-generated proteomics data that will eventually become available. Finally in

order to benefit the research community, the resources will have to standardize the process

and simplify the interface for data submission.

References

1. Tyers, M. and Mann, M., 2003. From genomics to proteomics. Nature, 422(6928),

pp.193-197.

2. Rappsilber, J. and Mann, M., 2002. What does it mean to identify a protein in

proteomics?. Trends in biochemical sciences, 27(2), pp.74-78.

3. Khoury, G.A., Baliban, R.C. and Floudas, C.A., 2011. Proteome-wide post-translational

modification statistics: frequency analysis and curation of the swiss-prot database.

Scientific reports, 1(1), pp.1-5.

4. Martens, Lennart et al. “mzML--a community standard for mass spectrometry data.”

Molecular & cellular proteomics : MCP vol. 10,1 (2011): R110.000133.

doi:10.1074/mcp.R110.000133 1.1 Deutsch EW (December 2012). "File formats

commonly used in mass spectrometry proteomics". Molecular & Cellular Proteomics. 11

(12): 1612–21. doi:10.1074/mcp.R112.019695. PMID 22956731.

5. McDonald, R.S. and Wilks Jr, P.A., 1988. JCAMP-DX: A standard form for exchange of

infrared spectra in computer readable form. Applied Spectroscopy, 42(1), pp.151-162.

6. Fischer, B., Neumann, S. and Gatto, L., 2013. A Parser for mzXML, mzData and mzML

files.

7. Qing, H. and Xiang, F., 2007. Application of mzXML in mass spectrum data sharing.

Computers and Applied Chemistry, 24(12), p.1635.

8. Shah, A.R., Monroe, M.E., Shi, Y., LaMarche, B., Crowell, K., Slysz, G.S., Anderson,

G.A. and Smith, R.D., Next generation data exchange format for mass spectrometry.

9. Martens, L., Chambers, M., Sturm, M., Kessner, D., Levander, F., Shofstahl, J., Tang,

W.H., Römpp, A., Neumann, S., Pizarro, A.D. and Montecchi-Palazzi, L., 2011. mzML-

a community standard for mass spectrometry data. Molecular & Cellular Proteomics,

10(1).

10. Askenazi, M., Parikh, J.R. and Marto, J.A., 2009. mzAPI: a new strategy for efficiently

sharing mass spectrometry data. Nature methods, 6(4), pp.240-241.

342

11. Vizcaíno, J.A., Mayer, G., Perkins, S., Barsnes, H., Vaudel, M., Perez-Riverol, Y.,

Ternent, T., Uszkoreit, J., Eisenacher, M., Fischer, L. and Rappsilber, J., 2017. The

mzIdentML data standard version 1.2, supporting advances in proteome informatics.

Molecular & cellular proteomics, 16(7), pp.1275-1285.

12. Hoffmann, N., Rein, J., Sachsenberg, T., Hartler, J., Haug, K., Mayer, G., Alka, O.,

Dayalan, S., Pearce, J.T., Rocca-Serra, P. and Qi, D., 2019. mzTab-M: a data standard

for sharing quantitative results in mass spectrometry metabolomics. Analytical

chemistry, 91(5), pp.3302-3310.

13. Schramm, T., Hester, Z., Klinkert, I., Both, J.P., Heeren, R.M., Brunelle, A., Laprévote,

O., Desbenoit, N., Robbe, M.F., Stoeckli, M. and Spengler, B., 2012. imzML—a

common data format for the flexible exchange and processing of mass spectrometry

imaging data. Journal of proteomics, 75(16), pp.5106-5110.

14. Bouyssie, D., Dubois, M., Nasso, S., de Peredo, A.G., Burlet-Schiltz, O., Aebersold, R.

and Monsarrat, B., 2015. mzDB: a file format using multiple indexing strategies for the

efficient analysis of large LC-MS/MS and SWATH-MS data sets. Molecular & Cellular

Proteomics, 14(3), pp.771-781.

15. Askenazi, M., Ben Hamidane, H. and Graumann, J., 2017. The arc of Mass Spectrometry

Exchange Formats is long, but it bends toward HDF5. Mass spectrometry reviews, 36(5),

pp.668-673.

16. Tully, B., 2020. Toffee–a highly efficient, lossless file format for DIA-MS. Scientific

reports, 10(1), pp.1-13.

17. Bhamber, R.S., Jankevics, A., Deutsch, E.W., Jones, A.R. and Dowsey, A.W., 2020.

mzMLb: a future-proof raw mass spectrometry data format based on standards-compliant

mzML and optimized for speed and storage requirements. Journal of proteome research,

20(1), pp.172-183.

18. Wilhelm, M., Kirchner, M., Steen, J.A. and Steen, H., 2012. mz5: space-and time-

efficient storage of mass spectrometry data sets. Molecular & Cellular Proteomics, 11(1),

pp.O111-011379.

19. Kandasamy K., Keerthikumar S., Goel R., Mathivanan S., Patankar N., Shafreen B.

Human proteinpedia: a unified discovery resource for proteomics research. Nucleic

Acids Res. 2009;37:D773–D781.

20. Vizcaino J.A., Cote R.G., Csordas A., Dianes J.A., Fabregat A., Foster J.M. The

PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013.

Nucleic Acids Res. 2013;41:D1063–D1069.

21. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ,

Inuganti A, Griss J, Mayer G, Eisenacher M, Pérez E, Uszkoreit J, Pfeuffer J,

Sachsenberg T, Yilmaz S, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent

T, Brazma A, Vizcaíno JA. The PRIDE database and related tools and resources in 2019:

improving support for quantification data.. Nucleic Acids Res. 2019 Jan 8;47(D1):D442-

D450. doi: 10.1093/nar/gky1106. PubMed ID:30395289.

22. Perez-Riverol Y, Xu QW, Wang R, Uszkoreit J, Griss J, Sanchez A, Reisinger F,

Csordas A, Ternent T, del Toro N, Dianes JA, Eisenacher M, Hermjakob H, Vizcaíno

JA. PRIDE Inspector Toolsuite: moving towards a universal visualization tool for

343

proteomics data standard formats and quality assessment of ProteomeXchange datasets..

Mol Cell Proteomics 2016 Jan; 15(1):305-17. PubMed ID: 26545397.

23. Samaras, P., Schmidt, T., Frejno, M., Gessulat, S., Reinecke, M., Jarzab, A., Zecha, J.,

Mergner, J., Giansanti, P., Ehrlich, H.C. and Aiche, S., 2020. ProteomicsDB: a multi-

omics and multi-organism resource for life science research. Nucleic acids research,

48(D1), pp.D1153-D1163.

24. Choi, M., Carver, J., Chiva, C., Tzouros, M., Huang, T., Tsai, T.H., Pullman, B.,

Bernhardt, O.M., Hüttenhain, R., Teo, G.C. and Perez-Riverol, Y., 2020. MassIVE.

quant: a community resource of quantitative mass spectrometry–based proteomics

datasets. Nature methods, 17(10), pp.981-984.

25. Deutsch E.W. The PeptideAtlas project. Methods Mol Biol. 2010;604:285–296.

26. Kusebauch, U., Deutsch, E.W., Campbell, D.S., Sun, Z., Farrah, T. and Moritz, R.L.,

2014. Using PeptideAtlas, SRMAtlas, and PASSEL: comprehensive resources for

discovery and targeted proteomics. Current protocols in bioinformatics, 46(1), pp.13-25.

344

Overview of Proteomics Data Analysis

Sudhir Srivastava, Sneha Murmu, Dwijesh Chandra Mishra,

U. B. Angadi and K. K. Chaturvedi

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Introduction

Proteins are important large biomolecules or macromolecules performing a wide variety of

functions. The word “proteome” is defined as the entire set of proteins translated and/ or modified

within a living organism. The word “proteome” was coined by Marc Wilkins in 1994 in a

symposium on “2D Electrophoresis: from protein maps to genomes” held in Siena in Italy while

he was a Ph.D. student at Macquarie University. An organism’s genome is more or less constant

whereas proteome is not constant. Proteomes differs from cell to cell and from time to time. That’s

why proteomics is more complicated when compared to genomics.

 Proteomics more generally refers to large-scale liquid chromatography (LC) coupled with

mass spectrometry (MS) [LC-MS] based discovery studies designed to address both quantitative

and qualitative aspects of the proteome research (Figure 1).

Figure 1. Liquid chromatography coupled with mass spectrometry [LC-MS]

Source: https://upload.wikimedia.org/wikipedia/en/f/f9/Liquid_chromatography_tandem_Mass_spectrometry_diagram.png

 Now proteomics has emerged as a powerful tool across various fields such as biomedicine

mainly applied to diseases, agriculture, and animal sciences. It is important for studying different

345

https://en.wikipedia.org/wiki/Marc_Wilkins_(geneticist)
https://en.wikipedia.org/wiki/Macquarie_University
https://upload.wikimedia.org/wikipedia/en/f/f9/Liquid_chromatography_tandem_Mass_spectrometry_diagram.png

aspects of plant functions such as identification of candidate proteins involved in the defensive

response of plants to biotic and abiotic stresses, effect of global climate changes on crop

production, etc. In animal sciences, proteomics studies play important role in studying physiology,

immunology, reproduction and lactational biology. The practical application of proteomics

includes expression proteomics, structural proteomics, biomarker discovery, interaction

proteomics, protein networks, etc.

Basics Steps of Proteomics Data Analysis

The proteomic abundance (expression) data are usually generated using high throughput

technologies usually involving MS. LC-MS is used in proteomics as a method for identification

and quantification of peptides and proteins in complex mixtures. There are two basic proteomics

approaches, namely bottom-up and top-down. The most common proteomics approach is the

bottom-up in which proteins in a sample are enzymatically digested into peptides and subjected to

chromatographic separation, ionization and mass analysis. Conversely, top-down proteomics

addresses the study of intact proteins and consequently is most often used to address purified or

partially purified proteins. There are various steps involved in quantitative proteomics data

analysis, viz., peptide and protein identification, protein abundance quantification, data cleaning,

data normalization, handling of missing values by using imputation techniques, data visualization

and interpretation, statistical analysis of proteomics data, etc.

Peptide and protein identification

There are two major approaches for determining the sequence of peptides.

(i) Searching against fragmentation spectra databases

(ii) de novo peptide sequencing

Some of the software/ tools for peptide and protein identification are listed below:

Category Name Description

Searching against

fragmentation spectra

databases

Andromeda (part of

Mascot)

A peptide search engine based on probabilistic

scoring

Mascot Probability-based database searching algorithm

346

SEQUEST Identifies collections of tandem mass spectra to

peptide sequences that have been generated from

protein sequence databases

X!Tandem/X!!Tandem Searches tandem mass spectra with peptide

sequences in database

de novo peptide

sequencing

PEAKS Performs de novo sequencing for each peptide,

confidence scores on individual amino acid

assignments with manually assisted mode and

automated de novo sequencing on an entire LC

run processed data

SHERENGA Performs de novo peptide sequencing via tandem

mass spectrometry

PECAN Library free peptide detection for data-

independent acquisition of tandem mass

spectrometry data

Quantification of feature abundance

The quantification of features (peptides or proteins) may be either label-free or labelled (metabolic,

enzymatic, or chemical) to detect differences in feature abundances among different conditions. In

label-free quantification, MS ion intensity (peak area) and spectral counting of features are the

major approaches. In this article, we have considered MS ion intensity data obtained from label-

free bottom-up proteomics experiments.

Software/Tools for label-based quantitative proteomics:

• MaxQuant

• Proteome Discoverer (Thermo Scientific)

• XPRESS

Software/Tools for label-free quantitative proteomics:

• MaxLFQ - Label free quantification module available in MaxQuant

• emPAI - Exponentially modified protein abundance index

• Mascot Distiller (Matrix Science)

347

Problem of missing values and heterogeneity in proteomics data

Various approaches exist for proteomics data analysis in which the first step is to summarize the

intensities of all features using a quantitative summary followed by logarithmic transformation to

approximate it to normal distribution. In spite of availability of various tools/methods, there are

various challenges in analyzing proteomics data such as missing value (MV) and data

heterogeneity. There are various drawbacks of the methods which can be studied by examining the

statistical properties of these methods.

 The variations in the biological data or technical approaches to data collection lead to

heterogeneity for the samples under study. The data set usually consists of biological replicates

only or both biological and technical replicates. Biological variability arises from genetic and

environmental factors and it is intrinsic to all organisms. The technical approaches include sample

collection and storage, sample preparation, extraction, LC separation and MS detection.

 The data set is called balanced when it contains an equal number of subjects/ samples in

each group, and the features have no missing observations. However, this is not always the

condition. Sometimes the data can be unbalanced having unequal number of subjects, or missing

observations, or both. MVs in proteomics data can occur due to biological and/or technical issues.

These are of three types of MVs: (i) missing completely at random (MCAR) in which MVs are

independent of both unobserved and observed data; (ii) missing at random (MAR) if conditional

on the observed data, the MVs are independent of the missing measurements; and (iii) missing not

at random (MNAR) when data is neither MCAR nor MAR. The data with missing observations

can be analyzed either by excluding the features having missing observations, by using statistical

methods that can handle unbalanced data, or by using imputation methods. If the features having

missing observations are excluded, then there is loss of information from the experiment.

Therefore, the use of methods that can handle MVs, such as imputation methods, are generally

preferred. However, the use of imputation methods may lead to wrong interpretation and these

methods are questionable in statistical terms.

Statistical analysis of proteomics abundance data

Differential abundance analysis is carried out to detect significant features in two or more

conditions such as normal versus different disease conditions. However, data normalization is

necessary before performing further analysis. There are various transformation and/ or

348

normalization methods such as logarithmic transformation, quantile normalization, variance

stabilizing normalization, median scaling normalization, etc. In case of missing values, the user

has to impute the data using imputation techniques such as singular value decomposition, k-nearest

neighbor, maximum likelihood estimation, etc. The statistical approaches/ tests such as t-test,

moderated t-test, ANOVA, linear mixed model, etc. can be used for detecting significant features.

A general workflow of label-free quantitative proteomics data is given below:

Figure 2. A general workflow of label-free quantitative proteomics data

Various methods of normalizing proteomics expression data are given below:

• Variance stabilizing normalization (VSN)

• Quantile normalization (quantile)

• Median normalization (median)

• EigenMS normalization (EigenMS)

• Local regression normalization (LoessF, LoessCyc)

Various imputation methods can be categorized into the following:

(i) Imputation by a single value:

• Half of global minimum intensity among peptides - the minimal observed intensity value

among all peptides

• Half of minimal intensity of individual peptide

• Random tail imputation

(ii) Local-similarity-based imputation methods:

• K-nearest neighbors (KNN)

349

• Local least-squares (LLS) imputation

• Regularized expectation maximization (REM) algorithm

(iii) Global-structure-based imputation methods

• Probabilistic principal component analysis (PPCA)

• Bayesian principal component analysis (BPCA) algorithm

There are various tools and packages available for proteomics abundance data analysis such as

DanteR, MSstats, RepExplore, PANDA-view, MSqRob, PANDA, DAPAR, ProStaR etc. Some of

the important tools are discussed below:

(i) DanteR: Taverner et al. (2012) developed DanteR, a graphical R package that features extensive

statistical and diagnostic functions for quantitative proteomics data analysis, including

normalization, imputation, hypothesis testing, interactive visualization and peptide-to-protein

rollup.

(ii) MSstats: Choi et al. (2014) developed an R package “MSstats” for statistical relative

quantification of proteins and peptides in MS based proteomics. It (version 2.0) supports label-free

and label-based experimental workflows and data-dependent, targeted and data-independent

spectral acquisition. It performs differentially abundance/ expression analysis of features (peptides

or proteins) based on linear mixed models.

(iii) RepExplore: Glaab and Schneider (2015) developed a web server “RepExplore” to analyse

the proteomics and metabolomics data with technical and biological replicates. The analysis is

based on previously published statistical methods, which have been applied successfully to

biomedical omics.

(iv) PANDA-view: Chang et al. (2018) developed an easy-to-use tool “PANDA-view” for both

statistical analysis and visualization of quantitative proteomics data and other -omics data. There

are various kinds of analysis methods such as normalization, MV imputation, statistical tests,

clustering and principal component analysis, an interactive volcano plot.

(v) MSqRob: Goeminne et al. (2018) provided a tutorial on analysis of quantitative proteomics

data. The tutorial discussed the key statistical concepts to design proteomics experiments and

analyse label-free MS based quantitative proteomics data using their free and open-source R

package MSqRob.

350

(vi) PANDA: Chang et al. (2019) developed a comprehensive and flexible tool named PANDA

for proteomics data quantification. The tool supports both label-free and labeled quantifications

and it is compatible with existing peptide identification tools and pipelines with considerable

flexibility.

(vii) DAPAR & ProStaR: Wieczorek et al. (2017) developed software tools, DAPAR and ProStaR

that can perform the statistical analysis of label-free XIC-based quantitative discovery proteomics

experiments. DAPAR is an R package that contains various functions such as filtering,

normalization, imputation of missing values, aggregation of peptide intensities, differential

abundance analysis of proteins, etc. ProStaR is a user-friendly graphical interface that allows

access to the DAPAR functionalities through a web browser.

Conclusion

In this article, we have given the basic introduction of proteomics, various steps of proteomics data

analysis, problem of MVs and heterogeneity in proteomics data and different methods for analysis

of proteomics data. This article will be useful for the researchers working in the field of proteomics

and bioinformatics. Furthermore, the methods for proteomics data analysis can further be used for

analyzing the expression data obtained from similar experiments (e.g., microarray and

metabolomics data).

References

Anderson NL, Anderson NG (1998). Proteome and proteomics: new technologies, new concepts,

and new words. Electrophoresis, 19(11), 1853-61.

Ceciliani F, Eckersall D, Burchmore R, Lecchi C. (2014). Proteomics in veterinary medicine:

applications and trends in disease pathogenesis and diagnostics. Vet Pathol., 51(2):351-62. doi:

10.1177/0300985813502819.

Chang C, et al. (2018). PANDA-view: An easy-to-use tool for statistical analysis and visualization

of quantitative proteomics data. Bioinformatics.

Choi M, et al. (2014). MSstats: an R package for statistical analysis of quantitative mass

spectrometry-based proteomic experiments. Bioinformatics, 30(17). 2524-6.

351

Glaab E, Schneider R (2015). RepExplore: addressing technical replicate variance in proteomics

and metabolomics data analysis. Bioinformatics, 31(13), 2235-7.

Goeminne LJE, Gevaert K, and Clement L (2018). Experimental design and data-analysis in label-

free quantitative LC/MS proteomics: A tutorial with MSqRob. J Proteomics, 171, 23-36.

Karpievitch YV, Dabney AR, and Smith RD (2012). Normalization and missing value imputation

for label-free LC-MS analysis. BMC Bioinformatics, 13 Suppl 16, S5.

Rubin DB (1976). Inference and missing data. Biometrika, 63(3), 581–92.

Taverner T., et al. (2012). DanteR: an extensible R-based tool for quantitative analysis of -omics

data. Bioinformatics, 28(18), 2404–2406. doi:10.1093/bioinformatics/bts449.

Wasinger, VC, Cordwell, SJ, Cerpa-Poljak, A, Yan, JX, Gooley, AA, Wilkins, MR, Duncan, MW,

Harris, R, Williams, KL, Humphery-Smith, I (1995). Progress with gene-product mapping of

the Mollicutes: Mycoplasma genitalium. Electrophoresis, 16 (1), 1090-

1094. doi:10.1002/elps.11501601185

Wieczorek, S., Combes, F., Lazar, C., Giai Gianetto, Q., Gatto, L., Dorffer, A., Hesse, A.-M.,

Couté, Y., Ferro, M., Bruley, C., & Burger, T. (2017). DAPAR & ProStaR: software to perform

statistical analyses in quantitative discovery proteomics. Bioinformatics (Oxford, England),

33(1), 135-136. https://doi.org/10.1093/bioinformatics/btw580

https://en.wikipedia.org/wiki/Proteomics

https://en.wikipedia.org/wiki/List_of_mass_spectrometry_software

352

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1002%2Felps.11501601185
https://doi.org/10.1093/bioinformatics/btw580
https://en.wikipedia.org/wiki/Proteomics
https://en.wikipedia.org/wiki/List_of_mass_spectrometry_software

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

Overview of Post-Translational Modifications

Monendra Grover

ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Posttranslational modifications (PTMs) of proteins greatly expand proteome diversity,

increase functionality, and allow for rapid responses, all at relatively low costs for the

cell. PTMs play key roles in plants through their impact on signaling, gene expression,

protein stability and interactions, and enzyme kinetics. Following a brief discussion of the

experimental and bioinformatics challenges of PTM identification, localization, and

quantification (occupancy), a concise overview is provided of the major PTMs and their

(potential) functional consequences in plants, with emphasis on plant metabolism. Classic

examples that illustrate the regulation of plant metabolic enzymes and pathways by PTMs

and their cross talk are summarized. Recent large-scale proteomics studies mapped

many PTMs to a wide range of metabolic functions. Unraveling of the PTM code, i.e. a

predictive understanding of the (combinatorial) consequences of PTMs, is needed to convert

this growing wealth of data into an understanding of plant metabolic regulation.

The primary amino acid sequence of proteins is defined by the translated mRNA, often

followed by N- or C-terminal cleavages for preprocessing, maturation, and/or activation.

Proteins can undergo further reversible or irreversible posttranslational modifications (PTMs)

of specific amino acid residues. Proteins are directly responsible for the production of plant

metabolites because they act as enzymes or as regulators of enzymes. Ultimately, most

proteins in a plant cell can affect plant metabolism (e.g. through effects on plant gene

expression, cell fate and development, structural support, transport, etc.). Many metabolic

enzymes and their regulators undergo a variety of PTMs, possibly resulting in changes in

oligomeric state, stabilization/degradation, and (de)activation (Huber and Hardin, 2004),

and PTMs can facilitate the optimization of metabolic flux. However, the direct in vivo

consequence of a PTM on a metabolic enzyme or pathway is frequently not very clear, in part

because it requires measurements of input and output of the reactions, including flux through

the enzyme or pathway.

 PTMs can occur spontaneously (nonenzymatically) due to the physical-chemical

properties of reactive amino acids and the cellular environment (e.g. pH, oxygen, reactive

oxygen species [ROS], and metabolites) or through the action of specific modifying enzymes

368

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#bib73
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634103/#def1

PTMs are also determined by neighboring residues and their exposure to the surface. The 20

amino acids differ strongly in their general chemical reactivity and their observed PTMs . In

particular, Cys and Lys can each carry many types of PTMs, whereas the N-terminal residue

of proteins is also prone to multiple PTMs, ranging from N-terminal cleavage to N-terminal

lipid modifications (acylation), acetylation, and ubiquitination . In addition to these PTMs

that occur in vivo and presumably have physiological significance, several PTMs are often

generated during sample preparation due to exposure to organic solvents (e.g. formic acid

leading to the formylation of Ser, Thr, and N termini), (thio) urea (N-terminal or Lys

carbamylation), reducing agents and oxygen, unpolymerized acrylamide (Cys propionamide),

and low or high pH (cyclization of N-terminal Gln or Glu into pyro-Glu;). A large-scale

proteomics study of Arabidopsis (Arabidopsis thaliana) leaf extracts did address the

frequency of PTMs that do not require specific affinity enrichment based on a data set of 1.5

million tandem mass spectrometry (MS/MS) spectra acquired at 100,000 resolution on an

LTQ-Orbitrap instrument followed by error-tolerant searches and systematic validation by

liquid chromatography retention time . This revealed, for example, that modification of Met

and N-terminal Gln into oxidized Met and pyro-Glu, respectively, showed by far the highest

modification frequencies, followed by N-terminal formylation, most likely induced during

sample analysis, as well as deamidation of Asn/Gln (approximately 1.2% of all observed

Asn/Gln). Several of these nonenzymatic PTMs (in particular deamidation, oxidation, and

formylation) can also occur in vivo and, therefore, cannot be simply dismissed as artifacts but

need to be considered as potential regulators.

 Since many PTMs are reversible, specific residues can also alternate between PTMs

(e.g. dependent on cellular conditions, protein configuration [folding], or protein-protein

interactions), and one PTM can influence the generation of other PTMs. This can result in an

explosion of possible proteoforms and in cross talk between PTMs occurring on the same

protein. Cross talk between PTMs on the same protein can coordinately determine the

activity, function, and/or interactions of a protein. Finally, cross talk also exists between

PTMs located on interacting proteins. Time-resolved and quantitative determination of

combinatorial PTMs is challenging, and understanding of the biological outcomes is only in

its infancy. Prominent examples of PTM cross talk are Lys ubiquitination and acetylation or

Lys ubiquitination and phosphorylation . Phosphorylation can also directly promote substrate

proteolysis by caspase (peptidase) during apoptosis. Recent biochemical and proteomics

studies suggested that most if not all enzymes of the Calvin-Benson cycle undergo redox

369

regulation through selective redox PTMs, including reversible disulfide bond formation,

glutathionylation, and nitrosylation, with an interplay between these PTMs dependent on

(sub)cellular conditions . Moreover, the regulators carrying out these PTMs (e.g.

thioredoxins, glutaredoxins, etc.) themselves can also undergo some of these PTMs, making

for a complex network of PTMs

 The identification, localization, and quantification of different combinations of PTMs

on the same protein can sometimes be better solved by so-called top-down or middle-down

proteomics, as opposed to the more common bottom-up proteomics (. or chemical cleavage)

prior to MS analysis. In contrast, in top-down proteomics, proteins are not digested into

smaller fragments but rather injected and analyzed by a specialized mass spectrometer in its

entirety. In middle-down proteomics, the intact proteins are cleaved into just a few fragments

by limited proteolysis prior to injection into the mass spectrometer. Top-down and middle-

down proteomics are not high throughput and are best carried out on either purified proteins

or protein mixtures of low complexity. Classic examples of studies using top-down, middle-

down, but also bottom-up proteomics on proteins with different PTMs involve histones) and

the p53 tumor suppression protein.

References

Agetsuma M, Furumoto T, Yanagisawa S, Izui K (2005) The ubiquitin-proteasome pathway

is involved in rapid degradation of phosphoenolpyruvate carboxylase kinase for C4

photosynthesis. Plant Cell Physiol 46: 389–398.

Akter S, Huang J, Waszczak C, Jacques S, Gevaert K, Van Breusegem F, Messens J

(2015) Cysteines under ROS attack in plants: a proteomics view. J Exp Bot 66: 2935–

2944.

Alban C, Tardif M, Mininno M, Brugière S, Gilgen A, Ma S, Mazzoleni M, Gigarel O,

Martin-Laffon J, Ferro M, et al. (2014) Uncovering the protein lysine and arginine

methylation network in Arabidopsis chloroplasts. PLoS One 9: e95512.

Altelaar AF, Munoz J, Heck AJ (2013) Next-generation proteomics: towards an integrative

view of proteome dynamics. Nat Rev Genet 14: 35–48.

370

Bailey KJ, Gray JE, Walker RP, Leegood RC (2007) Coordinate regulation of

phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase by light and

CO2 during C4 photosynthesis. Plant Physiol 144: 479–486.

Balmer Y, Vensel WH, Tanaka CK, Hurkman WJ, Gelhaye E, Rouhier N, Jacquot JP,

Manieri W, Schürmann P, Droux M, et al. (2004) Thioredoxin links redox to the

regulation of fundamental processes of plant mitochondria. Proc Natl Acad Sci USA 101:

2642–2647.

Balsera M, Uberegui E, Schürmann P, Buchanan BB (2014) Evolutionary development of

redox regulation in chloroplasts. Antioxid Redox Signal 21: 1327–1355.

Banerjee A, Sharkey TD (2014) Methylerythritol 4-phosphate (MEP) pathway metabolic

regulation. Nat Prod Rep 31: 1043–1055.

Barberon M, Zelazny E, Robert S, Conéjéro G, Curie C, Friml J, Vert G

(2011) Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1)

transporter controls iron uptake in plants. Proc Natl Acad Sci USA 108: E450–E458.

Bartel B, Citovsky V (2012) Focus on ubiquitin in plant biology. Plant Physiol 160: 1.

Bartsch O, Mikkat S, Hagemann M, Bauwe H (2010) An autoinhibitory domain confers

redox regulation to maize glycerate kinase. Plant Physiol 153: 832–840.

Berr A, Shafiq S, Shen WH (2011) Histone modifications in transcriptional activation during

plant development. Biochim Biophys Acta 1809: 567–576.

Bigeard J, Rayapuram N, Pflieger D, Hirt H (2014) Phosphorylation-dependent regulation of

plant chromatin and chromatin-associated proteins. Proteomics 14: 2127–2140.

Biggar KK, Li SS (2015) Non-histone protein methylation as a regulator of cellular signalling

and function. Nat Rev Mol Cell Biol 16: 5–17.

Bonissone S, Gupta N, Romine M, Bradshaw RA, Pevzner PA (2013) N-terminal protein

processing: a comparative proteogenomic analysis. Mol Cell Proteomics 12: 14–28.

Borner GH, Lilley KS, Stevens TJ, Dupree P (2003) Identification of

glycosylphosphatidylinositol-anchored proteins in Arabidopsis: a proteomic and genomic

analysis. Plant Physiol 132: 568–577.

Boyle PC, Martin GB (2015) Greasy tactics in the plant-pathogen molecular arms race. J Exp

Bot 66: 1607–1616.

371

Bracha-Drori K, Shichrur K, Lubetzky TC, Yalovsky S (2008) Functional analysis of

Arabidopsis postprenylation CaaX processing enzymes and their function in subcellular

protein targeting. Plant Physiol 148: 119–131.

Brzezowski P, Richter AS, Grimm B (2015) Regulation and function of tetrapyrrole

biosynthesis in plants and algae. Biochim Biophys Acta 1847: 968–985.

Carlson SM, Gozani O (2014) Emerging technologies to map the protein methylome. J Mol

Biol 426: 3350–3362.

Catherman AD, Skinner OS, Kelleher NL (2014) Top down proteomics: facts and

perspectives. Biochem Biophys Res Commun 445: 683–693.

Cavazzini D, Meschi F, Corsini R, Bolchi A, Rossi GL, Einsle O, Ottonello S

(2013) Autoproteolytic activation of a symbiosis-regulated truffle phospholipase A2. J

Biol Chem 288: 1533–1547.

Černý M, Skalák J, Cerna H, Brzobohatý B (2013) Advances in purification and separation of

posttranslationally modified proteins. J Proteomics 92: 2–27.

Chalkley RJ, Bandeira N, Chambers MC, Clauser KR, Cottrell JS, Deutsch EW, Kapp EA,

Lam HH, McDonald WH, Neubert TA, et al. (2014) Proteome informatics research group

(iPRG)_2012: a study on detecting modified peptides in a complex mixture. Mol Cell

Proteomics 13: 360–371.

Chalkley RJ, Clauser KR (2012) Modification site localization scoring: strategies and

performance. Mol Cell Proteomics 11: 3–14.

Champion A, Kreis M, Mockaitis K, Picaud A, Henry Y (2004) Arabidopsis kinome: after

the casting. Funct Integr Genomics 4: 163–187.

Chastain CJ, Failing CJ, Manandhar L, Zimmerman MA, Lakner MM, Nguyen TH

(2011) Functional evolution of C(4) pyruvate, orthophosphate dikinase. J Exp Bot 62:

3083–3091.

Chen YB, Lu TC, Wang HX, Shen J, Bu TT, Chao Q, Gao ZF, Zhu XG, Wang YF, Wang BC

(2014) Posttranslational modification of maize chloroplast pyruvate orthophosphate

dikinase reveals the precise regulatory mechanism of its enzymatic activity. Plant

Physiol 165: 534–549.

372

Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M (2014) The growing landscape of

lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15: 536–

550.

Christian JO, Braginets R, Schulze WX, Walther D (2012) Characterization and prediction of

protein phosphorylation hotspots in Arabidopsis thaliana. Front Plant Sci 3: 207.

Cieśla J, Frączyk T, Rode W (2011) Phosphorylation of basic amino acid residues in proteins:

important but easily missed. Acta Biochim Pol 58: 137–148.

Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems

biology. Annu Rev Biochem 80: 273–299.

Czyzewicz N, Yue K, Beeckman T, De Smet I (2013) Message in a bottle: small signalling

peptide outputs during growth and development. J Exp Bot 64: 5281–5296.

Daloso DM, Müller K, Obata T, Florian A, Tohge T, Bottcher A, Riondet C, Bariat L, Carrari

F, Nunes-Nesi A, et al. (2015) Thioredoxin, a master regulator of the tricarboxylic acid

cycle in plant mitochondria. Proc Natl Acad Sci USA 112: E1392–E1400.

de Boer AH, van Kleeff PJ, Gao J (2013) Plant 14-3-3 proteins as spiders in a web of

phosphorylation. Protoplasma 250: 425–440.

DeHart CJ, Chahal JS, Flint SJ, Perlman DH (2014) Extensive post-translational modification

of active and inactivated forms of endogenous p53. Mol Cell Proteomics 13: 1–17.

Denison FC, Paul AL, Zupanska AK, Ferl RJ (2011) 14-3-3 proteins in plant

physiology. Semin Cell Dev Biol 22: 720–727.

Dietz KJ, Hell R (2015) Thiol switches in redox regulation of chloroplasts: balancing redox

state, metabolism and oxidative stress. Biol Chem 396: 483–494.

Dinh TV, Bienvenut WV, Linster E, Feldman-Salit A, Jung VA, Meinnel T, Hell R, Giglione

C, Wirtz M (2015) Molecular identification and functional characterization of the first Nα-

acetyltransferase in plastids by global acetylome profiling. Proteomics 15: 2426–2435.

di Pietro M, Vialaret J, Li GW, Hem S, Prado K, Rossignol M, Maurel C, Santoni V

(2013) Coordinated post-translational responses of aquaporins to abiotic and nutritional

stimuli in Arabidopsis roots. Mol Cell Proteomics 12: 3886–3897.

373

Dix MM, Simon GM, Wang C, Okerberg E, Patricelli MP, Cravatt BF (2012) Functional

interplay between caspase cleavage and phosphorylation sculpts the apoptotic

proteome. Cell 150: 426–440.

Dong L, Ermolova NV, Chollet R (2001) Partial purification and biochemical

characterization of a heteromeric protein phosphatase 2A holoenzyme from maize (Zea

mays L.) leaves that dephosphorylates C4 phosophoenolpyruvate carboxylase. Planta 213:

379–389.

Duncan KA, Huber SC (2007) Sucrose synthase oligomerization and F-actin association are

regulated by sucrose concentration and phosphorylation. Plant Cell Physiol 48: 1612–

1623.

Elortza F, Mohammed S, Bunkenborg J, Foster LJ, Nühse TS, Brodbeck U, Peck SC, Jensen

ON (2006) Modification-specific proteomics of plasma membrane proteins: identification

and characterization of glycosylphosphatidylinositol-anchored proteins released upon

phospholipase D treatment. J Proteome Res 5: 935–943.

Elrouby N, Coupland G (2010) Proteome-wide screens for small ubiquitin-like modifier

(SUMO) substrates identify Arabidopsis proteins implicated in diverse biological

processes. Proc Natl Acad Sci USA 107: 17415–17420.

Engineer CB, Ghassemian M, Anderson JC, Peck SC, Hu H, Schroeder JI (2014) Carbonic

anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal

development. Nature 513: 246–250.

Fedorova M, Bollineni RC, Hoffmann R (2014) Protein carbonylation as a major hallmark of

oxidative damage: update of analytical strategies. Mass Spectrom Rev 33: 79–97.

Fedosejevs ET, Ying S, Park J, Anderson EM, Mullen RT, She YM, Plaxton WC

(2014) Biochemical and molecular characterization of RcSUS1, a cytosolic sucrose

synthase phosphorylated in vivo at serine 11 in developing castor oil seeds. J Biol

Chem 289: 33412–33424.

Ferrández-Ayela A, Micol-Ponce R, Sánchez-García AB, Alonso-Peral MM, Micol JL,

Ponce MR (2013) Mutation of an Arabidopsis NatB N-alpha-terminal acetylation complex

component causes pleiotropic developmental defects. PLoS One 8: e80697.

374

Finkemeier I, Laxa M, Miguet L, Howden AJ, Sweetlove LJ (2011) Proteins of diverse

function and subcellular location are lysine acetylated in Arabidopsis. Plant Physiol 155:

1779–1790.

Gao ZP, Chen GX, Yang ZN (2012) Regulatory role of Arabidopsis pTAC14 in chloroplast

development and plastid gene expression. Plant Signal Behav 7: 1354–1356.

Geigenberger P. (2011) Regulation of starch biosynthesis in response to a fluctuating

environment. Plant Physiol 155: 1566–1577.

Geigenberger P, Kolbe A, Tiessen A (2005) Redox regulation of carbon storage and

partitioning in response to light and sugars. J Exp Bot 56: 1469–1479.

Giglione C, Fieulaine S, Meinnel T (2015) N-terminal protein modifications: bringing back

into play the ribosome. Biochimie 114: 134–146.

Graciet E, Lebreton S, Gontero B (2004) Emergence of new regulatory mechanisms in the

Benson-Calvin pathway via protein-protein interactions: a glyceraldehyde-3-phosphate

dehydrogenase/CP12/phosphoribulokinase complex. J Exp Bot 55: 1245–1254.

Grimaud F, Rogniaux H, James MG, Myers AM, Planchot V (2008) Proteome and

phosphoproteome analysis of starch granule-associated proteins from normal maize and

mutants affected in starch biosynthesis. J Exp Bot 59: 3395–3406.

Guerra DD, Callis J (2012) Ubiquitin on the move: the ubiquitin modification system plays

diverse roles in the regulation of endoplasmic reticulum- and plasma membrane-localized

proteins. Plant Physiol 160: 56–64.

Haag F, Buck F (2015) Identification and analysis of ADP-ribosylated proteins. Curr Top

Microbiol Immunol 384: 33–50.

Hang R, Liu C, Ahmad A, Zhang Y, Lu F, Cao X (2014) Arabidopsis protein arginine

methyltransferase 3 is required for ribosome biogenesis by affecting precursor ribosomal

RNA processing. Proc Natl Acad Sci USA 111: 16190–16195.

Havelund JF, Thelen JJ, Møller IM (2013) Biochemistry, proteomics, and phosphoproteomics

of plant mitochondria from non-photosynthetic cells. Front Plant Sci 4: 51.

Hemsley PA. (2014) Progress in understanding the mechanisms and functional importance of

protein-membrane interactions in plants. New Phytol 204: 741–743.

375

Hemsley PA. (2015) The importance of lipid modified proteins in plants. New Phytol 205:

476–489.

Hemsley PA, Weimar T, Lilley K, Dupree P, Grierson C (2013a) Palmitoylation in plants:

new insights through proteomics. Plant Signal Behav 8: 8.

Hemsley PA, Weimar T, Lilley KS, Dupree P, Grierson CS (2013b) A proteomic approach

identifies many novel palmitoylated proteins in Arabidopsis. New Phytol 197: 805–814.

Heyl A, Brault M, Frugier F, Kuderova A, Lindner AC, Motyka V, Rashotte AM,

Schwartzenberg KV, Vankova R, Schaller GE (2013) Nomenclature for members of the

two-component signaling pathway of plants. Plant Physiol 161: 1063–1065.

Hodges M, Jossier M, Boex-Fontvieille E, Tcherkez G (2013) Protein phosphorylation and

photorespiration. Plant Biol (Stuttg) 15: 694–706.

376

Genomics Approaches to Investigate Plant Structure and Function:

Case Studies with Photosynthesis and Environmental Signaling

Aashish Ranjan

National Institute of Plant Genome Research, New Delhi

Omics approaches, such as next-generation sequencing in combination with genomics,
transcriptomics, and bioinformatics, have facilitated global insights into the genome and
transcriptome to address specific biological questions relating to structure and function in
different model and non-model plant species. The lecture will involve a detailed
presentation on usage of usage of integrated transcriptomics and genomics approaches
to understand the genetic insights of plant development and physiology of both non-model
as well as model organisms.

Transcriptomics approach was used to decipher the genetic basis of plant
parasitism of an obligate stem plant parasite Cuscuta pentagona (Dodder). Parasitic
plants, one of the most destructive agricultural pests, penetrate and establish vascular
connections through specialized organs called haustoria to steal nutrients and water from
host plants. Dodder transcriptome was de novo assembled using RNAseq reads from
multiple tissues and stages. Subsequent gene expression analysis and dissection of
transcriptional dynamics across the stages identified key genes and gene categories, such
as plant defense and transporter genes, involved in the process of plant parasitism
(Ranjan et al., 2014). Similarly, transcriptomics deciphered the molecular and genetic
basis of patterning in one of the largest unicellular coenocytic alga, Caulerpa taxifolia, with
distinct functional pseudo-organs. The study not only revealed a global, apical-basal
pattern of the transcript distribution across the algal body but also demonstrated the
contribution of transcript partitioning to morphology in plants (Ranjan et al., 2015). In
addition, the genetical genomics approach to investigate the genetic architecture of gene
expression in a model plant tomato will also be briefly discussed. Using an introgression
population developed from a wild and a domesticated tomato, more than 7000 expression
QTL (eQTL) regulating global gene expression patterns in tomato were identified.
Moreover, several genetic hotspots regulating gene expression patterns relating to diverse
biological processes such as plant development, photosynthesis, and defense were also
identified (Ranjan et al., 2016).

The current trends of population growth and the availability of limited agricultural
land and resources have raised serious concerns regarding food security. The exponential
increase in population and rapid global environmental changes observed in recent years
are serious threats to sustainable food production for the planet (Lobell et al, 2012).
Reducing agricultural land and environmental changes further compound the requirement
for increasing crop yield and productivity. Developing crop varieties in order to achieve
greater yields has been a major focus of plant biologists and breeders with a view to
ensuring food availability for an increasing world population under changing environmental
conditions (Long et al., 2015; Zhu et al., 2010). Innovative genomics approaches could be
instrumental in achieving sustainable increases in crop yield and productivity in the wake
of climate change. During the talk, the basic concepts of genomics as well as their usage
for investigating plant structure and function and in crop improvement programs will be
discussed. Moreover, large-scale data analysis to investigate the effects of environmental
effects on crop developmental features will be discussed. The utilization of the natural
variation in leaf features and photochemical and biochemical traits for increasing crop
photosynthetic efficiency will also be discussed.

Developing crop varieties in order to achieve greater yields has been a major focus
of plant biologists and breeders with a view to ensure sustainable food availability for an

377

increasing world population under changing environmental conditions. The optimization of
plant developmental traits has great potential for a sustainable increase in crop yield, as
plant performance is strongly associated with, and dependent on, plant development and
growth (Mathan et al., 2016). Increasing photosynthetic efficiency has now been realized
as one of the promising strategies for improving crop yield and productivity. Knowing that
leaves are the primary site of photosynthesis, optimizing leaf morphological and
anatomical features could be instrumental in increasing crop photosynthetic efficiency. We
are using genomics and transcriptomics approaches to harness the natural variation in
rice photosynthesis to identify the genetic loci, genes, and gene-regulatory networks that
could be used for improving photosynthetic efficiency, and thus yield, in crop improvement
programs.

The natural genetic variation in leaf photosynthesis, and underlying developmental,
biochemical, and genetic basis is an overlooked and untapped resource. The genus
Oryza, which includes cultivated rice and more than 20 wild relatives, offers tremendous
genetic variability to explore photosynthetic differences and underlying biochemical and
developmental differences. Photosynthetically efficient wild rice accessions had specific
developmental features, such as larger mesophyll cells with more chloroplasts, distribution
of chloroplasts along the mesophyll cell wall, larger and closer veins, and a smaller
number of mesophyll cells between two consecutive veins (Mathan et al., 2021). The wild
species with higher photosynthesis also exhibited striking differences in leaf shape and
size, as well as differences in Shoot Apical Meristem (SAM) size and leaf initiation rate.
We are, currently, investigating the genetic basis of leaf developmental and biochemical
differences that could be attributed to differences in photosynthesis. Leaf morphological
traits, such as wider and thicker leaves, and anatomical features, such as mesophyll
features and chloroplast surface area contribute to higher photosynthetic efficiency in wild
rice accessions. The comparative transcriptomics approach has dissected the genetic
basis of rice leaf size regulation. Differential gene expression analysis followed by
Principal Component Analysis and a Self-organizing map identified the group of genes
that may contribute to leaf size regulation (Jathar et al., 2022). The gene-expressions
network analysis then identified the major regulators and downstream signals that control
rice leaf size. The signalling module involves Gibberelic Acid, GRF transcription factors,
and downstream cell-cycle components. A more comprehensive comparative
transcriptomic comparison is being used to identify the genetic regulators of the transition
from development to photosynthesis. A detailed biological as well as technical
presentation of the usage of integrated transcriptomic analyses to dissect the genetic
underpinnings of leaf development and photosynthesis will be discussed.

The usage of genomic approaches, complementary to transcriptomic approaches,
strengthens the pursuit of the identification of genes and genetic loci regulating a trait.
large-scale field phenotyping exhibited remarkable variation in leaf photosynthesis and
related leaf physiological and developmental traits among cultivated Indian rice
accessions. While comparative transcriptomics involving wild and cultivated rice identified
genetic regulators of rice leaf size and transition from development to photosynthesis,
GWAS with cultivated landraces identified the genetic loci regulating the desirable leaf
developmental and physiological features. The GWAS results were analyzed to identify
the relevant haploblocks and haplotypes contributing to the leaf photosynthesis and
developmental differences across the rice accessions. These regulators could be
targeted for increasing the photosynthetic efficiency of cultivated rice varieties.

In the last part of the lecture, comparative transcriptomic insights to understand the
plant responses to changing light and temperature conditions will be discussed. Optimum
light and temperature conditions are required to maximize the fitness of the plants. Shade
and small rises in temperature are the inevitable threats to the fitness of the plant under
changing climatic conditions. While shade- and temperature-induced elongation in

378

Arabidopsis via Phytochrome Interacting Factors (PIFs), members of bHLH-family
transcription factors, is extensively studied, there is a limited understanding of
comprehensive tissue-specific gene-regulatory networks involved in light and temperature
responses in plants. Moreover, the genetic understanding of signaling and responses to
shade and high temperature in crop plants is scarce. Therefore, we aimed not only to
identify novel regulators of shade and high temperature signalling in Arabidopsis but also
a comparative investigation of signaling and response across Arabidopsis, tomato, and
rice. Organ-specific comparative transcriptome profiling revealed a more pronounced
impact of high temperature on gene expression dynamics than the shade in all three
species. Transcription, development, cell cycle, and hormonal responses were the major
conserved biological pathways affected by shade and high temperature in all three
species. Orthology overlap of shade- and high-temperature-regulated genes were used to
identify conserved molecular networks and regulators for environmental signaling across
the species. Detailed analyses of transcription factors suggested the involvement of novel
regulators belonging to bZIP, NF-Y, CO-like, MYB, NAC, GATA, and Dof-family in the
shade and high-temperature signaling in all the three species along with bHLH, HD-ZIP
and TCP family previously reported for these signaling pathways. In summary, the
comparative transcriptome analysis for shade and high temperature provides
comprehensive information on shade and high temperature signaling across the three
plant species and posits these as key transcriptional regulators mediating cell division,
phytohormone signaling, cell wall and growth responses across evolutionarily different
plant species that could be used to optimize plant growth in a changing environment.

Together, the lecture would underscore the importance of omics approaches and
large-scale data analysis for not only establishing the comprehensive gene-regulatory
modules and their interactions but also for identifying the key genetic regulators for
informed usage in targeted crop improvement programs for increasing yield and
productivity under changing climatic conditions.

References:
- Jathar V, Saini K, Chauhan A, Rani R, Ichihashi Y, Ranjan A (2022). Spatial control of cell division by
GA-OsGRF7/8 module in a leaf explaining the leaf length variation between cultivated and wild rice.
New Phytologist 234(3):867-883.
- Lobell, D. B. and Gourdji, S. M. (2012). The influence of climate change on global crop productivity.
Plant Physiology 160, 1686-1697.
- Long, S. P., Marshall-Colon, A. and Zhu, X.-G. (2015). Meeting the global food demand of the future
by engineering crop photosynthesis and yield potential. Cell 161: 56-66.
- Mathan J, Bhattacharya J, Ranjan A (2016). Enhancing crop yield via the optimization of plant
developmental features. Development 143: 3283-3294.
- Mathan, J., Singh, A., Jathar, V. and Ranjan, A. (2021). High photosynthesis rate in two wild rice
species is driven by leaf anatomy mediating high Rubisco activity and electron transport rate. Journal
of Experimental Botany, 72: 7119-7135.
- Ranjan A, Ichihashi Y, Farhi M, Zumstein K, Townsley BT, David-Schwrtz R, Sinha NR (2014). De
novo assembly and characterization of the transcriptome of the parasitic weed Cuscuta pentagona
identifies genes associated with plant parasitism. Plant Physiology. 166: 1186-1199.
- Ranjan A, Townsley BT, Ichihashi Y, Sinha NR, Chitwood DH (2015). An intracellular transcriptomic
atlas of the giant coenocyte Caulerpa taxifolia. PLoS Genetics. 11(1): e1004900.
- Ranjan A, Budke JM, Rowland SD, Chitwood DH, Kumar R, Carriedo L, Ichihashi Y, Zumstein K,
Maloof JN, Sinha NR (2016). eQTL in a Precisely Defined Tomato Introgression Population Reveal
Genetic Regulation of Gene Expression Patterns Related to Physiological and Developmental
Pathways. Plant Physiology. 172: 328-340.
- Zhu, X.-G., Long, S. P. and Ort, D. R. (2010). Improving photosynthetic efficiency for greater yield.
Annual Review of Plant Biology 61: 235-261.

379

@ Disclaimer

The information contained in this reference manual has been taken from various web resources.

The information is provided by “ICAR-IASRI” and whilst we endeavour to keep the

information up-to-date and correct, we make no representations or warranties of any kind,

express or implied, about the completeness, accuracy, reliability, suitability, or availability with

respect to the website or the information, products, services, or related graphics contained in

the reference manual for any purpose. Any reliance you place on such information is therefore

strictly at your own risk.

In no event we will be liable for any loss or damage including without limitation, indirect or

consequential loss or damage, or any loss or damage whatsoever arising from loss of data or

profits arise out of or in connection with the use of this manual. We have no control over the

nature, content and availability of those sites. The inclusion of any links does not necessarily

imply a recommendation or endorse the views expressed within them.

@ Citation

Rajender Parsad, Girish Kumar Jha, Sudhir Srivastava and Neeraj Budhlakoti (2024).

Statistical and Computational Advances for Bioinformatics Data Analysis in Agriculture:

Practical Aspects, Centre for Advanced Faculty Training, Reference Manual, ICAR-Indian

Agricultural Statistics Research Institute, New Delhi.

	1. IntroBioinfo_16102023
	2. kkc_ASHOKA Super-Computing Facility
	3. sbl_Linux Overview_f
	4. kkc_Biological Databases_f
	5. sbl_Sequence Analysis_f
	6. Sarika_MOLECULAR PHYLOGENY
	7. Asif_DNA signature based SNP and STR marker analysis
	8. DCM_NGS Data Pre-processing, Assembly and Quantification
	9. Sanjeevk_Genome Annotation of RNA-Seq Data _f
	10. GenomeAnnotPractical_SM
	11. Intro_R_Stat_Bioinf_Sudhir-Srivastava
	12. soumya_GWAS
	13. soumya_GWAS_practical
	14. QTL_Mapping
	15. Neeraj_GS_Lecture
	16. Samir_TranscriptomicDataAnalysis
	17. soumya_DEG_Analysis
	18. Intro_Python
	19. Sanjeevk_Machine Learning Tech. in Bionfo_f
	20. sarika_lecture_sardar_patel_university (1)
	21. kkc_Perl Programming_f
	22. Samir_Metagenomics Data Analysis
	23. Statistical Aspects on Analysis of Metagenomics Data
	24. QIIME_AnuMam
	25. Ritwika_Statistical Analysis of Metagenomic Data_CAFT (1)
	26. Protein Structure Prediction
	27. Protein- Ligand Interaction by Performing Docking Studies
	28. MolecularDynamics&Simulation_SM
	29. Proteomics resourses
	30. Overview of Proteomics Data Analysis_Sudhir Srivastava
	31. Working with Proteomics Data Analysis
	32. Protein Modifications_Dr. M. Grover
	33. AAshish CAFT_Training_IASRI

