
Online Training on  

Omics Data Analysis: Genome to Proteome  

ऑनलाइन प्रशिक्षण  
ओशिक्स डटेा विश्लेषण: जीनोि से प्रोटीओि तक 

Division for Agricultural Bioinformatics 

ICAR-Indian Agricultural Statistics Research Institute                     
Library Avenue, PUSA, New Delhi - 110012 

 

http://cabgrid.res.in/cabin/;  https://iasri.icar.gov.in/ 

Sponsoring Project  

ICAR Consortium Research Platform on Genomics  

October 09-18, 2023 

E-Manual 

Dr. Girish Kumar Jha, Head (DABin), Course Director 
Dr. Sudhir Srivastava, Course Coordinator 
Dr. Sneha Murmu, Course Coordinator 

http://cabgrid.res.in/cabin/
https://iasri.icar.gov.in/


आमखु 
 

भा.कृ.अनु.प.-भारतीय कृषि साांख्ययकी अनुसांधान सांस्थान देश में कृषि साांख्ययकी, सांगणक अनुप्रयोग 
और जैव सूचना षवज्ञान के षवियों में कायय करने वाला एक प्रमुख सांस्थान है। सांस्थान परीक्षण 
अभभकल्पना, नमूनाकरण तकनीक, साांख्ययकीय आनुवांभशकी, पूवायनुमान तकनीक, जैव सूचना षवज्ञान 
और सांगणक अनुप्रयोग पर षवशिे जोर देने के साथ कृषि साांख्ययकी में अनुसांधान, भशक्षण और 
प्रभशक्षण काययक्रम आयोख्जत करने में काययरत है। सांस्थान बहुत सक्रक्रय रूप से सलाहकार सेवा प्रदान 
कर रहा है, ख्जसने सांस्थान को राष्ट्रीय कृषि अनुसांधान और भशक्षा प्रणाली नएन.ए.आर.ई.एस) और 
राष्ट्रीय कृषि साांख्ययकी प्रणाली नएन.ए.एस.एस) दोनों में अपनी उपख्स्थतत महसूस कराने में सक्षम 
हुआ है। सांस्थान ने कृषि अनुसांधान के भलए उपयोगी साांख्ययकीय सॉफ्टवेयर पैकेज षवकभसत करन े
में अग्रणी भूभमका तनभाई है। 

षपछले दो दशकों के दौरान जैषवक षवज्ञान में बहृद डटेा उत्पन्न क्रकया गया ख्जसमें सबस े
पहले जीवों के जीनोम अनुक्रमण की षविय मेयइन जानकारी प्राप्त की गयी। इसके उपराांत इन प्राप्त 
जानकाररयों को उच्च प्रयोगात्मक तकनीक से जैव प्रोद्योगगकी अनुसांधान प्रयोगशालाओां में क्रकए गए 
प्रयागों तथा इसके प्रभावों की गततशीलता का अध्ययन क्रकया जा रहा है। जैषवक अनुसांधान के छेत्र 
में षवभभन्न जैव सूचना षवज्ञान तकनीकों/ टूल्स के प्रयोग, डटेा की सांचयन एवां पुन:प्राख्प्त, षवश्लेिण, 
एनोटेशन और पररणाम के अपनी सम्पूणयता में जैषवक प्रणाभलयों को बेहतर ढांग में समझने में सहायक 
है। इसमे टटकाव कृषि के भलए टूल्स और तकनीकों के षवकास को बढ़ावा भमलेगा। इस प्रभशछन का 
उदे्दश्य ओभमक्स डटेा षवश्लेिण और कृषि में इसके अनुप्रयोगों का अवलोकन प्रदान करना है। इससे 
सहभागगयों को अनुसांधान, भशक्षण और प्रभशक्षण में अपनी क्षमताओां को उन्नत करने में मदद भमलेगी। 

इस प्रभशक्षण में मुयय रूप से जीनोभमक्स, राांसक्रक्रपटॉभमक्स, मेटाजीनोभमक्स और प्रोटटओभमक्स 
डटेा षवश्लेिण से सांबांगधत मॉड्यूल शाभमल हैं। कृषि जैव सूचना षवज्ञान से सांबांगधत अवधारणाओां, मुद्दों 
और समाधानों पर षवशिे जोर टदया जाएगा। इस प्रभशक्षण काययक्रम में षवभभन्न व्याययान शाभमल 
क्रकए गए हैं: जैव सूचना षवज्ञान का पररचय, सुपर-कां प्यूटटांग सुषवधा अशोका; भलनक्स और आर 
प्रोग्राभमांग भािाओां की मूल बातें; जैषवक डटेाबेस; अनुक्रम षवश्लेिण; एनजीएस डटेा षवश्लेिण का पररचय; 

जीनोम असेंबली और एनोटेशन; राांसक्रक्रपटॉभमक्स डटेा,  मेटागेनोभमक्स और नॉन-कोडड ांग आरएनए डटेा 
का षवश्लेिण; जीनोम-वाइड एसोभसएशन अध्ययन और जीनोभमक चयन; प्रोटीन सांरचना प्रेडडक्शन; 

आणषवक गततशीलता और भसमुलेशन; प्रोटटओभमक्स एक्स्प्रेशन डटेा षवश्लेिण; पोस्ट-राांसलेशनल 
सांशोधन. 

हम इस अवसर पर सांस्थान के सांकाय सदस्यों को धन्यवाद देना चाहते हैं ख्जन्होंने इस 



पाठ्यक्रम को साथयक और सफल बनाने में अपना बहुमूल्य समय टदया ख्जससे इस सांदभय सांटहता 
को समय पर प्रकाभशत करने में मदद भमली। हम इस प्रभशक्षण काययक्रम में अपने अगधकाररयों को 
प्रतततनयकु्त करने के भलए षवभभन्न भा.कृ.अनु.प. सांस्थानों, राष्ट्रीय अनुसांधान कें द्रों, ब्यूरो और राज्य 
कृषि षवश्वषवध्यालयों के भी आभारी हैं। हम डॉ. राजेंद्र प्रसाद, तनदेशक, भा.कृ.अनु.प.-भा.कृ.साां.अ.सां., 
डॉ. गगरीश कुमार झा, प्रधान प्रभाग, कृषि जैव सूचना षवज्ञान प्रभाग, भा.कृ.अनु.प.-भा.कृ.साां.अ.सां., डॉ. 
अनु शमाय नभा.कृ.अनु.प.-भा.कृ.साां.अ.सां. से सी.आर.पी. जीनोभमक्स पररयोजना की पी.आई.) और डॉ. 
व िंध्या मोह िंद्रा नप्रमुख कें द्र भा.कृ.अनु.प.-रा.म.आन.ुसिं.ब्यू. से सी.आर.पी. जीनोभमक्स पररयोजना के 
पी.आई.) का आभार व्यक्त करते  ैं। हम उन सभी लोगों के आभारी हैं ख्जन्होंने इस प्रभशक्षण सांदभय 
सांटहता को तैयार करने में प्रत्यक्ष या अप्रत्यक्ष रूप से सहयोग टदया है।  
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PREFACE 

 

The ICAR-Indian Agricultural Statistics Research Institute is a premier Institute in the disciplines of 

Agricultural Statistics, Computer Applications and Bioinformatics in the country. The Institute has 

been engaged in conducting research, teaching and organizing training programmes in Agricultural 

Statistics with special emphasis on Experimental Designs, Sampling Techniques, Statistical Genetics, 

Forecasting Techniques, Bioinformatics and Computer Applications. The Institute has been very 

actively pursuing advisory service that has enabled the institute to make its presence felt both in 

National Agricultural Research and Education System (NARES) and National Agricultural Statistics 

System (NASS). The Institute has taken a lead in developing Statistical Software Packages useful for 

Agricultural Research.  

During the last two decades enormous sequence data have been generated in biological 

science, firstly with the onset of sequencing the genomes of living organisms and, secondly, rapid 

application of high throughput experimental techniques in laboratory research. Application of various 

bioinformatics tools in biological research enables storage, retrieval, analysis, annotation, and 

visualization of results and promotes a better understanding of biological systems in their entirety. 

This will further lead to the development of tools and techniques for sustainable agriculture. The aim 

of this training is to provide an overview of omics data analysis and its applications in agriculture. 

This would help them upgrade their capabilities in research, teaching, and training. 

This training mainly consists of modules related to genomics, transcriptomics, metagenomics, 

and proteomics data analysis. Special emphasis will be laid on concepts, issues, and solutions related 

to agricultural bioinformatics. Various lectures were included in this training programme: 

Introduction to Bioinformatics, Super-Computing Facility ASHOKA; Basics of Linux and R 

Programming Languages; Biological Databases; Sequence Analysis; Introduction to NGS Data 

Analysis; Genome Assembly and Annotation; Analysis of Transcriptomics Data, Metagenomics and 

Non-coding RNA Data; Genome-Wide Association Studies and Genomic Selection; Protein Structure 

Prediction; Molecular Dynamics and Simulation; Proteomics Expression Data Analysis; Post-

Translational Modifications. 

We would like to take this opportunity to thank the faculty of the Institute who spared their 

valuable time in making this course meaningful and successful that helped in bringing out this 

manual in time. We are also thankful to the various ICAR Institutes, National Research Centres, 

Bureaus and State Agricultural Universities for deputing their employees in this training programme. 

We are grateful to Dr. Rajender Parsad, Director, ICAR-IASRI and Dr. Girish Kumar Jha, Head, 

Division of Agricultural Bioinformatics, ICAR-IASRI, Dr. Anu Sharma (PI of CRP Genomics Project 

at ICAR-IASRI) and Dr. Vindhya Mohindra (PI of CRP Genomics Project from lead center ICAR-

NBFGR) for the support and cooperation in organizing this program. We are thankful to each one 

who supported directly or indirectly for preparing this training manual. 
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History  

 1950-70s: 

In the early 1950s, there was still controversy surrounding DNA's role as the carrier of 

genetic information. DNA's genetic role was firmly established in 1952 through the Hershey-

Chase experiment. While the double-helix structure of DNA was revealed in 1953, it took 

more years to decipher the genetic code and develop DNA sequencing methods. Meanwhile, 

significant progress was made in protein analysis, especially with the publication of insulin's 

amino acid sequence in the late 1950s. This achievement spurred the development of protein 

sequencing methods, like the Edman degradation method, which allowed for automated 

sequencing of more than 15 protein families. However, a challenge with protein sequencing 

was assembling the complete sequence for large proteins, leading to the early development of 

bioinformatics software to address this issue. 

Margaret Dayhoff, often referred to as the "mother and father of bioinformatics," was a 

physical chemist who recognized the potential of applying computational methods to biology 

and medicine. She collaborated with physicist Robert S. Ledley and together, in the late 

1950s, they developed COMPROTEIN, one of the earliest bioinformatics software, for 

determining protein primary structure using Edman peptide sequencing data. They used this 

software to tackle the challenge of assembling complete sequences for large proteins, which 

was a significant computational problem. Dayhoff contributed to simplifying the handling of 

protein sequence data by developing the one-letter amino acid code, which is still in use 

today. 

 The Birth of Sequence Databases: 

Dayhoff and Eck's 1965 "Atlas of Protein Sequence and Structure" was the first biological 

sequence database. It contained 65 protein sequences, providing a basis for early 

computational analysis. Researchers began to consider the idea that protein sequences might 

reveal evolutionary history, similar to how language evolves, where the arrangement of letters 

conveys meaning. 

 The Concept of Orthology: 

Emile Zuckerkandl and Linus Pauling introduced the term "Paleogenetics" in 1963 to explore 

the evolutionary aspects of biomolecular sequences. They observed that orthologous proteins 

from different species showed varying degrees of similarity, correlating with their 

evolutionary divergence. Orthology, defined by Walter M. Fitch in 1970, described homology 

resulting from speciation events. This observation led to the hypothesis that orthologous 

proteins evolved from a common ancestor, and their sequences could be used to predict 

ancestral sequences and trace evolutionary history. 

 Challenges in Sequence Alignment: 

Initial efforts in sequence-based phylogenetic studies focused on closely related proteins that 

could be assessed visually for homology. However, for more distant or unequal-length protein 

sequences, visual comparison was impractical and often led to errors. 

1



In 1970, Needleman and Wunsch developed the first dynamic programming algorithm for 

pairwise protein sequence alignments. Multiple sequence alignment (MSA) algorithms 

emerged in the early 1980s, addressing the challenge of aligning numerous sequences of 

different lengths more efficiently. In 1987, Da-Fei Feng and Russell F. Doolitle developed a 

practical approach to multiple sequence alignment (MSA) known as "progressive sequence 

alignment." Their method involved several steps: 

 Performing a Needleman–Wunsch alignment for all possible sequence pairs. 

 Extracting pairwise similarity scores from each of these pairwise alignments. 

 Using these similarity scores to construct a guide tree, which represents the 

relationships between sequences. 

 Aligning the sequences in a stepwise manner, starting with the two most similar 

sequences and then progressively adding the next most similar sequences according to 

the guide tree. 

In 1988, the popular MSA software CLUSTAL was developed as a simplification of the 

Feng–Doolittle algorithm. CLUSTAL has remained in use and continued to be maintained up 

to the present day. This software made MSA more accessible and efficient, allowing 

researchers to align multiple sequences effectively. 

 A Mathematical Framework for Amino Acid Substitutions (1978): 

Margaret Dayhoff, Schwartz, and Orcutt developed the first probabilistic model of amino 

acid substitutions. The model was based on 1572 point accepted mutations (PAMs) in the 

phylogenetic trees of 71 protein families. They created a 20x20 asymmetric substitution 

matrix containing probability values based on observed amino acid mutations. This matrix 

introduced the concept of substitutions as a measurement of evolutionary change, shifting 

from the previous concept of evolutionary distance based on the least number of changes. 

 Paradigm Shift from Protein to DNA Analysis (1970-1980): 

Francis Crick's sequence hypothesis confirmed that DNA encodes information for proteins. 

DNA sequencing methods, including Maxam-Gilbert (1976) and Sanger's "plus and minus" 

method (1977), made DNA sequencing more accessible. The Sanger chain termination 

method (1977) remains in use today. DNA sequences could potentially provide information 

about all proteins in an organism. Manual tasks like comparisons, calculations, and pattern 

matching were more efficiently performed by computers. 

 Development of Sequence Analysis Software (1979): 

Roger Staden's software (1979) was one of the first to analyze Sanger sequencing reads. The 

software could search for overlaps, verify, edit, and join sequence reads, and annotate and 

manipulate sequence files. It introduced additional characters ("uncertainty codes") to record 

basecalling uncertainties in sequence reads. Staden's Package is still developed and 

maintained today. 

 Using DNA Sequences in Phylogenetic Inference: 

Early phylogenetic trees were reconstructed from protein sequences with a focus on 

maximum parsimony. Parsimony methods assumed minimal evolutionary changes but could 

fail with moderate to large changes. DNA sequences provided additional information, such as 

synonymous mutations. Joseph Felsenstein introduced maximum likelihood (ML) methods 

for phylogenetic tree inference from DNA sequences. ML estimation involved finding the 

tree with the highest probability of evolving the observed data. Bioinformatics tools and 
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statistical methods based on ML and Bayesian statistics have been developed and are still in 

use today. 

 Overcoming Technical Limitations in the Late 1970s: 

The late 1970s faced technical limitations that needed addressing to broaden computer use in 

DNA analysis. The subsequent decade played a pivotal role in addressing these issues and 

advancing the field. 

 Molecular Methods for Targeting and Amplifying Specific Genes: 

Genes are less abundant and cannot be individually sequenced, as they are contiguous on 

DNA molecules and present in low copies per cell. A solution emerged when Jackson, 

Symons, and Berg (1972) used restriction endonucleases and DNA ligase to cut and insert 

circular SV40 viral DNA into lambda DNA. E. coli cells were transformed with this 

construct, and the inserted DNA was replicated and amplified in the host organism. This 

experiment pioneered the isolation and amplification of genes independently from their 

source organism. Concerns about ethical issues led to a moratorium on the use of 

recombinant DNA, and guidelines were established during the 1975 Asilomar conference. 

 Invention of Polymerase Chain Reaction (PCR): 

The polymerase chain reaction (PCR) was a significant development that allows DNA 

amplification without cloning procedures. The first description of "repair synthesis" using 

DNA polymerase was in 1971 by Kjell Kleppe et al. The invention of PCR is credited to Kary 

Mullis for his substantial optimizations, including the use of thermostable Taq polymerase 

and the development of the thermal cycler. Mullis patented the process and gained 

recognition for inventing PCR. Both gene cloning and PCR are widely used in DNA library 

preparation, critical for obtaining sequence data. 

 DNA Sequencing and Bioinformatics in the 1980s: 

The late 1970s saw the emergence of DNA sequencing, along with enhanced DNA 

manipulation techniques. DNA sequencing and manipulation led to increased availability of 

sequence data. Access to computers and bioinformatics software also grew during the 1980s, 

facilitating the analysis of sequence data. 

 1990-2000: Genomics, Structural Bioinformatics, and the Information Superhighway 

 

 Dawn of the Genomics Era: 

In 1995, the first complete genome sequencing of a free-living organism (Haemophilus 

influenzae) was achieved by The Institute for Genomic Research (TIGR), led by J. Craig 

Venter. The Human Genome Project, initiated in 1991 by the U.S. National Institutes of 

Health, aimed to sequence the human genome and cost $2.7 billion over 13 years. Celera 

Genomics led a private effort to sequence the human genome in competition with the publicly 

funded Human Genome Project, achieving it at one-tenth of the cost due to different 

experimental strategies. 

 Challenges in Early Genomics: 

Sequencing genomes was costly and time-consuming; for example, sequencing a human 

genome with 2018 technology would cost $1000 and take less than a week, but older methods 

were much slower. Specialized software was needed to handle the massive amount of 
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sequencing data. Several Perl-based software tools were developed in the mid to late 1990s 

for assembling whole-genome sequencing reads. 

 Emergence of the Internet: 

The rise of the World Wide Web (WWW) in the mid-1990s revolutionized communication 

and enabled the creation of online bioinformatics resources. Nucleotide sequence databases 

like EMBL and GenBank became accessible online in the early 1990s. The National Center 

for Biotechnology Information (NCBI) made its website and tools, including BLAST, 

available online in 1994. Major databases such as Genomes (1995), PubMed (1997), and 

Human Genome (1999) were established and are still in use today. 

 Structural Bioinformatics: 

Advances allowed computers to predict protein secondary and tertiary structures with varying 

degrees of certainty. Molecular dynamics simulations became possible, although they 

required significant computational resources. The use of graphics processing units (GPUs) 

and supercomputers aided in making molecular dynamics simulations more accessible. 

 2000-2010: High-Throughput Bioinformatics 

 

 Second-Generation Sequencing: 

Second-generation sequencing (next-generation sequencing or NGS) began with the '454' 

pyrosequencing technology. These technologies enabled the sequencing of thousands to 

millions of DNA molecules in a single machine run. 

 Biological Big Data: 

The drop in DNA sequencing costs and the adoption of massively parallel sequencing 

resulted in exponential growth in sequence data in public databases. Sequencing data has 

exceeded the exabyte (10^18) level. New repository infrastructure for model organisms and 

general genomic databases emerged to store, organize, and make data accessible. The 

Genomic Standards Consortium was established in 2005 to define the minimum information 

required for genomic sequences. 

Aim  

 Data acquisition and database development 

To organize data in a way that allows researchers to access existing information and to 

submit new entries as they are produced. 

 

 Tool development 

To develop tools and resources that aid in the analysis of data. 

 

 Data analysis 

To use different tools to analyze the data and interpret the results in a biologically 

meaningful manner 

Branches 

There are several branches of Bioinformatics (Figure 1). Some of them are explained below. 
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Figure 1: Branches of Bioinformatics 

 Genomics 

Genomics is a fundamental field in bioinformatics that focuses on the study of an 

organism's entire genetic material, which is stored in its DNA (or RNA for some viruses). 

This genetic material, often referred to as the genome, contains all the information needed 

to build and maintain an organism. Genomics aims to understand and analyze the 

structure, function, evolution, and variations in the genome. Here are the key components 

of genomics in bioinformatics: 

 

 Sequencing: Genomic research often begins with DNA sequencing. This process 

involves determining the order of nucleotides (A, T, C, G) in a DNA molecule. There 

are various sequencing technologies, such as Sanger sequencing and next-generation 

sequencing (NGS), which allow scientists to read and decode the genetic information. 

 

 Genome Assembly: The raw sequencing data obtained is fragmented into smaller 

pieces, and the bioinformatics part of genomics involves assembling these pieces to 

create a complete genome. Genome assembly algorithms help organize and connect 

these sequences to form a coherent picture of the genome. 

 

 Functional Annotation: Once the genome is assembled, the next step is to identify and 

annotate the functional elements. This includes finding genes (coding regions), 

regulatory sequences, non-coding regions, and other structural components. 

Bioinformatics tools predict the locations of genes and their functions based on 

sequence similarity, conserved motifs, and other features. 

 

 Comparative Genomics: Genomic sequences of different organisms, both within the 

same species and across species, are compared to identify similarities and differences. 

Comparative genomics helps in understanding evolutionary relationships, studying 

gene conservation, and discovering genes responsible for specific traits or diseases. 

 

 Structural Genomics: Structural genomics focuses on determining the three-

dimensional structures of proteins and other macromolecules encoded by the genome. 

This is crucial for understanding protein functions and interactions. Techniques like 

X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy are used 

in structural genomics. 
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 Functional Genomics: This field aims to understand the functions of genes and their 

products. Functional genomics methods, such as transcriptomics (studying gene 

expression), proteomics (studying proteins), and metabolomics (studying 

metabolites), provide insights into how genes are expressed and how they influence 

an organism's biology. 

 

 Phylogenomics: Phylogenomics combines genomics and phylogenetics to study 

evolutionary relationships among species. It uses genomic data to reconstruct 

phylogenetic trees and understand the evolutionary history of different organisms. 

 

 Genomic Variation: Genomic variation studies focus on identifying variations in the 

genome, such as single nucleotide polymorphisms (SNPs), insertions, deletions, and 

copy number variations. These variations can be associated with diseases and traits. 

 

 Transcriptomics 

Transcriptomics is a branch of bioinformatics and genomics that focuses on the study of 

transcriptomes, which are the complete sets of RNA transcripts produced in a cell, tissue, 

or organism. These RNA transcripts, often referred to as messenger RNA (mRNA), 

provide critical information about which genes are actively being expressed and to what 

extent in a specific biological sample. Understanding transcriptomes is vital for 

unraveling the molecular mechanisms underlying various biological processes and 

diseases. Here are the key components of transcriptomics in bioinformatics: 

 

 Data Generation: Transcriptomics begins with the generation of RNA sequencing 

(RNA-Seq) data. RNA-Seq is a high-throughput technology that allows researchers to 

identify and quantify the RNA molecules present in a biological sample. It provides 

information about gene expression levels, alternative splicing, and the presence of 

non-coding RNAs, among other things. 

 

 Data Preprocessing: The raw RNA-Seq data typically contains errors, biases, and 

artifacts. Preprocessing involves cleaning and quality-checking the data to ensure its 

reliability. This step includes tasks like adapter removal, read alignment to the 

reference genome or transcriptome, and removal of duplicate reads. 

 

 Gene Expression Quantification: After preprocessing, bioinformaticians quantify gene 

expression levels. This step involves determining the number of RNA fragments that 

map to each gene, which serves as a measure of the gene's activity. Different 

algorithms and tools are available for this purpose. 

 

 Differential Expression Analysis: One of the key objectives in transcriptomics is to 

identify genes that are differentially expressed under different experimental 

conditions. This analysis helps researchers understand how gene expression is altered 

in response to various stimuli, diseases, or genetic mutations. Statistical methods are 

used to compare expression levels between conditions. 

 

 Functional Analysis: Transcriptomics data can be further analyzed to gain insights 

into the biological functions and pathways affected by changes in gene expression. 

Tools and databases, such as gene ontology (GO) analysis and pathway enrichment 

analysis, help in understanding the roles of differentially expressed genes. 
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 Alternative Splicing Analysis: In addition to quantifying gene expression, 

transcriptomics also allows for the study of alternative splicing events. Alternative 

splicing can generate multiple mRNA isoforms from a single gene, expanding the 

functional diversity of the proteome. 

 

 Long Non-Coding RNA (lncRNA) Analysis: Transcriptomics can reveal the presence 

and differential expression of long non-coding RNAs, which play crucial roles in gene 

regulation and various cellular processes. 

 

 Proteomics 

Proteomics is a branch of bioinformatics and biology that focuses on the large-scale study 

of proteins. It involves the comprehensive analysis of the structure, function, and 

expression of all the proteins in a biological system, such as a cell, tissue, or organism. 

Proteins are crucial molecules in living organisms, responsible for performing various 

biological functions, and understanding their properties and behaviors is essential for 

gaining insights into complex biological processes. Here are some key aspects of 

proteomics in bioinformatics: 

 

 Protein Identification and Characterization: Proteomics involves identifying and 

characterizing proteins. This can include determining the amino acid sequence, post-

translational modifications (e.g., phosphorylation, glycosylation), and three-

dimensional structures of proteins. 

 

 Protein Expression and Quantification: Proteomic studies aim to measure the relative 

abundance of proteins in different biological conditions. This can help researchers 

understand how proteins are regulated and expressed under various circumstances, 

such as disease states or drug treatments. 

 

 Protein-Protein Interactions: Proteins rarely function in isolation; they often work 

together in complexes. Proteomics helps in identifying protein-protein interactions, 

which are crucial for understanding cellular processes and signaling pathways. 

 

 Functional Annotation: Assigning biological functions to proteins is a fundamental 

goal of proteomics. This may involve studying the role of proteins in specific 

pathways, cellular processes, and disease mechanisms. 

 

 Biomarker Discovery: Proteomics plays a vital role in biomarker discovery for 

diseases. By comparing protein profiles in healthy and diseased samples, researchers 

can identify potential biomarkers for early disease diagnosis or monitoring treatment 

responses. 

 

 Mass Spectrometry and Other Techniques: Mass spectrometry is a common 

technology used in proteomics. It allows the precise measurement of protein masses 

and has the capability to identify and quantify thousands of proteins simultaneously. 

Other techniques, like gel electrophoresis and antibody-based assays, are also used in 

proteomic studies. 
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 Metabolomics 

Metabolomics is a subfield of bioinformatics that focuses on the comprehensive analysis 

of small molecules, known as metabolites, in biological systems. Metabolites include a 

wide range of compounds such as sugars, amino acids, lipids, organic acids, and other 

small molecules that play crucial roles in various biochemical processes within living 

organisms. Metabolomics aims to identify, quantify, and analyze these metabolites to gain 

insights into an organism's metabolism and understand its biochemical pathways, which 

can be essential for both basic research and practical applications. Following are the key 

concepts of metabolomics in bioinformatics: 

 Data Generation: Metabolomics data is generated through various analytical 

techniques, such as mass spectrometry (MS), nuclear magnetic resonance 

spectroscopy (NMR), and liquid or gas chromatography. These techniques allow 

researchers to detect and quantify a wide range of metabolites present in a biological 

sample. 

 

 Data Preprocessing: Metabolomics datasets can be large and complex, and 

preprocessing is a crucial step in data analysis. It involves data cleaning, alignment, 

normalization, and the removal of any technical variation or noise. This step ensures 

that the data is suitable for subsequent analysis. 

 

 Metabolite Identification: One of the primary goals of metabolomics is to identify the 

metabolites detected in the sample. Bioinformatics tools and databases play a critical 

role in matching experimental data to known metabolite profiles. This process often 

involves spectral databases, reference libraries, and computational algorithms to make 

accurate identifications. 

 

 Quantitative Analysis: Metabolomics data also provides quantitative information 

about the abundance of metabolites in a sample. Researchers can compare the 

concentration of specific metabolites across different samples or conditions to 

understand the metabolic changes. 

 

 Statistical and Multivariate Analysis: Bioinformatics tools are used to analyze 

metabolomics data statistically. Techniques like principal component analysis (PCA), 

partial least squares-discriminant analysis (PLS-DA), and hierarchical clustering can 

reveal patterns and trends in the data, helping researchers identify biomarkers or 

distinguish between sample groups. 

 

 Pathway Analysis: Metabolomics data can be integrated with other omics data, such 

as genomics and proteomics, to gain a more comprehensive understanding of the 

biological systems. Pathway analysis tools help researchers map metabolites onto 

known metabolic pathways, identifying key pathways and their interactions. 

 

 Biomarker Discovery: Metabolomics is often applied to discover biomarkers, which 

are specific metabolites associated with a particular disease or condition. Identifying 

biomarkers can be valuable in disease diagnosis, prognosis, and treatment monitoring. 

 

 System Biology 

Systems biology is an interdisciplinary field in bioinformatics that focuses on 

understanding complex biological systems by studying how individual components, such 
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as genes, proteins, and metabolites, interact and function as a whole. It aims to provide a 

comprehensive and integrated view of biological processes to better explain and predict 

the behavior of living organisms. Following are the key aspects of systems biology in 

bioinformatics: 

 

 Holistic Approach: Systems biology takes a holistic approach to biology, looking 

beyond the individual components. It considers the interactions, feedback loops, and 

dependencies among genes, proteins, and other molecules in biological systems. 

 

 Data Integration: It involves integrating data from various sources, such as genomics, 

transcriptomics, proteomics, and metabolomics, to create a comprehensive picture of 

biological processes. This integration is often achieved through computational 

methods. 

 

 Mathematical and Computational Modeling: Systems biology heavily relies on 

mathematical and computational modeling techniques. These models simulate 

biological processes and provide a framework for understanding and predicting 

system behavior. Examples of modeling techniques include differential equations, 

agent-based models, and network analysis. 

 

 Network Analysis: Biological networks, such as protein-protein interaction networks 

and metabolic pathways, are a central focus of systems biology. Network analysis 

helps uncover relationships and patterns within complex biological systems. 

 

 Dynamic Processes: Systems biology often deals with dynamic processes. It explores 

how biological systems change over time in response to various stimuli, 

environmental conditions, or genetic variations. 

 

 Hypothesis Generation and Testing: Systems biology generates hypotheses about how 

biological systems work. These hypotheses can then be tested through experiments, 

helping to refine the models and improve our understanding of the system. 

 

 Biomedical Applications: Systems biology has practical applications in medicine and 

drug discovery. It can be used to study complex diseases, identify potential drug 

targets, and optimize treatment strategies. 

 

 Quantitative Biology: A quantitative approach is a hallmark of systems biology. It 

involves measuring and quantifying various biological components and processes, 

often using high-throughput technologies. 

 

 Nutritional Genomics 

Nutritional genomics, often referred to as nutrigenomics, is a branch of genomics that 

focuses on the interaction between nutrition and genes. It aims to understand how an 

individual's genetic makeup influences their response to specific nutrients, foods, and 

dietary patterns. Nutritional genomics plays a significant role in agriculture by helping 

improve crop production and the nutritional quality of food. Following are the key points 

how it applies to agriculture in the context of bioinformatics: 

 

 Genomic Sequencing of Crops: One of the key aspects of nutritional genomics in 

agriculture is the genomic sequencing of crop plants. Advances in bioinformatics and 
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genomics have made it possible to sequence the entire genomes of various crops, such 

as rice, wheat, and maize. This provides a comprehensive understanding of the genes 

and genetic variations present in these crops. 

 

 Identification of Nutritional Genes: Bioinformatics tools are used to identify genes 

related to the nutritional content of crops. This includes genes that influence the levels 

of essential nutrients like vitamins, minerals, and proteins. By identifying these genes, 

researchers can target specific genetic traits for crop improvement. 

 

 Marker-Assisted Breeding: Nutritional genomics, coupled with bioinformatics, 

facilitates marker-assisted breeding programs. Researchers can identify genetic 

markers associated with desirable nutritional traits in crops. This helps in the selection 

and breeding of crop varieties with improved nutritional content. 

 

 Customized Diets for Livestock: Nutritional genomics also plays a role in livestock 

agriculture. By understanding the genetic makeup of animals, farmers can tailor their 

diets to optimize growth, health, and the nutritional quality of animal products, such 

as meat and dairy. 

 

 Optimizing Soil and Crop Interactions: Understanding the genetic factors that 

influence a crop's ability to absorb nutrients from the soil is crucial for sustainable 

agriculture. Bioinformatics helps in studying these interactions and optimizing 

nutrient uptake for crop growth. 

 

 Resilience to Environmental Stress: Nutritional genomics can help in developing crop 

varieties that are resilient to environmental stress, such as drought or nutrient-poor 

soil. By understanding the genetic basis of stress responses, crops can be engineered 

to thrive under challenging conditions. 

 

 Personalized Nutrition: In the context of agriculture, personalized nutrition refers to 

tailoring crop choices and farming practices based on the nutritional needs of specific 

regions or populations. Nutritional genomics can help identify which crops are best 

suited for a particular area, taking into account genetic factors. 

 

 Metagenomics 

Metagenomics is a powerful field within bioinformatics that has significant implications 

for agriculture. It involves the study of genetic material collected directly from 

environmental samples, such as soil, water, or plant tissues. In the context of agriculture, 

metagenomics has several applications: 

 Soil Health and Microbiome Analysis: Metagenomics is used to analyze the soil 

microbiome, which includes bacteria, fungi, and other microorganisms. 

Understanding the diversity and functional potential of these microorganisms is 

crucial for assessing soil health. Healthy soils are essential for crop growth and 

productivity. Metagenomics helps in identifying beneficial microbes, understanding 

their roles in nutrient cycling and disease suppression, and designing strategies for 

sustainable agriculture. 

 

 Plant-Microbe Interactions: Metagenomics enables the study of interactions between 

plants and the microorganisms in the rhizosphere (the soil zone around plant roots). 
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These interactions play a vital role in nutrient uptake, disease resistance, and overall 

plant health. By analyzing the metagenome of the rhizosphere, researchers can gain 

insights into the beneficial or pathogenic microorganisms present and their impact on 

crop growth. 

 

 Crop Pathogen Detection: Metagenomics can be used to identify and characterize 

pathogens in agricultural environments. By analyzing metagenomic data from 

infected plant samples, researchers can detect the presence of harmful pathogens, such 

as viruses, bacteria, or fungi. This information is valuable for disease management 

and quarantine measures. 

 

 Biological Control: Metagenomics can assist in identifying natural enemies of 

agricultural pests. Beneficial microorganisms or nematodes can be detected and used 

for biological pest control strategies, reducing the reliance on chemical pesticides. 

 

 Microbial-Based Crop Enhancements: Metagenomics helps in the discovery and 

development of microbial-based products that can enhance crop growth, nutrient 

uptake, and stress resistance. These products, such as biofertilizers or biostimulants, 

are environmentally friendly alternatives to traditional agricultural inputs. 

 

 Monitoring Ecosystem Changes: Metagenomics can be used to monitor changes in 

agricultural ecosystems over time. This includes tracking shifts in microbial 

populations due to changes in land use, cropping systems, or climate conditions. 

Understanding these changes can guide more sustainable agricultural practices. 

 

 Resilience to Climate Change: As climate change impacts agriculture, metagenomics 

can provide insights into how plant-microbe interactions may be affected. This 

information is essential for developing crop varieties and management strategies that 

can adapt to changing environmental conditions. 

 

 Waste Management: In livestock farming, metagenomics can be used to manage 

waste, such as manure. By understanding the microbial communities in waste, 

strategies for reducing environmental contamination and converting waste into 

bioenergy or other valuable products can be developed. 

 

 Cheminformatics 

Cheminformatics is a specialized field within bioinformatics that deals with the storage, 

retrieval, and analysis of chemical information and data, particularly in the context of 

biological and agricultural applications. In the context of agriculture, cheminformatics 

plays a crucial role in various aspects of crop management, agricultural research, and 

biotechnology. Here's how cheminformatics is applied in bioinformatics to benefit 

agriculture: 

 

 Pesticide and Fertilizer Development: Cheminformatics is used to design and develop 

new pesticides and fertilizers. Researchers can use databases of chemical structures 

and properties to predict the effectiveness and safety of these agrochemicals. This 

helps in reducing the environmental impact and improving crop yields. 
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 Chemical Safety: Cheminformatics tools are used to assess the safety of chemicals 

used in agriculture. This includes predicting the toxicity of pesticides and assessing 

their impact on non-target organisms, such as beneficial insects and pollinators. 

 

 Drug Discovery for Plant Health: Bioinformatics and cheminformatics can be used to 

discover compounds that protect plants from diseases. This is essential in reducing the 

need for chemical pesticides. Identifying compounds that enhance plant immunity or 

inhibit pathogens is a common application. 

 

 Plant Breeding: In modern agriculture, cheminformatics plays a role in crop 

improvement. For instance, researchers can use chemical profiling to identify 

compounds responsible for desirable traits in crops, such as nutritional content or 

disease resistance. This information can guide traditional breeding programs or 

genetic engineering efforts. 

 

 Metabolomics: Cheminformatics tools are crucial in metabolomics, which involves 

studying the chemical processes occurring within organisms, including plants. 

Metabolomics data can be used to understand how plants respond to environmental 

changes, stress, and disease, helping in crop management and breeding. 

 

 Herbicide Design: Cheminformatics assists in designing herbicides that selectively 

target weeds while sparing crop plants. Understanding the chemical properties and 

interactions of herbicides with plant biology is key to developing effective and 

environmentally friendly weed control solutions. 

 

 Molecular Docking: Cheminformatics and molecular docking techniques are used to 

study how chemicals interact with biological molecules like plant proteins and 

enzymes. This information is valuable in understanding how chemicals can influence 

plant processes and can be used in the development of targeted agrochemicals. 

 

 Environmental Impact Assessment: Cheminformatics can be used to assess the 

environmental impact of agricultural chemicals. This includes predicting their 

persistence in soil and water, their potential to leach into groundwater, and their 

impact on non-target organisms. 

Computational resources 

Databases and algorithms are essential components of bioinformatics, a multidisciplinary 

field that combines biology, computer science, and data analysis. They play a crucial role in 

managing, analyzing, and interpreting biological data, making it easier for researchers to 

extract meaningful information from large datasets. An overview of databases and algorithms 

commonly used in bioinformatics are as follows: 

 Databases in Bioinformatics: 

Genomic Databases: These contain DNA and RNA sequences from various species. 

Examples include GenBank, Ensembl, and RefSeq. Genomic databases provide a wealth of 

genetic information used in sequence analysis, gene annotation, and comparative genomics. 

Protein Databases: These store information about proteins, including sequences, structures, 

and functional annotations. Popular protein databases include UniProt, Protein Data Bank 
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(PDB), and Pfam. Researchers use these databases to study protein structure, function, and 

evolution. 

Gene Expression Databases: These house data related to gene expression levels in different 

tissues, conditions, or experimental settings. The Gene Expression Omnibus (GEO) and 

ArrayExpress are examples of repositories for gene expression data. 

Metabolic Pathway Databases: These contain information about biochemical pathways and 

the interactions between molecules in metabolic processes. KEGG and Reactome are widely 

used for pathway analysis. 

 Algorithms 

 

In bioinformatics, several key algorithms and methods are used for tasks related to sequence 

analysis and phylogenetics. These algorithms are fundamental for understanding the 

relationships between biological sequences, such as DNA, RNA, and proteins. Here, I'll 

provide an overview of pairwise and multiple sequence alignment, substitution matrices, and 

phylogenetic tree reconstruction algorithms: 

 

1. Pairwise Sequence Alignment: 

Pairwise sequence alignment is used to identify regions of similarity between two biological 

sequences. This can be helpful for comparing sequences for structural and functional 

analysis. 

Needleman-Wunsch Algorithm: This algorithm performs global alignment, meaning it 

compares the entire sequences and finds the optimal alignment by maximizing a similarity 

score. 

Smith-Waterman Algorithm: It's used for local sequence alignment, which finds the best-

matching subsequence within the sequences. 

 

2. Substitution Matrices: 

Substitution matrices are used to score the substitution of one amino acid or nucleotide with 

another in sequence alignments. They provide a measure of evolutionary relatedness between 

sequences. 

PAM (Point Accepted Mutation) Matrices: Developed by Margaret Dayhoff, PAM matrices 

describe the probability of specific amino acid substitutions over a fixed evolutionary 

distance. 

BLOSUM (Blocks Substitution Matrix) Matrices: These matrices are used in protein 

sequence alignment and are based on observed substitutions within closely related sequences. 

 

3. Phylogenetic Tree Reconstruction: 

Phylogenetic tree reconstruction is used to infer evolutionary relationships and construct a 

tree that represents the divergence of species or sequences over time. 

Neighbor-Joining (NJ): A distance-based method that constructs a tree by iteratively joining 

the closest neighbors. 

Maximum Parsimony: This method seeks the tree that requires the fewest evolutionary 

changes (mutations) to explain the observed sequence data. 

Maximum Likelihood: A likelihood-based approach that estimates the probability of 

observing the given sequences under different tree topologies. 

Bayesian Inference: Uses a Bayesian framework to estimate the posterior distribution of tree 

topologies and model parameters. 
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Challenges 

 Traditional bioinformatics methods heavily rely on reference databases, limiting 

analysis to known sequences and structures. 

 These methods struggle to predict novel patterns, making them less effective in 

underexplored biological areas. 

 Rapid improvements in high throughput sequencing technologies have given rise to 

heterogeneous and enormous amounts of omics data making it a big data problem. 

 Moreover, there has been a shift in data types, transitioning from conventional 

structured data to a more diverse range of architectures, including unstructured, semi-

structured, and heterogeneous formats, each with distinct characteristics. 

 There is a need for advanced computational techniques such as Artificial Intelligence 

(AI) to leverage various data types, including sequences, images, and unstructured 

text, facilitating the integration of diverse biological information. 

Big Data 

In bioinformatics, as in other fields, the concept of "Big Data" is characterized by the "5 

Vs," which describe key aspects of the data challenges faced. These Vs are Volume, 

Velocity, Variety, Veracity, and Value. 

 Volume: Big data in bioinformatics originates from various sources, including genomics 

(DNA sequencing), transcriptomics (RNA sequencing), proteomics (protein data), 

metabolomics (small molecule data), structural biology (protein structures), and more. 

Additionally, data sources include literature, and data from high-throughput experiments. 

Genomic data, in particular, has seen a dramatic increase in the form of DNA and RNA 

sequences, with millions of sequences available in public databases. This volume 

continues to expand rapidly. 

 

 Variety: Biological data comes in diverse formats, such as sequences, alignments, 3D 

structures, images, clinical records, and omics data. Integrating and analyzing these 

various data types poses challenges. 

 

 Velocity: The speed at which new biological data is generated is incredibly high, 

especially with the advent of high-throughput sequencing technologies. Keeping up with 

the pace of data generation is a significant challenge for bioinformaticians. 

 

 Veracity: Veracity relates to the accuracy, quality, and reliability of data. In 

bioinformatics, ensuring the veracity of data is crucial since errors or inaccuracies can 

lead to incorrect scientific conclusions. 

 

 Value: The value of big data in bioinformatics is the benefit that can be derived from it. It 

involves extracting meaningful insights, making discoveries, and ultimately improving 

healthcare, agriculture, and various biological research fields. 

Artificial Intelligence in Bioinformatics 

Artificial intelligence (AI) was formally defined at the Dartmouth conference in 1956. It 

quickly entered a period of rapid development and innovation, becoming known as the 

"golden age" of AI. The field of AI encompasses a wide array of content, and one of its 

crucial branches is machine learning (ML). ML is a methodology for achieving AI and 

includes a range of mathematical tools and algorithms. Although ML initially achieved 

remarkable progress, it faced a significant setback in the 1960s due to theoretical limitations. 
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It wasn't until the introduction of the backpropagation algorithm in the 1980s that ML 

experienced a resurgence in activity and widespread application. Subsequently, deep learning 

(DL) emerged from artificial neural networks (ANN) within the realm of machine learning 

and has been a driving force behind the current era of deep learning since 2006. 

Over the last decade, AI has found extensive use in omics studies, thanks to the accumulation 

of large-scale omics data and the growing need for big data analysis. Machine learning, as a 

subset of AI, focuses on acquiring insights and establishing patterns from data through 

computational models and algorithms. Its goal is to enhance system performance through 

computation and learning from experiences. Machine learning has diverse applications, 

spanning natural language processing, computer vision, data mining, and more. Various 

machine learning algorithms serve distinct purposes, including clustering, classification, 

regression, association rule mining, dimension reduction, and others. Based on the nature of 

the data and training strategies, machine learning is categorized into three primary types: 

supervised, unsupervised, and reinforcement learning. 

Supervised learning deals primarily with regression and classification problems, while 

unsupervised learning focuses on clustering. Reinforcement learning, on the other hand, 

involves learning from new experiences through trial-and-error. The field boasts a variety of 

traditional machine learning algorithms such as generalized regression, decision trees, naive 

Bayes, support vector machines (SVM), K-means clustering, and more.  

Deep learning, a critical branch of machine learning, originated from artificial neural 

networks and was formally introduced in 2006. It has since experienced rapid and substantial 

development. Deep learning encompasses a multidisciplinary approach, merging elements of 

statistics, optimization, algorithms, programming, distributed computing, and other fields. By 

constructing models with multiple hidden layers, deep learning allows for the discovery of 

intricate relationships within data, improving the accuracy of classification and prediction. 

This evolution has had a significant impact on various fields, making it a fundamental 

component of the broader AI landscape. 

In the forthcoming sections, various applications of ML in different omics have been 

discussed. 

 Machine learning in genomics: 

 

In the field of genomics and genome research, machine learning has become a crucial tool 

for various applications. These applications encompass diverse aspects of genomics, from 

predicting 3D genome structures to genome annotation, transcription regulation, effects of 

genetic variants, and even genome editing (Figure 2). 

 

1. Reconstruction of 3D Genome Structure: 

Understanding the spatial organization of the eukaryotic genome is essential for 

elucidating chromosomal activities within the cell. Experimental techniques, such as 

chromosome conformation capture (3C)-based technologies, provide insights into 3D 

genome organization but have limitations in resolution and cost. Therefore, machine 

learning methods have been developed to complement experimental studies. These 

methods are categorized based on their training data, including genomic sequences, 3C-

based interactions, chromatin states derived from epigenetic modifications, or hybrid 

data. They aim to predict various aspects of 3D genome structure, including 

reconstruction, compartmentalization, topologically associating domains (TADs), and 

chromatin loops. 
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2. Computational Modeling of Epigenomic and Chromatin States: 

Epigenomic modifications play a crucial role in genome regulation. Machine learning 

approaches have been employed to interpret and predict the effects of epigenetic 

modifications, DNA methylation, histone modifications, and chromatin states. These 

methods generate features from epigenetic data and leverage deep learning techniques to 

understand and predict epigenomic changes. 

 

3. Genome Annotation and Transcription Regulation: 

Machine learning is applied to the annotation of the genome, including the identification 

of protein-coding genes, non-coding RNAs, microRNAs, transcript splicing isoforms, 

regulatory elements, protein-binding sites, and cis-regulatory binding modules. It goes 

beyond simple identification to elucidate their functions and interactions. This is essential 

for understanding the roles of different genomic elements in gene regulation. 

 

4. Identifying the Effects of Genetic Variants: 

Genetic variants, especially those in non-coding regions, can significantly impact gene 

expression and phenotypes. Machine learning models have been developed to classify and 

predict the pathogenicity of genetic variants. These models help identify functional 

effects of non-coding variants and their contributions to diseases. 

 

5. Machine Learning in Genome Editing: 

The advent of genome editing technologies, such as CRISPR, has opened new 

possibilities in genome engineering. Machine learning is applied to design guide RNAs 

for CRISPR-based editing, predict cleavage tendencies, evaluate off-target effects, and 

identify optimal editing locations. These methods contribute to more precise and efficient 

genome editing. 
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Figure 2: Schematics representation of the application of AI in genomics (Li et al., 2022) 

 Machine learning in transcriptomics 

Machine learning, particularly deep learning, has made significant contributions to 

various aspects of transcriptomics, including the prediction and understanding of gene 

expression, splicing patterns, and transcription factor binding sites (Figure 3). 

 

1. Prediction of Gene Expression: 

Machine learning, especially deep learning, has proven highly effective in predicting gene 

expression levels based on genetic and epigenetic information. For instance, deep neural 

networks (DNNs) have been used to build models like D-GEX, which can predict target 

gene expression based on landmark genes. Histone modifications, which play a vital role 

in gene regulation, have also been leveraged for gene expression prediction using models 

like DeepChrome, demonstrating the superior performance of deep learning compared to 

traditional machine learning methods. 

 

2. Prediction and Classification of Splicing: 

Splicing, which determines how the genome is transcribed, influences the diversity of 

transcriptomes and proteomes. Aberrant splicing can lead to diseases, making it a crucial 
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area of study. Deep learning methods, including deep neural networks, are employed to 

predict and classify splicing patterns based on RNA-seq data, genomic sequences, and 

epigenetic features. These models accurately predict splicing outcomes in different 

biological contexts and contribute to our understanding of splicing regulation. 

 

3. Prediction of Transcription Factor Binding Sites: 

Transcription factors (TFs) are central to gene regulation, and their binding sites on DNA 

are essential for controlling gene expression. Machine learning, particularly deep 

learning, has been applied to identify TF-binding sites more accurately and efficiently. 

Models like PIQ and DeepBind have demonstrated the ability of deep learning to predict 

TF-binding sites. These models improve the accuracy of prediction, especially in 

comparison to traditional methods based on position weight matrices (PWMs). 

 

4. Auxiliary Diagnosis Using Transcriptomics: 

Machine learning plays a significant role in aiding disease diagnosis, particularly in the 

medical field. Artificial neural networks (ANNs) can analyze gene expression data to 

enhance the accuracy and efficiency of disease classification and diagnosis. Machine 

learning models combined with gene expression data are used for various medical 

applications, including predicting myopathy subtypes, drug-induced liver injury, and 

diagnoses related to mental and neurological diseases. In the context of cancer, machine 

learning assists in cancer classification, predicting molecular subtypes, early diagnosis, 

prognosis, and recurrence prediction. The integration of multiple cohort datasets is a 

promising avenue for improving auxiliary diagnosis, although the challenge of limited 

data remains. 

 

Figure 3: Schematics representation of the application of AI in transcriptomics (Li et al., 

2022) 
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 Machine learning in proteomics 

Machine learning is playing a pivotal role in the field of proteomics, where it aids in 

efficiently processing and analyzing vast amounts of proteomic data (Figure 4). 

Specifically, machine learning methods are significantly impacting proteomics in various 

areas, as outlined below. 

 

1. Biomass Spectrometry 

Mass spectrometry (MS) is an indispensable tool for studying protein structures and 

components. However, the processing of MS data has often lagged behind the 

development of MS instruments. Machine learning, particularly deep learning, is stepping 

in to address the challenges posed by high-dimensional and sparse proteomic data. Deep 

learning models are being harnessed for tasks like de novo sequencing, peptide property 

prediction, and mass spectrometry imaging analysis. For instance, DeepNovo, a deep 

learning-based model, is enhancing the accuracy of de novo peptide sequencing. 

Moreover, DeepRT employs deep learning to predict peptide retention times, a critical 

factor in liquid chromatography-mass spectrometry tandem analysis. Machine learning 

has the potential to significantly enhance the retrieval and analysis of peptide data, 

thereby advancing our understanding of proteome characterization. 

 

2. Screening of Protein Biomarkers 

Biomarkers are vital for disease screening, diagnosis, and therapy guidance. Traditional 

statistical methods often face limitations in biomarker discovery due to classification 

boundaries and variable correlations. Machine learning methods, both supervised and 

unsupervised, offer more flexibility in this context. Researchers have been combining 

machine learning with proteomic techniques, such as mass spectrometry, to identify 

disease-specific protein markers. For example, a study utilized a deep belief network 

(DBN) to screen for protein diagnostic markers in Alzheimer's disease, yielding a marker 

group with high diagnostic accuracy. While machine learning holds immense promise in 

biomarker discovery, challenges like overfitting and model interpretability need to be 

addressed. 

 

3. Nucleic Acid–Binding Protein Prediction  

Identifying proteins that bind to nucleic acids is essential for understanding various 

biological processes. Traditionally, this identification has been hampered by accuracy and 

scalability issues. However, with the availability of high-throughput measurements, such 

as protein binding microarrays and SELEX, machine learning has emerged as a highly 

accurate predictor of nucleic acid–binding properties in proteins. Tasks include DNA-

binding domain recognition and predicting protein-DNA/RNA docking interactions. 

Despite the success, challenges remain, particularly in reducing cross-prediction between 

DNA and RNA-binding residues. 

 

4. Predicting Protein–Protein Interactions (PPIs) 

PPIs are a critical domain where machine learning is revolutionizing our understanding of 

protein functions. While public databases offer some PPI data, they often lack specificity 

and comprehensiveness. Combining experimental methods with machine learning is 

proving effective in predicting PPIs accurately. Various machine learning algorithms, 

including random forests, support vector machines, and Bayesian probabilistic inference, 

are being used for PPI prediction. Deep learning has also found application in predicting 

PPIs through methods like domain-based ensemble models. Accurate identification of 

PPIs is instrumental in comprehending a wide range of physiological activities. 
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5. Protein Post-Translational Modification (PTM)  

PTM prediction is yet another area significantly benefiting from machine learning 

methods. PTMs, such as phosphorylation and glycosylation, play vital roles in regulating 

protein function. Machine learning models have been developed to predict PTM sites 

with high accuracy. For example, Musite predicts phosphorylation sites, while GlycoEP 

identifies N-, O-, and C-linked glycosylation sites. Additionally, web servers like 

MusiteDeep employ convolutional neural networks (CNNs) for predicting multiple PTM 

sites simultaneously, offering advantages in accuracy and speed. Furthermore, tools like 

SAPH-ire TFx assist in the identification of functional PTM sites from large-scale 

datasets. 

 

 

Figure 4: Schematics representation of the application of AI in proteomics (Li et al., 2022) 

 Machine learning in metabolomics 

Metabolomics, akin to genomics and proteomics, focuses on quantitatively analyzing all 

metabolites in organisms to uncover their relationships with physiological and 

pathological changes. It's a valuable technology for diagnosing diverse diseases 

characterized by metabolic variations. Traditional methods often struggle with the 
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sparsity of large-scale metabolomic data obtained through mass spectrometry, 

chromatography, and nuclear magnetic resonance. This challenge has led to an increased 

interest in machine learning algorithms. In the field of metabolomics, various machine 

learning techniques are being employed, contributing to advancements in data processing, 

metabolic phenotype stratification, and metabolic modeling (Figure 5). 

 

1. Data Processing and Analysis: 

Machine learning has significantly enhanced the processing and analysis of metabolomic 

data. These algorithms excel in pattern recognition and multivariate classification, 

assisting in classifying data based on complex patterns. Traditional methods like partial 

least squares discriminant analysis (PLS-DA), as well as support vector machines (SVM), 

have been employed for this purpose. SVM has gained prominence in metabolomics due 

to its high prediction and classification accuracy. Deep learning, a subset of machine 

learning, has also been applied in metabolomics for processes like estimating the 

detection probability of specific peaks. Deep learning, through methods like deep neural 

networks (DNNs), aids in eliminating false-positive peaks, enhancing the quality of 

metabolomic data. Tandem mass spectrometry (MS/MS) is used to identify unknown 

metabolites. The application of deep learning, such as the DeepMASS framework, helps 

effectively identify these unknown metabolites. Additionally, machine learning methods 

are being used to automate quality control and quality assurance processes in data 

processing. 

 

2. Stratification of Metabolic Phenotypes: 

Machine learning, particularly deep learning, is revolutionizing the stratification of 

metabolic phenotypes. This approach characterizes the metabolic profiles and processes 

of individuals based on the presence, content, and ratios of specific metabolites. Deep 

learning techniques have demonstrated success in capturing the intricate metabolic 

characteristics present in the data. For example, deep neural networks combined with t-

distribution random neighborhood embedding have revealed the metabolic heterogeneity 

in human colorectal cancer. Deep learning frameworks are also employed in classifying 

the estrogen receptor status of breast cancer, surpassing other machine learning methods 

in prediction accuracy. Novel methods combining deep neural networks enhance 

metabolic phenotype stratification and metabolite selection, offering high classification 

accuracy. 

 

3. Genome-Scale Construction of Metabolic Models: 

Machine learning is also playing a vital role in constructing genome-scale metabolic 

models (GEMs). GEMs encompass the metabolic reactions of a specific organism's 

genome and serve as a platform for metabolic flux modeling. The modeling process 

involves constraint-based quantitative modeling, integrating biochemical and genetic 

information. Machine learning optimizes model parameters, tests various input 

conditions, and enhances biomarker recognition, quantifying metabolite flux, and 

predicting metabolic genes. Applications extend to determining predictors of metabolic-

related drug side effects, generating collision cross-section values of small molecules, and 

identifying early metabolic disease markers. Despite these advancements, challenges 

persist, including experimental limitations, small sample sizes, interpretability issues, and 

a lack of comprehensive reference data. 
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Figure 5: Schematics representation of the application of AI in metabolomics (Li et al., 2022) 
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Introduction 

First HPC systems were vector-based systems (e.g. Cray) named ‘supercomputers’ because 

they were an order of magnitude more powerful than commercial systems. The 

‘supercomputer’, a large systems are just scaled up versions of smaller systems. High 

performance computing can mean high flop count per processor and totalled over many 

processors working on the same or related problems. This can have faster turnaround time, 

more powerful system, scheduled to first available system(s) and using multiple systems 

simultaneously. The HPC is any computational technique that solves a large problem faster 

than possible using single, commodity systems, Custom-designed, high-performance 

processors, Parallel computing, Distributed computing and Grid computing. 

Parallel computing is a single system with many processors working on the common task. The 

Distributed computing is configured as many systems loosely coupled by a scheduler to work 

on related problems and Grid Computing is defined as many systems tightly coupled by 

software and networks to work together on single problems or on related problems. 

Parallel computer is a computer that contains multiple processors where each processor works 

on its section of the problem and allowed to exchange information with other processors. 

Two big advantages of parallel computers are performance and memory. Parallel computers 

enable us to solve problems that benefit from or require, fast solution, require large amounts of 

memory and both. 

As per the Moore’s Law ‘predicts’ that single processor performance doubles every 18 months, 

eventually physical limits on manufacturing technology will be reached as in figure 1. 

 

Fig. 1: Moore’s Law towards performance of the system 

There are two types of parallel computers by their memory model namely shared memory and 

distributed memory. All processors have access to a pool of shared memory (Figure 2-A) while 

each processor has its own local memory in distributed memory (Figure 2-B).   
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Fig. 2: Shared Memory and distributed memory system 

Shared memory have two types of architecture i.e., Uniform memory access (UMA) and Non-

uniform memory access (NUMA). Each processor has uniform access to memory in UMA and 

also called as symmetric multiprocessors, or SMPs (Figure 3-A).  Time for memory access 

depends on location of data in NUMA as local access is faster than non-local access but it is 

easy to scale up than SMPs (Figure 3-B). 

 

 

Fig. 3: Shared Memory with UMA and NUMA 

The distributed memory is two types namely Massively Parallel Processor (MPP) and cluster. 

MPP is tightly integrated, single system image and cluster is an individual computers connected 

by specialized software and connected using interconnect network. Distributed memory is 

shown in figure 4. 

 

Fig. 4: Distributed Memory 

Both types of memory systems have processors, memory and network/interconnect.  

 

(A) (B) 

(B) (A) 
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Terminology 

Clock period (cp): The minimum time interval between successive actions in the processor. It 

is measured in nanoseconds (~1-5 for fastest processors) which is inverse of frequency (MHz). 

Instruction: An action executed by a processor, such as a mathematical operation or a memory 

operation. 

Register: A small and extremely fast location for storing data or instructions in the processor. 

Functional Unit (FU): A hardware element that performs an operation on an operand or pair of 

operations. Common FUs are ADD, MULT, INV, SQRT, etc. 

Pipeline: A Technique enables multiple instructions to be overlapped during execution. 

Superscalar: Multiple instructions are possible per clock period. 

Flops: Floating point operations per second. 

Cache: A Fast memory in the processor which keep instructions and data close to functional 

units so processor can execute more instructions more rapidly.  

SRAM: Static Random Access Memory (RAM). Very fast (~10 nanoseconds), made using the 

same kind of circuitry as the processors, so speed is comparable. 

DRAM: Dynamic RAM. Longer access times (~100 nanoseconds), but hold more bits and are 

much less expensive (10x cheaper). 

Memory hierarchy: The hierarchy of memory in a parallel system, from registers to cache to 

local memory to remote memory.  

Networks Latency: How long does it take to start sending a "message"? Measured in 

microseconds. 

Networks Processors: How long does it take to output results of some operations, such as 

floating point add, divide etc., which are pipelined?) 

Networks Bandwidth: What data rate can be sustained once the message is started? Measured 

in Mbytes/sec or Gbytes/sec 

Types of Clusters/Processors 

Symmetric Multiprocessors (SMPs) connect processors to global shared memory using either 

bus or crossbar. It provides simple programming model, but has problems with buses can 

become saturated and crossbar size must increase with number of processors. Problem grows 

with number of processors, limiting maximum size of SMPs. Programming models are easier 

since message passing is not necessary. The techniques are auto-parallelization via compiler 

options, loop-level parallelism via compiler directives, OpenMP, and pthreads. 

In MPP, each processor has its own memory and is not shared globally but the processors adds 

another layer to memory hierarchy (remote memory). The processor/memory nodes are 

connected by interconnect network using many possible topologies. The processors must pass 

data via messages so the communication overhead can be minimized. Many vendors have 

custom interconnects that provide high performance for their MPP system such as Gigabit 

Ethernet, Fast Ethernet, etc. 
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Clusters are similar to MPPs with processors and memory. The processor performance must 

be maximized and memory hierarchy needs remote memory as no shared memory for message 

passing to avoid the communication overhead. 

Clusters are different from MPPs as commodity processors including interconnect and OS with 

multiple independent systems and separate I/O systems. The advantages of clusters are 

inexpensive, fastest processors first, potential for true parallel I/O and high availability while 

the disadvantages are less mature software (programming and system), more difficult to 

manage (changing slowly), lower performance interconnects (not as scalable to large number).  

Distributed Memory Programming provides message passing using MPI, MPI-2 and 

active/one-sided messages. 

There are two types of parallelism i.e., data and task. Each processor performs the same task 

on different sets or sub-regions of data in data parallelism. Each processor performs a different 

task in task parallelism. Most parallel applications fall somewhere on the continuum between 

these two extremes.  

Example of data parallelism in a bottling plant, there are several ‘processors’, or bottle cappers, 

applying bottle caps concurrently on rows of bottles. 

Example of task parallelism in a restaurant kitchen, there are several chefs, or ‘processors’, 

working simultaneously on different parts of different meals. A good restaurant kitchen also 

demonstrates load balancing and synchronization--more on those topics later. 

A common form of parallelism used in developing applications was Master-Worker parallelism 

where a single processor is responsible for distributing data and collecting results (task 

parallelism) and all other processors perform same task on their portion of data (data 

parallelism). 

According to Flynn’s Taxonomy, the computing systems are classified into the following broad 

categories: 

 SISD: Single Instruction and Single Data 

 SIMD: Single Instruction and Multiple Data 

 MISD: Multiple Instruction and Single Data 

 MIMD: Multiple Instruction and Multiple Data 

The purpose of High-performance computing (HPC) platform is to provide the access to the 

compute resources remotely. The user can login remotely and submit compute their jobs either 

from the command line or through the GUI based interface provided to them. The computing 

systems are connected together through a high bandwidth data transfer and made available to 

the users in a queue-based job submission system. There are many open-source and commercial 

software packages installed. 

At IASRI, New Delhi 

The National Agricultural Bioinformatics Grid in ICAR consists of an advanced HPC 

infrastructure at IASRI, New Delhi and moderate HPC facilities at the domain centres for 

undertaking research in the field of agricultural bioinformatics.  Clusters are collections of 

computers that are connected together. The special sets of software are used to configure HPC 

environment. This set up has been named as Advanced Supercomputing Hub for Omics 

Knowledge in Agriculture (ASHOKA). The importance of HPC is rapidly growing because 

more and more scientific and technical problems are being studied on the huge data sets which 

require very high computational power as well. HPC offers environment for biologists, 
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scientists, analysts, engineers and students to utilize the computing resources in making vital 

decisions, to speed up research and development, by reducing the execution time. 

The following HPC infrastructure are set up under NAIP project NABG which are as follows 

in the form of clusters, network and storage. 

Types of Clusters 

a. 256 Nodes Linux Based Cluster with two masters 

b. 16 Nodes Windows Based Cluster with one master 

c. 16 Nodes GPGPU Based Linux Cluster with one master 

d. 16 Nodes Linux based SMP system 

e. 16 Nodes Linux Based Cluster at each of the five domains with one master 

Types of Networks 

a. High bandwidth network with low latency (Q-logic QDR InfiniBand switch) 

b. Gigabit network for cluster administration and management  

c. ILO3 Management Network  

Types of Storage 

a. Parallel File System (PFS) for computational purpose 

b. Network Attached Storage (NAS) for user Home Directory 

c. Archival Storage for back up. 

The hardware configuration of the Head/Master node is as follows 

Server Name   : HP ProLiant DL380-G7 Server 

Type of Processor  : Intel Xeon X5675 3.07Ghz 

Number of Processors  : 2 

Core per Processor  : 6 

Total memory (RAM)  : 96GB 

Memory per Core  : 8GB 

Hard Disk   : 6*600GB SAS 

OS    : RHEL 6.2 (Linux) 

The hardware configuration of each compute node is as follows 

Server Name   : HP ProLiant SL390-G7 Server 

Type of Processor  : Intel Xeon X5675 3.07 Ghz 

Number of Processors  : 2 

Core per Processor  : 6 

Total memory (RAM)  : 96G 

Memory per Core  : 8GB 

Hard Disk   : 300GB SAS 

OS    : RHEL 6.2 (Linux) 

Measuring Performance 

The memory is measured in terms of bytes i.e., Kilo (210 or 103), Mega (220 or 106) , Giga (230 

or 109) – Tera (240 or 1012), Peta (250 or 1015) , Exa (260 or 1018) 

The computational performance is measured in Flop/s (Flop/s = floating point operations per 

second) i.e., Mega Flops, Tera Flops, Peta Flops etc.  
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One can calculate peak performance of the cluster using standard formula i.e. Cluster 

Performance = (Number of nodes) * (number of CPUs per node) * (number of cores per CPU) 

* (CPU speed in GHz) * (CPU instruction per cycle)  

The grid has been established using the following network diagram as in figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Network diagram of NABG Grid 

The hardware and software specifications of the SMP is as follows 

Server Name   : HP ProLiant DL 980 G7 

Type of Processor  : Intel Xeon E7- 2830 2.13GHz 

Number of Processors  : 8 

Core per Processor  : 8 

Total memory (RAM)  : 1.5 TB 

Hard Disk   : 396 GB 

OS    : RHEL 6.2 

A switched fabric computer network communications link, is being used in HPC and enterprise 

data centre with InfiniBand interconnect switch. The InfiniBand architecture specification 

defines a connection between processor nodes and high performance I/O nodes such as storage 

devices as in figure 6. 
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Fig. 6: InfiniBand interconnect switch 

Main purpose of Ethernet network in the cluster is to provide services like cluster management, 

cluster monitoring, compute node deployment and many other things in figure 7.  

 

Fig. 7: InfiniBand interconnect switch 

Different types of file system are configured for storing user’s data, running parallel jobs and 

archiving the important data. There are three types of storage (i) Network Attached Storage 

(NAS), (ii) Parallel File System (PFS) and (iii) Archival Storage. 

The following challenges in bioinformatics are exists which essentially require the grid based 

architecture. 

 Protein folding & structure prediction 

 Homology search 

 Multiple alignment 

 Genomic sequence analysis 

 Gene finding 

 Gene expression data analysis 

 Drug discovery 

 Phylogenetic inference 

 Computational genomics, proteomics 

 Computational evolutionary biology 
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Introduction to Linux Basics 
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The Linux operating system is basically a variant of the UNIX operating system, and 

Linux has probably all that UNIX offers and more. It is a multi-user, multitasking, 

network operating system which also has a user friendly Graphical User Interface 

(GUI).  

Every desktop computer uses an operating system. The most popular operating systems 

are Windows, Mac OS, UNIX, Linux. 

What is an Operating System? 

An operating system is the first piece of software that the computer executes when a 

system is turned on. The operating system loads itself into memory and begins 

managing the resources available in the computer. It provides those resources to other 

applications that the user wants to run. Typical services that an operating system 

provides include:  

A task scheduler - The task scheduler is able to allocate the execution of the CPU to a 

number of different tasks. Some of those tasks are the different applications that the 

user is running, and some of them are operating system tasks. 

A memory manager - The memory manager controls the system’s RAM and normally 

creates a larger virtual memory space using a file on the hard disk. 

A disk manager - The disk manager creates and maintains the directories and files on 

the disk. When a file is needed, the disk manager makes it available from the disk.  

A network manager - The network manager controls all data moving between the 

computer and the network.  

Other I/O services manager - The OS manages the keyboard, mouse, video display, 

printers, etc.  

Security manager - The OS maintains the security of the information in the computer’s 

files and controls who can access the computer.  

An operating system normally also provides the default user interface for the system. 

The standard “look” of Windows 98 includes the Start button, the task bar, etc. The 

Mac OS provides a completely different look and feel for Macintosh computers.  

To understand why Linux has become so popular, it is helpful to know a little bit about 

its history.  

Background on Linux 

Linux, a UNIX-like operating system, is based on Minix and has been invented by Linus 

Benedict Torvalds in 1991. The following is an excerpt of a newsgroup, called 

“comp.os.minix” where Linus posted this text on 08/01/91: “...As I mentioned a month 

ago, I’m working on a free version of a Minix-look-alike for AT-386 computers. It has 

finally reached the stage where it’s even usable (though may not be, depending on what 

you want), and I am willing to put out the sources for wider distribution. It is just version 

0.02... but I’ve successfully run bash, gcc, gnu-make, gnu-sed, compress, etc. under it.”  
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Linux is a free version of UNIX that continues to be developed by the cooperative 

efforts of volunteer groups of programmers, primarily on the Internet, who exchange 

code, report bug, and fix problems in an open-ended environment. As a result, the world 

now has a powerful, robust, and full-featured operating system that continues to change 

and grow. 

In other words, Linux is little bit harder to manage than something like Windows, but 

offers more flexibility and configuration options. 

Linux is licensed under the GPL (General Public license) from the GNU organization, 

under which the kernel is provided with the source code, and is available for free. As a 

result, Linux is considered to be more secure and stable than closed source or 

proprietary systems like Windows because anyone can analyse the source code written 

in the C language and find bugs or add new features. One important point that should 

be noted is that even though the source is free, anyone is allowed to sell it for profit.  

Linux is known as an open source operating system and also called free software 

because everything about Linux is accessible to the public and is freely available to 

anyone.  Since the Linux source code is available, anyone can copy, modify, and 

distribute this software.  This allows for various companies such as SuSE, Red Hat, 

Caldera and others to sell and distribute Linux; however, at the same time, these 

companies must keep their Linux distribution code open for public inspection, 

comment, and changes. Despite of the command-line origins of Linux, these 

distributing companies are working to make the Graphical User Interface (GUI). 

The GNU General Public License  

To make software free, you need a license that defines the rights and the limits, that 

have to be regarded by the open source developer that wants to obtain, edit and 

eventually redistribute your source code. Because of that exists the GNU GPL (General 

Public License). Of course, there are also other licenses, but today’s most open source 

programs are distributed under this popular license.  

The GNU project was started in 1984 and “GNU is recursive acronym for “GNU’s Not 

Unix”; The Free Software Foundation, which stands for the freedom, the security and 

the protection of free source code therefore founded this kind of license, designed to 

protect open source code. GNU is also founder and maintainer of many software 

packages for the Linux operating system, such as basic tools and file system software.  

Is Linux Right for you? 

It depends on you and what you would like to do. Linux is not an all-purpose operating 

system and it would probably be more suited for some people and not so pleasing for 

others. If you are a person using your computer for some entertainment at home and are 

satisfied with your Windows system there are no compelling reasons for switching over 

to Linux, but you do have a choice now. There are several other reasons to consider 

Linux.  Linux is not just a simple operating system. It is an entire server and desktop 

environment, equipped with add-ons, GUI tools and interfaces, and supplementary 

programs. 

You can use Linux at home and even in college to understand the commands and even 

the internal workings of UNIX systems.   
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Distributions 

When people use the name Linux they are probably referring to a particular distribution 

of Linux. There are several software packages provided for Linux over the Internet but 

selecting and downloading one is a complicated task not necessarily manageable for 

new users who want to try out Linux. This is exactly where a distribution kicks in. 

A distribution is a set of software packages that are tested and provided on CD by a 

company for a small fee just like Windows. The advantages of using distributions are 

the support and manuals, as well as the fact that Linux can be specialized for use in a 

particular area. For example, if you would like using Linux for embedded systems a 

distribution may offer just the right amount of required software, leaving out optional 

things like the graphical user interface. So you get what you want instead of a general 

package for all users. 

The mainstream distributions, which are seemingly popular, are RedHat, SuSE, Caldera 

and Debian. Among these distributions RedHat seems to be most widespread. 

Caldera is probably more suited for those who are already using Windows. SuSE is a 

German based distribution known for its large number of bundled packages and 

support. Debian is unique because its not owned by a company and it’s a non-profit 

volunteer-based distribution developed solely by users. 

Getting Started with Linux 

Once the installation is complete, the system will reboot and start up with Linux. There 

are a series of messages on the screen while booting of the system regarding the 

hardware enabled, services started etc. After a while, the system will display a login: 

prompt. You can now log in.  

Some systems are configured to start graphical mode with a box in the middle 

containing both login: and Password: prompts. Press [CTRL]-[ALT]-[F1] to switch to 

the virtual console (text login screen), where you can log in to the system in the usual 

way.  

Accounts and Privileges 

Linux is a multi-user system, meaning that many users can use one Linux system 

simultaneously, from different terminals. So to avoid confusion, each user's workspace 

must be kept separate from the others.  

Even if a particular Linux system is a stand-alone personal computer with no other 

terminals physically connected to it, it can be shared by different people at different 

times, making the separation of user workspace is important.  

This separation is accomplished by giving each individual user an account on the 

system. You need an account in order to use the system; with an account you are issued 

an individual workspace to use, and a unique username that identifies you to the system 

and to other users. It is the name along with the password by which the system will 

recognize the user.  

Logging into the System 

To begin a session on a Linux system, you need to log in. Do this by entering your 

username at the login: prompt on your terminal, and then entering your password when 

asked.  
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Every Linux system has its own name, called the system's hostname; a Linux system is 

sometimes called a host, and it identifies itself with its hostname at the login: prompt. 

It's important to name your system -- like a username for a user account, a hostname 

gives name to the system you are using (and it becomes especially important when 

putting the system on a network). The system administrator usually names the system 

when it is being initially configured (the hostname can be changed later; its name is 

kept in the file `/etc/hostname'). The name of the terminal you are connecting from is 

displayed just after the hostname.  

To log in to the system, type your username (followed by) at the login: prompt, and 

then type your password when asked (also followed by); for security purposes, your 

password is not displayed on the screen when you type it.  

Once you've entered your username and password, you are "logged in" to the system. 

You can then use the system and run commands.  

As soon as you log in, the system displays the contents of `/etc/motd', the "Message of 

the Day" file. The system then displays the time and date of your last login, and reports 

whether or not you have electronic mail waiting for you. Finally, the system puts you 

in a shell---the environment in which you interact with the system and give it 

commands. Bash is the default shell on most Linux systems.  

The dollar sign (`$') displayed to the left of the cursor is called the shell prompt; it 

means that the system is ready and waiting for input. By default, the shell prompt 

includes the name of the current directory.  

Logging Out of the System 

To end your session on the system, type logout at the shell prompt. This command logs 

you out of the system, and a new login: prompt appears on your terminal.  

 To log out of the system   

$ logout   

You can also logout by just pressing Ctrl+d. 

Logging out of the system frees the terminal you were using and ensures that nobody 

can access your account from this terminal.  

Console Basics 

A Linux terminal is a place to put input and get output from the system, and usually has 

at least a keyboard and monitor.  

When you access a Linux system by the keyboard and monitor that are directly 

connected to it, you are said to be using the console terminal.  

Linux systems feature virtual consoles, which act as separate console displays that can 

run separate login sessions, but are accessed from the same physical console terminal. 

Linux systems are configured to have seven virtual consoles by default. When you are 

at the console terminal, you can switch between virtual consoles at any time, and you 

can log in and use the system from several virtual consoles at once.  

Switching Between Consoles 

To switch to a different virtual console, press [ALT]-[Fn], where n is the number of 

the console to switch to.  

 To switch to the fourth virtual console, press [ALT]-[F4].  
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You can also cycle through the different virtual consoles with the left and right arrow 

keys. To switch to the next-lowest virtual console, press [ALT]-[←]and to the next-

highest virtual console, press [ALT]-[→].  

 To switch from the fourth to the third virtual console, press   [ALT]-[←] 

The seventh virtual console is reserved for the X Window System. If X is installed, this 

virtual terminal will never show a login: prompt, but when you are using X, this is 

where your X session appears. If your system is configured to start X immediately, this 

virtual console will show an X login screen. 

You can switch to a virtual console from the X Window System using [CTRL] in 

conjunction with the usual [ALT] and function keys. This is the only console 

manipulation keystroke that works in X.  

 To switch from X to the first virtual console, press:   [CTRL]-[ALT]-[F1] 

Running a Command 

A command is the name of a tool that performs a certain function along with the options 

and arguments. Commands are case sensitive.  

To run the hostname command just type the command in front of prompt ($) 

$ hostname   

Options always begin with a hyphen character, `-', which is usually followed by one 

alphanumeric character. Always separate the command, each option, and each 

argument with a space character.  

Long-style options begin with two hyphen characters (`--').  

For example, many commands have an option, `--version', to output the version number 

of the hostname.  

$ hostname --version   

Sometimes, an option itself may take an argument. For example, hostname has an 

option for specifying a file name to use to read the hostname from, `-F'; it takes as an 

argument the name of the file that hostname should read from. To run hostname and 

specify that the file `host.info' is the file to read from   

$ hostname -F host.info   

Changing Your Password 

To change your password, use the passwd command. It prompts you for your current 

password and a new password to replace it with. You must type it exactly the same way 

both times, or passwd will not change your password.  

$ passwd  username 

Listing Your Username 

Use whoami to output the username of the user that is logged in at your terminal.  

$ whoami   

Listing Who Is on the System 

Use who to output a list of all the users currently logged in to the system. It outputs a 

minimum of three columns, listing the username, terminal location, and time of login 
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for all users on the system. A fourth column is displayed if a user is using the X Window 

System.  

$ who   

abc    tty1     Oct 20 20:09 

def     tty2     Oct 21 14:37 

def     ttyp1    Oct 21 15:04 (:0.0) 

$ 

The output in this example shows that the user abc is logged in on tty1 (the first virtual 

console on the system), and has been on since 20:09 on 20 October. The user def is 

logged in twice -- on tty2 (the second virtual console), and ttyp1, which is an X session 

with a window location of `(:0.0)'.  

Listing the Last Times a User Logged In 

Use last to find out who has recently used the system, which terminals they used, and 

when they logged in and out.  

$ last abc   

Listing System Activity 

When you run a command, you are starting a process on the system, which is a program 

that is currently executing. Every process is given a unique number, called its process 

ID, or "PID."  

Use ps to list processes on the system. By default, ps outputs 5 columns: process ID, 

the name of the terminal from which the process was started, the current status of the 

process (including `S' for sleeping, meaning that it is on hold at the moment, `R' 

meaning that it is running, and `Z' meaning that it is a process that has already died), 

the total amount of time the CPU has spent on the process since the process started, and 

finally the name of the command being run.  

Listing Your Current Processes 

Type ps with no arguments to list the processes you have running in your current shell 

session.  

$ ps   

  PID TTY STAT TIME COMMAND 

  193   1 S    0:01 -bash  

  204   1 S    0:00 ps 

$ 

Listing All of a User's Processes 

To list all the running processes of a specific user, use ps and give the username to list 

as an argument with the `-u' option.  

$ ps -u abc    

Listing All Processes on the System 

To list all processes running by all users on the system, use the `aux' options.  

$ ps aux   
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Listing Processes by Name or Number 

To list processes whose output contains a name or other text to match, list all processes 

and pipe the output to grep. This is useful for when you want to see which users are 

running a particular program or command.  

To list all the processes whose commands contain reference to an `sbin' directory in 

them   

$ ps aux | grep sbin   

To list any processes whose process IDs contain a 13 in them   

$ ps aux | grep 13   

To list the process, which corresponds to a process ID, give that PID as an argument to 

the `-p' option (PID is 344 )  

$ ps -p 344    

Finding the System Manual of a Command 

Use the man command to view a page in the system manual. As an argument to man, 

give the name of the program whose manual page you want to view. 

$ man ps   

Use the up and down arrow keys to move through the text. Press [Q] to stop viewing 

the manual page and exit man.  

Working with Shell 

Shell is a program that reads your command input and runs the specified commands. 

The shell environment is the most fundamental way to interact with the system -- you 

are said to be in a shell from the very moment you've successfully logged in to the 

system.  

The `$' character preceding the cursor is called the shell prompt; it tells you that the 

system is ready and waiting for input.  

If your shell prompt shows a number sign (`#') instead of a `$', this means that you're 

logged in with the superuser, or root, account. Beware: the root account has complete 

control over the system; one wrong keystroke and you might accidentally break it 

something awful. You need to have a different user account for yourself, and use that 

account for your regular use. 

Every Linux system has at least one shell program, and most have several. The standard 

shell on most Linux systems is bash( "Bourne again shell"). 

Running a List of Commands 

To run more than one command on the input line, type each command in the order you 

want them to run, separating each command from the next with a semicolon (`;'). For 

example, to clear the screen and then log out of the system   

$ clear; logout   

Redirecting Input and Output 

The shell moves text in designated "streams." The standard output is where the shell 

streams the text output of commands -- the screen on your terminal, by default. The 
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standard input, typically the keyboard, is where you input data for commands. You can 

redirect these streams -- to a file, or even another command -- with redirection.  

Redirecting Input to a File 

To redirect standard input to a file, use the `<' operator. To do so, follow a command 

with < and the name of the file it should take input from. For example, to redirect 

standard input for ls -l to file `listing'   

$ ls -l < listing   

Redirecting Output to a File 

Use the `>' operator to redirect standard output to a file. If you redirect standard output 

to an existing file, it will overwrite the file, unless you use the `>>' operator to append 

the standard output to the contents of the existing file. For example, to append the 

standard output of ls -l to an existing file `commands'   

$ ls -l>> commands   

Redirecting Output to another Command's Input 

Piping is to connect the standard output of one command to the standard input of 

another. You do this by specifying the two commands in order, separated by a vertical 

bar character, `|' (also called as a "pipe"). Commands built in this fashion are called 

pipelines.  

For example, it's often useful to pipe commands that display a lot of text output to more 

for perusing text.To pipe the output of apropos bash shell shells to less   

$ ls –l  | more   

Managing Jobs 

The processes you have running in a particular shell are called your jobs. You can have 

more than one job running from a shell at once, but only one job can be active at the 

terminal, reading standard input and writing standard output. This job is the foreground 

job, while any other jobs are said to be running in the background.  

The shell assigns each job a unique job number. Use the job number as an argument to 

specify the job to commands. Do this by giving the job number preceded by a `%' 

character.  

Suspending a Job 

Type Ctrl+z to suspend or stop the foreground job. This is useful when you want to do 

something else in the shell and return to the current job later. The job stops until you 

either bring it back to the foreground or make it run in the background. 

For example, if you are finding a file at Linux partition from root (/), typing Ctrl+z will 

suspend the find program and return you to a shell prompt where you can do something 

else. The shell outputs a line giving the job number (in brackets) of the suspended job, 

the text `Stopped' to indicate that the job has stopped, and the command line itself, as 

shown here:  

[1]+  Stopped                 find / -name abc 

In this example, the job number is 1 and the command that has stopped is `find / -name 

abc'. The `+' character next to the job number indicates that this is the most recent job.  
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If you have any stopped jobs when you log out, the shell will tell you this instead of 

logging you out:  

$ logout   

There are stopped jobs. 

$ 

At this point you can list your jobs, stop any jobs you have running and then log out.  

Putting a Job in the Background 

New jobs run in the foreground unless you specify otherwise. To run a job in the 

background, end the input line with an ampersand (`&'). This is useful for running non-

interactive programs that perform a lot of calculations. To run the command find / -

name abc > shell-commands as a background job   

$ find / -name abc > shell-commands &   

[1] 6575 

$  

The shell outputs the job number (in this case, 1) and process ID (in this case, 6575), 

and then returns to a shell prompt. When the background job finishes, the shell will list 

the job number, the command, and the text ̀ Done', indicating that the job has completed 

successfully:  

[1]+  Done                    find / -name abc >shell-commands 

To move a job from the foreground to the background, first suspend it  and then type 

bg (for "background").  

 For example, to start the command find / -name abc > shell-commands in the 

foreground, suspend it, and then specify that it finish in the background, you would 

type:  

$ find / -name abc > shell-commands   

Ctrl+z 

 

[1]+  Stopped                 find / -name abc >shell-commands 

$ bg   

[1]+ find / -name abc & 

$ 

If you have suspended multiple jobs, specify the job to be put in the background by 

giving its job number as an argument. TFor example, to run job 4 in the background   

$ bg %4   

Putting a Job in the Foreground 

Type fg to move a background job to the foreground. By default, fg works on the most 

recent background job. For example, to bring the most recent background job to the 

foreground   

$ fg   
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To move a specific job to the foreground when you have multiple jobs in the 

background, specify the job number as an option to fg. To bring job 3 to the foreground   

$ fg %3   

Listing Your Jobs 

To list the jobs running in the current shell, type jobs.  

$ jobs   

[1]-  Stopped                 find / -name abc >shell-commands 

[2]+  Stopped                find / -name abc >bash-commands 

$ 

This example shows two jobs--- find / -name abc > shell-commands and find / -name 

abc > bash-commands. The `+' character next to a job number indicates that it's the 

most recent job, and the `-' character indicates that it's the job previous to the most 

recent job. If you have no current jobs, jobs returns nothing.  

Stopping a Job 

Typing Ctrl+c interrupts the foreground job before it completes, exiting the program. 

To interrupt cat, a job running in the foreground   

$ cat   

Ctrl+c   

$ 

Use kill to interrupt ("kill") a background job, specifying the job number as an 

argument. To kill job number 2   

$ kill %2   

Command History 

Your command history is the sequential list of commands you have typed, in the current 

or previous shell sessions. The commands in this history list are called events.  

By default, bash remembers the last 500 events, but this number is configurable. 

Your command history is stored in a text file in your home directory called 

`.bash_history'; you can view this file or edit it like you would any other text file.  

Viewing Your Command History 

Use history to view your command history.  To view your command history   

$ history   

1 who 

2 apropos shell >shell-commands 

3 apropos bash >bash-commands 

4 history 

$ 
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This command shows the contents of your command history file, listing one command 

per line prefaced by its event number. Use an event number to specify that event in your 

history. To search your history for the text `find'   

$ history | grep find   

Specifying a Command from Your History 

You can specify a past event from your history on the input line, in order to run it again.  

The simplest way to specify a history event is to use the up and down arrow keys at the 

shell prompt to browse your history. The up arrow key takes you back through past 

events, and the down arrow key moves you forward into recent history. When a history 

event is on the input line, you can edit it as normal, and type to run it as a command; it 

will then become the newest event in your history.  

To run a history event by its event number, enter an exclamation mark (`!') followed by 

the event number (1).  

$ !1   

40



 

Biological Databases 

K. K. Chaturvedi 

ICAR-Indian Agricultural Statistics Research Institute, New Delhi 

 

Introduction 

Bioinformatics is the field of science in which biology, physics, chemistry, mathematics. 

Statistical and computer science, information and communication technology become a single 

discipline. It is emerging field that application of computer to collection, organization, 

storing, maintaining, accessing, sharing, analysis, interpretation and presentation of 

biological data (nucleotide and amino acids sequences, protein domains, protein structures) 

which helps to accomplishing life science research.   

The potential flood of sequence data and the rapidly evolving database technologies 

empowered researchers to establish international DNA data banks in the early 1980s. Today, 

we have massive sequence data in the public biological databases due to concerted effort at a 

number of molecular biology laboratories throughout the world, and the internet and computer 

technologies. At the beginning, the main concern of bioinformatics was the creation and 

maintenance of database to store nucleotide and amino acid sequences with wen based 

interfaces user can access existing data and submitting new data to the database. Hence, 

database creation and maintenance is major components in bioinformatics. Now, emphasis has 

shifted to decipher the functional, structural and evolutionary clues encoded in the languages 

of biology, in which sequences is represented by as sentence, motifs and patterns are by words 

and nucleotides and amino acids are by letters. However, database design and management is 

core area in bioinformatics.  

Data represents facts or value of results and relations between them have the capacity to 

represent information (Figure 1).  Patterns of relationship between information have the 

capacity to represent knowledge.  Each data is assigned to one data type, which indicates 

possible relationship with other data. For example; text, integer, float/double, character, time, 

date and binary.  

A database is a collection of data organized in the way which can be easily, stored, accessed 

and managed. Database system is amalgamation of database, database management system and 

users. (Fig. 1)  

Types of Database models 

In mid of 1960 the “database” word was first introduced with direct-access-storage. Charles 

Bachman has introduced Integrated Data Store (IDS), founded, the group “Database Task 

Group” responsible for the creation and standardization of COBOL. In 1971 the DTG within 

CODASYL (Conference on Data Systems Languages) delivered standard for database, which 

generally became known as the "Codasyl approach”, this led to network database. Same period 

IBM was developed IMS (Information Management System), which is similar to Codasyl 

approach and used hierarchical model of data.  Edgar Codd worked at IBM in San Jose, 

California and he was unhappy with the above two models. He wrote a number of papers those 

illustrated a new approach based on relational algebra for construction of database that led to a 

well accepted Relational Model of Data for Large Shared Data Banks. This based on concept 

relational algebra. There are three main types of database models; 1) Network Model, 2) 
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Hierarchy Model, and 3) Relational Model. Main objective of these models is integration of 

data, which is process of combining data of different sources under single query interface.   

 

 

Fig. 1: Data to knowledge 

 

Network Database Model 

This model visualizes data in a flexible way of representing objects and their relationships. Its 

distinguishing feature is that the schema, viewed as a graph in which object types are nodes 

and relationship types are arcs, is not restricted to being a hierarchy or lattice. 

Hierarchical database model 

This model is a data model in which the data is organized into a reverse tree-like structure. In 

this data can be represented as parent and child relationships by 1 to many relationships that 

each parent can have many children, but each child has only one parent. All attributes of a 

specific record are listed under an entity type. 

Relational Database Model 

In this model, database structure is represented in terms of tuples (rows), grouped into relations 

(tables) and values in each columns of tuple are represented as attributes values (data)  and 

identified solely by the attribute name (Field). 
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Major Components and Architecture of Database System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Architecture of Database 

 

 Users:  DB Administrator, Developer and end-user. 

 Application: Application software to any specific domain. 

 DBMS: Software for creation, insertion, deletion and modification. 

 Database: Collection of data 

Database architecture logically divided in to two types 

 2 - tier: End-user < -- > DBMS; Here end-user/client can directly communicate with 

database server. 

 3- tier: End-user < -- > Application Software < -- > DBMS; Here end-user/client will 

communicate with database server through application tools. 

Basic Concept of DataBase Management System (DBMS) 

Database Management Systems (DBMS) is specially designed applications software that 

designed to interact with the user, other applications and database(s) to capture and analyse 

data. The DBMS have facilities to allow the definition, creation, querying, update, and 

administration of databases. Well-known DBMSs include MySQL, PostgreSQL, Microsoft 

SQL Server, Oracle, SAP, MS Access, FoxPro, IBM DB2/TeraByte, etc. Now database have 

generally portable across different DBMS by using standards such as SQL and ODBC or JDBC 

to allow a single application to work with more than one database. 

Users 

Application software 

DBMS 

Database 

3-tier  

2-tier  
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Major functions of DBMS 

 Data definition: Defining new data structures, removing and modifying the 

existing structure. 

 Update:  Inserting, modifying, and deleting data. 

 Retrieval: Obtaining information for end-user queries or for applications. 

 Administration: Registering and monitoring users, enforcing data security, 

monitoring performance, maintaining data integrity, dealing with concurrency 

control, and recovering information if the system fails. 

Benefits of DBMS 

 Segregation of work to end-users 

 Easy editing, maintenance and retrieval 

 Minimizing data duplication 

 Reducing time in development and maintenance 

 Data security 

 Multiple user accessing  

 Backup and recovery 

Relational Database Management System (RDBMS) 

A Relational database Management System (RDBMS) is a database management system to 

manage relational database based on relation database model as discussed above, which is 

introduced by E. F. Codd. In this data is represented in terms of tuples (rows) Relational 

database is collection of tables, table is consist of rows usually called as records and columns 

called as field or attributes, and columns are identified by unique name.  Table is most simplest 

and fundamental unit of data storage. Each table has its own primary key (one or more fields), 

which ensures that uniqueness of each record with set of fields.  The keys are very important 

part of relational database.  They are used to establish and identify relationship between tables. 

The RDBMS supports Structured Query Language (SQL). 

Normalization  

Normalization is a systematics pre-process of decomposing tables to eliminate data 

redundancy. This will help to easy insertion, updation and deletion.  Normalization rule are 

divided into following form 

 First Normal Form:  Row cannot contain repeating group of data. 

 Second Normal Form: Remove partial dependency between columns 

 Remove transitive functional dependency 

 Boyce and Codd Normal Form: This deals with certain anomaly that is not handled 

by3NF. 

 

Entity-Relationship (E-R) Diagram  
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ER diagram is visual diagrammatic representation of data with standard symbols and notation, 

which describes how data is related to each other (Fig. 3). 

 

Major symbols and notations 

 

 

 

 

 

Fig. 3: Symbols and Notations 

Entity may be any object, person, place and etc. Attributes are features or characteristics. For 

Example livestock census statistics is shown in table 1. 

 

Table 1: Livestock data before normalization 

State State 

Capital 

Dist Dist 

Head 

Qrts 

Year Animal Category Population Population 

(000) 

Karnataka Bangalore Dharwad Dharwad 2007 Cattle < 1 year 14355 14.356 

Karnataka Bangalore Dharwad Dharwad 2007 Cattle 1-2.5 

year 

24675 24.675 

Karnataka Bangalore Dharwad Dharwad 2007 Cattle >2.5 year 44355 44.355 

Karnataka Bangalore Uttar 

Kannada 

Karwar 2007 Cattle < 1 year 45255 45.255 

Karnataka Bangalore Uttar 

Kannada 

Karwar 2007 Cattle 1-2.5 

year 

56555 56.555 

Karnataka Bangalore Uttar 

Kannada 

Karwar 2007 Cattle >2.5 year 1836 1.836 

 

 

 

 

 

 

 

 

Entity Relationship Attributes 
Joining 
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The ER diagram for the table 1 is shown in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: ER-Diagram 

 

The relationships of the tables are shown in Fig. 5. 

 

 

 

Fig. 5: Relationship diagram from MS Access 

 

Structured Query Language (SQL) 

SQL is a tool for communicate with database. SQL is a plat form independent common 

language is used to perform all types of data operation such as data defining, storing and 

managing in RDBMS database concept. Now, all RDBMS software employs this language as 

standard database language. Some of the sample commands are mentioned in table 2. 

Animals Category 

Census Dists 

Year 

States 

Regions 

Ani_Code 

S_Code 

R_Code 

D_Code 

Y_Code 

Ani_Code 
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Table 2: Sample of SQL commands 

Command Description Syntax 

Data Definition 

create To create new table 

or database 

CREATE TABLE "tablename" ("column1_name" "data 

type", 

 "column2_name" "data type",  “. . . ") 

alter For alteration ALTER TABLE table_name ADD column_name datatype; 

ALTER TABLE table_name DROP COLUMN 

column_name; 

ALTER TABLE table_name MODIFY COLUMN 

column_name datatype; 

drop To drop a table DROP TABLE "tablename" 

rename To rename a table RENAME TABLE tbl_name TO new_tbl_name; 

Data Manipulation  

Insert To insert a new row INSERT INTO tablename"  (column1,... column_last) 

  VALUES (value1, ... value_last); 

update To update existing 

row 

UPDATE "tablename" SET "columnname" =    "newvalue"  

[,"nextcolumn" =    "newvalue2"...] WHERE "columnname"  

  OPERATOR "value"  [AND|OR "column"  

  OPERATOR "value"]; 

delete To delete a row DELETE FROM "tablename" WHERE "columnname"   

OPERATOR "value"  [AND|OR "column"   OPERATOR 

"value"]; 

Transaction control 

commit To permanently 

save 

COMMIT; 

rollback To undo change ROLLBACK; 

savepoint To save temporarly SAVEPOINT SAVEPOINT_NAME; 

Data query 

select  SELECT[ALL| DISTINCT] column1 [,column2] 

FROM table1 [,table2]  [WHERE "conditions"] [GROUP BY 

"column-list"] [HAVING "conditions] [ORDER BY 

"column-list" [ASC | DESC] ] 

 

Biological Database 

Life science is a field which generates an enormous amount of un-integrated data. Biological 

databases are collection of life sciences data, information and knowledge collected from 

different sources such as scientific experiments, published literature, high-throughput 
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experiment, and computational & statistical analyses in form text, numbers, videos, images and 

diagrams. These data are broadly classified into four categories based type of data such as 

literature, sequences, structures and micro-array data. Also area wise classified into Genomics, 

Proteomics, Metabolomics, and Micro-array (gene expression) and Phylogenetics.  

Primary Genomic Databases 

 GenBank (National Center for Biotechnology Information) url: 

http://www.ncbi.nlm.nih.gov/genome 

 DNA Data Bank of Japan (National Institute of Genetics) url: 

http://www.ddbj.nig.ac.jp/ 

 European Nucleotide Archive (European Bioinformatics Institute) url: 

http://www.ebi.ac.uk/ena/ 

Primary Protein Databases 

 Uniprot (Universal Protein Resources) url:www.uniprot.org 

 PDB url: www.rcsb.org/pdb/ 

Metabolomics databases 

 META Cyc  url: http://metacyc.org/ 

 KEGG: url : http://www.genome.jp/kegg/pathway.html 

 Plant Metabolic Network (PMN) url: http://www.plantcyc.org/ 

Phylogenetics databases 

 PhylomeDB url: http://phylomedb.org 

 TreeBASE url: http://treebase.org 

Microarray Database 

 EMBL-EBI microarray database array express url: http://www.ebi.ac.uk/arrayexpress/ 

 Stanford University database url: http://smd.princeton.edu/ 

 Gene expression Omnibus (GEO) (NLM)  url: http://www.ncbi.nlm.nih.gov/geo/ 

 ExpressDB - Harvard url: http://arep.med.harvard.edu/ExpressDB/ 

Similarly many bioinformatics databases such as Compound-Specific Databases, 

Comprehensive Metabolomic Database, drug database, RNA database, SNP database, 

Microsatellites, Literature database, Crystallographic database, NMR spectra database, 

Carbohydrate structure databases, Protein-protein interactions database, Signal transduction 

pathway databases,  primer databases, Taxonomic databases and etc. 
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Introduction 

DNA sequencing is a biochemical method in order to determine the correct order of nucleotide bases in a 

DNA macromolecule by using sequencing machines. Earlier sequencing was based on a single type of 

method that is Sanger sequencing. In 2005, Next Generation Sequencing (NGS) Technologies emerged 

and changed the view of the analysis and understanding of living beings. Over the last two decade, 

considerable progress has been made on new sequencing methods. NGS is modern high-throughput DNA 

sequencing technologies. They are faster, cheaper, rapid and parallel. They require much less template 

preparation than the Sanger sequencing technique. 

First Generation Sequencing 

1. Dideoxy method or chain termination method:  

This method is developed by Sanger and Coulson in 1977. In this method one strand of the double 

stranded DNA is used as template to be sequenced. This sequencing is based on using chemically 

modified nucleotides called dideoxy-nucleotides (ddNTPs). The dideoxynucleotides are used in 

elongation of DNA complementary strand, once incorporated into the DNA strand they prevent the 

further elongation. The sequencing reaction is carried out in four test tubes which consist of various 

components besides the templates. These components are a small stretch of DNA sequence called primer, 

DNA polymerase enzyme, a mixture of four deoxy nucleotide triphosphate (A, T, G, and C) and one of 

the dideoxy nucleotide, i.e. either ddATP, ddTTP, ddGTP or ddCTP labeled with radioactive substances 

or non-radioactive substances like dig or biotin. The synthesis of new DNA strand continues in the 

presence of DNA polymerase enzyme until a dideoxynucleotide is added in the complementary DNA 

strand which results in the generation of different sized DNA fragments, ending with labeled ddNTPs. 

After the reaction is complete the reaction mixture of all the four tubes are loaded adjacent to each other 

on a polyacrylamide sequencing gel. The four lanes specific to ddATP, ddCTP, ddGTP and ddTTP 

produce fragments of varying length upon electrophoresis and autoradiography. The position of bands in 

the gel is used to directly read DNA sequences from bottom to top. The automated version of this method 

uses ddNTPs that are labeled with different color fluorescent dyes so that all four reactions can be run in a 

single tube. 

2. Chemical cleavage method of DNA sequencing: 

This method is developed by Maxam and Gilbert in 1977. This method uses chemicals to break DNA 

molecules of specific bases, thus creating fragments of different sizes. DNA molecule to be sequenced is 

radiolabeled. The sequencing reaction is devised into four tubes along with a fifth reference tube. 

Chemicals Reaction 

Dimethyl sulphate Alters guanine at N7 position by methylation 

Acid Alters either adenine or guanine 

Hydrazine Alters either thymine or cytosine 

Hydrazine + NaCl Alters cytosine 

NaOH Reference 
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For removing altered basepairs from the sequencing reaction, piperidine is added in each tube. Piperidine 

breaks the DNA molecules at the sugar residue from the point of altered nucleotide thus making different 

sized fragments of DNA. The mixture of DNA fragments are separated on high resolution polyacrylamide 

gels by loading the contents of all the four tubes in adjacent lanes. After electrophoresis, the gels are 

exposed to x-ray film for developing autoradiographs of the DNA bands from which sequence is read. 

Second Generation Sequencing 

The first generation of sequencing especially Sanger sequencing was extensively used for three decades, 

however, the cost and time was a major drawback. In 2005, second generation sequencing technologies 

came into the market which eliminates the limitations of the first generation sequencing. The basic 

characteristics of second generation sequencing technology are: (1) The generation of many millions of 

short reads in parallel, (2) The speed up of sequencing the process compared to the first generation, (3) 

The low cost of sequencing and (4) The sequencing output is directly detected without the need for 

electrophoresis. Short read sequencing approaches divided under two wide approaches: sequencing by 

ligation (SBL) and sequencing by synthesis (SBS). 

1. 454/Roche: 

Roche/454 sequencing appeared on the market in 2005, using pyrosequencing technique which is based 

on the detection of pyrophosphate, released after each nucleotide incorporation in the new synthetic DNA 

strand (http://www.454.com). The pyrosequencing technique is a sequencing-by-synthesis approach. 

DNA samples are randomly fragmented and each fragment is attached to a bead whose surface carries 

primers that have oligonucleotides complementary to the DNA fragments so each bead is associated with 

a single fragment. Then, each bead is isolated and amplified using PCR emulsion which produces about 

one million copies of each DNA fragment on the surface of the bead. The beads are then transferred to a 

plate containing many wells called picotiter plate (PTP) and the pyrosequencing technique is applied 

which consists in activating of a series of downstream reactions producing light at each incorporation of 

nucleotide. By detecting the light emission after incorporation of each nucleotide, the sequence of the 

DNA fragment is deduced. The use of the picotiter plate allows hundreds of thousands of reactions occur 

in parallel, considerably increasing sequencing throughput. The latest instrument launched by Roche/454 

called GS FLX+ that generates reads with lengths of up to 1000 bp and can produce ~1Million reads per 

run. The Roche/454 is able to generate relatively long reads which are easier to map to a reference 

genome. The main errors detected of sequencing are insertions and deletions due to the presence of 

homopolymer regions. Indeed, the identification of the size of homopolymers should be determined by 

the intensity of the light emitted by pyrosequencing. Signals with too high or too low intensity lead to 

under or overestimation of the number of nucleotides which causes errors of nucleotides identification. 

2. Illumina/ Solexa: 

Illumina technology is sequencing by synthesis approach and is currently the most used technology in the 

NGS market. During the first step, the DNA samples are randomly fragmented into sequences and 

adapters are ligated to both ends of each sequence. Then, these adapters are fixed themselves to the 

respective complementary adapters, the latter are hooked on a slide with many variants of adapters 

(complementary) placed on a solid plate. During the second step, each attached sequence to the solid plate 

is amplified by PCR bridge amplification that creates several identical copies of each sequence. A set of 

sequences made from the same original sequence is called a cluster. Each cluster contains approximately 

one million copies of the same original sequence. The last step is to determine each nucleotide in the 

sequences, Illumina uses the sequencing by synthesis approach that employs reversible terminators in 

which the four modified nucleotides, sequencing primers and DNA polymerases are added as a mix, and 

the primers are hybridized to the sequences. Then, polymerases are used to extend the primers using the 

modified nucleotides. Each type of nucleotide is labeled with a fluorescent specific in order for each type 

to be unique. The nucleotides have an inactive 3’-hydroxyl group which ensures that only one nucleotide 
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is incorporated. Clusters are excited by laser for emitting a light signal specific to each nucleotide, which 

will be detected by a coupled-charge device (CCD) camera and Computer programs will translate these 

signals into a nucleotide sequence. The process continues with the elimination of the terminator with the 

fluorescent label and the starting of a new cycle with a new incorporation. 

3. ABI/SOLiD:  

Sequencing by Oligonucleotide Ligation and Detection (SOLiD) is a NGS sequencer Marketed by Life 

Technologies (http:// www.lifetechnologies.com). In 2007, Applied Biosystems (ABI) has acquired 

SOLiD and developed ABI/SOLID sequencing technology that adopts the ligation (SBL) approach. The 

ABI/SOLiD process consists of multiple sequencing rounds. It starts by attaching adapters to the DNA 

fragments, fixed on beads and cloned by PCR emulsion. These beads are then placed on a glass slide and 

the 8-mer with a fluorescent label at the end is sequentially ligated to DNA fragments, and the color 

emitted by the label is recorded. Then, the output format is color space which is the encoded form of the 

nucleotide where four fluorescent colors are used to represent 16 possible combinations of two bases. The 

sequencer repeats this ligation cycle and each cycle the complementary strand is removed and a new 

sequencing cycle starts at the position n-1 of the template. The cycle is repeated until each base is 

sequenced twice. The recovered data from the color space can be translated to letters of DNA bases and 

the sequence of the DNA fragment can be deduced. 

4. Ion Torrent: 

Life Technologies commercialized the Ion Torrent semiconductor sequencing technology in 2010 

(https//www.thermofisher.com/us/en/home/brands/ion-torrent.html). It is similar to 454 pyrosequencing 

technology but it does not use fluorescent labeled nucleotides like other second-generation technologies. 

It is based on the detection of the hydrogen ion released during the sequencing process. First, emulsion 

PCR is used to clonally amplify adapter ligated DNA fragments on the surface of beads. The beads are 

subsequently distributed into micro-wells where sequencing by synthesis reaction occurs. Ion torrent chip 

consists of a flow compartment and solid state pH sensor micro-arrayed wells that are manufactured using 

processes built on standard complementary metal oxide semiconductor (CMOS) technology. The release 

of H+ during extension of each nucleotide is detected as a change in the pH within the sensor wells. Since 

there is no detectable difference for H+ released from a A, T, G or C bases, the individual dNTPs are 

applied in multiple cycles of consecutive order. The speed of sequencing is 2-8 hrs depending on the 

machine and chip used. Error rate for substitutions is ~0.1%, similar to Illumina. Homopolymer repeats 

more than 6bp lead to increased error rates. 

Third Generation Sequencing 

The second generation sequencing technologies generally require PCR amplification step which is a long 

and expensive procedure. Also, it became clear that the genomes are very complex with many repetitive 

areas that second generation sequencing technologies are incapable to solve them and the relatively short 

reads made genome assembly more difficult. Third generation sequencing technologies are remedy to 

these problems. These third generations of sequencing have the ability to cover a low sequencing cost and 

easy sample preparation without the need PCR amplification. The execution time reduces significantly 

than second generation sequencing technologies. The most widely used third generation sequencing 

technology approach is SMRT (Pacific Biosciences) and Oxford Nanopore sequencing. 

1. Pacific biosciences SMRT sequencing 

Pacific Biosciences (http//www.pacificbiosciences.com/) developed the first genomic sequencer using 

SMRT approach and it’s the most widely used third-generation sequencing technology. Template 

preparation involves ligation of single stranded hairpin adapters onto the ends of digested DNA or cDNA 

molecules, generating a capped template called SMRT-bell. This technology works with single molecule 
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detection which does not require any amplification step. By using a strand displacing polymerase, the 

original DNA molecule can be sequenced multiple times, thereby increasing accuracy. 

DNA synthesis occurs in zeptoliter sized chambers, called zero-mode waveguides (ZMWs). These ZMW 

are small reaction wells that each ideally contains one complex consisting of template molecule, 

sequencing primer and DNA polymerase bound to the bottom of the ZMW. The fluorescent signals of the 

extended nucleotides are recorded in real time at 75 frames per second for the individual ZMWs. This is 

achieved by powerful optical system that illuminates the individual ZMWs with red and green laser 

beamlets from the bottom of the SMRT cell and a parallel confocal recording system to detect the signal 

from the fluorescent nucleotides. When a nucleotide complementary to the template is bound in position 

by the polymerase within the illumination zone of the zmw, the identity of the nucleotide is recorded by 

its fluorescent label. Each SMRT cell produces ~50k reads and upto 1 gb of data in 4 hrs. The average 

read length is >14 kb. This technology has a high error rate of approximately 11%. This is useful for 

denovo assembly of small bacterial and viral genomes as well as large genome finishing.  

2. Oxford nanopore sequencing 

This technology is also based on single molecule strategy. This relies on the transition of DNA or 

individual nucleotides through a small channel called protein nanopore. A nanopore is a nanoscale hole 

made of proteins or synthetic materials. A sequencing flow cell comprises hundreds of independent 

micro-wells, each containing a synthetic bilayer perforated by biological nanopores. Sequencing is 

accomplished by measuring characteristic changes in ionic current that are induced as the bases are 

threaded through the pore by a molecular motor protein. Library preparation is minimal, involving 

fragmentation of DNA and ligation of adapters. The first adapter is bound with a motor enzyme as well as 

a molecular tether, whereas second adapter is a hairpin oligonucleotide that is bound by a second motor 

protein. This library design allows sequencing of both strands of DNA from a single molecule, which 

increases accuracy. The variation in ionic current is recorded progressively on a graphic model and then 

interpreted to identify the sequence. MinION is released in 2014 which generate longer reads, ensure 

better resolution structural genomic variants and repeat content.it is a mobile single –molecule nanopore 

sequencing measures connected by a USB 3.0 port of a laptop computer. PromethION is bigger than 

MinION, equivalent to 48 MinIONs. 
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Sanger Sequencing 

 DNA is fragmented 

 Cloned to a plasmid vector 

 Cyclic sequencing reaction 

 Separation by electrophoresis 

 Readout with fluorescent tags 

 

Sanger Vs NGS 

 ‘Sanger sequencing’ has been the only DNA sequencing method for 30 years but… 

 …hunger for even greater sequencing throughput and more economical sequencing 

technology… 

 NGS has the ability to process millions of sequence reads in parallel rather than 96 at a time 

(1/6 of the cost) 

NGS Platforms: Different sequencing techniques used for next generation sequencing are: 

• Roche/454 FLX: 2004 

• Illumina Solexa Genome Analyzer: 2006 

• Applied Biosystems SOLiDTM System: 2007 

• Helicos HeliscopeTM : 2009 

• Pacific Biosciencies SMRT: 2010 
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General Experimental Procedure 

 

Sequencing Technology at a Glance 

Method Read 

length 

Accuracy Time per 

run 

Cost per 1 

million bases  

Advantages Disadvantages 

Chain 

termination 

(Sanger 

sequencing) 

400 to 

900 bp 

99.9% 20 minutes 

to 3 hours 

Rs 144000 Long 

individual 

reads. Useful 

for many 

applications. 

More expensive 

and impractical 

for larger 

sequencing 

projects. 

Pyrosequencing 

(454) 

700 bp 99.9% 24 hours Rs 600 Long read size. 

Fast 

Runs are 

expensive. 

Homopolymer 

errors. 

Sequencing by 

synthesis 

(Illumina) 

50 to 300 

bp 

98% 1 to 10 days, 

depending 

upon 

sequencer 

and specified 

read length 

Rs 3 to 9 Potential for 

high sequence 

yield, 

depending 

upon sequencer 

model and 

desired 

application. 

Equipment can be 

very expensive. 

Requires high 

concentrations of 

DNA. 

Sequencing by 

ligation 

(SOLiD 

sequencing) 

50+35 or 

50+50 bp 

99.9% 1 to 2 weeks Rs 78 Low cost per 

base. 

Slower than other 

methods. Have 

issue sequencing 

palindromic 

sequence. 

Single-

molecule real-

time 

sequencing 

(Pacific Bio) 

10,000 bp 

to 15,000 

bp avg. 

(14,000 

bp);  

87% 30 minutes 

to 4 hours 

Rs 7.8–36 Longest read 

length. 

 Fast.  

Moderate 

throughput. 

Equipment can be 

very expensive. 
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Reads, Contigs and Scaffolds 

 Reads are what you start with (35bp-800bp) 

 Fragmented assemblies produce contigs that can be kilobases in length 

 Putting contigs together into scaffolds is the next step 

 

FASTQ Format 

 

 

Before Assembly 

Fragment readout  

 DNA characters in a fragment are determined from chromatogram 

 Base call is a DNA character that is determined from chromatogram 
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Fragment readout  

 Phred Score- determine the quality value of a base 

𝑞 = −10 × 𝑙𝑜𝑔10(p) 

 where p is the estimated error probability for the base 

 if Phred assigns a quality score of 30 to a base, the chances that this base is called 

incorrectly are 1 in 1000 

 The most commonly used method is to count the bases with a quality score of 20 and 

above 

 Phred Score 

 

Genome Properties 

  

PASS       FAIL 
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PASS       FAIL 

 

Library Quality 

     

 

PASS       FAIL 

Run Quality 

  

PASS       FAIL 
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Read Quality 

 

PASS       FAIL 

  

PASS       FAIL 

  

PASS       FAIL 
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PASS       FAIL 

 

Trimming 

 Trimming low-quality sequences 

-removal of reads containing poor quality base calls 

 Trimming vector sequences 

-removal of reads containing vector sequences 
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1. Introduction 

Since the development of high-throughput methods for production of gene and protein 

sequences during 90s, the rate of addition of new sequences to the databases increases 

very rapidly. However, comparing sequences with known functions with these new 

sequences is one way of understanding the biology of that organism from which the 

new sequence comes. Thus, sequence analysis can be used to study of the similarities 

between the compared sequences. Now a days, there are many tools and techniques that 

provide the sequence comparisons (sequence alignment) and analyze the alignment to 

understand the biology. 

Sequence analysis in molecular biology and bioinformatics is an automated, computer-

based examination of characteristic fragments, e.g. of a DNA strand. It basically 

includes relevant topics: 

1. The comparison of sequences in order to find similarity and dissimilarity in 

compared sequences (sequence alignment)  

2. Identification of gene-structures, reading frames, distributions of introns, exons 

and regulatory elements  

3. Finding and comparing point mutations or the single nucleotide polymorphism 

(SNP) in organism in order to get the genetic marker.  

4. Revealing the evolution and genetic diversity of organisms.  

5. Functional annotation of genes.  

Sequence alignment is a way to identify regions of similarity in DNA, RNA, or protein 

sequences that may be a consequence of functional, structural, or evolutionary 

relationships between the sequences. Aligned sequences of nucleotide or amino acid 

residues are typically represented as rows within a matrix. If two sequences share a 

common ancestor for the alignment, mismatches can be interpreted as point mutations 

and gaps as indels (that is, insertion or deletion mutations). Thus, a letter or a stretch of 

letters may be paired up with dashes in the other sequence to signify such an insertion 

or deletion. Homologous sequences may have different length, which is generally 

explained through insertions or deletions in sequences. Since an insertion in one 

sequence can always be seen as a deletion in the other one frequently uses the term 

"indel". In sequence alignments of proteins, the degree of similarity between amino 

acids sequence can be interpreted as a rough measure of how conserved a particular 

region or sequence motif is among lineages. The absence of substitutions, or the 

presence of only very conservative substitutions (that is, the substitution of amino acids 

whose side chains have similar biochemical properties) in a particular region of the 

sequence, suggest that this region has structural or functional importance. Although 

DNA and RNA nucleotide bases are more similar to each other than are amino acids, 

the conservation of base pairs can indicate a similar functional or structural role. 

Very short or very similar sequences can be aligned by hand. However, most interesting 

problems require the alignment of lengthy, highly variable or extremely numerous 
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sequences that cannot be aligned solely by human effort. Computational methods need 

to be developed for the alignment of a large pair of sequences. Computational 

approaches are of two categories: global alignments and local alignments. Global 

alignment is a form of global optimization that "forces" the alignment to span the entire 

length of all query sequences.  Global alignment will be applied when the sequences 

are of similar lengths. Local alignments identify regions of similarity within long 

sequences. Local alignments are often preferable, but it consumes more time to 

calculate because of the additional challenge of identifying the regions of similarity in 

the local regions. Number of algorithms is being applied for the sequence alignment, 

including optimizing methods like dynamic programming, and heuristic algorithms or 

probabilistic methods designed for large-scale database search. 

 

Fig. 1 Sample of sequence Alignment text based representations 

In sequence alignment of graphical representations, sequences are written in rows so 

that aligned residues appear in successive columns. While in text formats, aligned 

columns containing identical or similar characters are indicated with a system of 

conservation symbols. An asterisk or pipe symbol is used to represent the similarity of 

these two columns, a colon for conservative substitutions and a period for semi-

conservative substitutions.  

Many sequence visualization techniques use a color coding scheme to display 

information about the properties of the individual sequence elements. In DNA and RNA 

sequences, each nucleotide is represented by a specific color. In protein alignments, 

color is used to indicate amino acid properties in determining the conservation of a 

given amino acid substitution.  

2. Pair-wise Alignment 

Pair-wise sequence alignment methods are used to find the best-matching pairs of two 

sequences. The three primary methods of pair-wise alignments are dot-matrix, dynamic 

programming and word methods. One way of quantifying the utility of a pair-wise 

alignment is the 'maximum unique match', or the longest subsequence that occurs in 

both query sequence. 

a) Dot-Matrix Method: The two sequences are written along the top row and leftmost 

column of a two-dimensional matrix and a dot is placed at any point where the 

characters in the appropriate columns match. We try to draw lines diagonally. The dot 

plots of very closely related sequences will appear as a single line along the matrix's 

main diagonal (Fig. 2). The dot-matrix approach produces a simple way of alignments 

for small sequences with the similar regions but time-consuming to analyze large 

sequences.  
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Fig. 2: The dot matrix technique for sequence alignment 

There are many problems with dot plots such as noise, lack of clarity, difficulty 

extracting match summary statistics. Dot-plots are limited to two sequences only. 

b) Dynamic Programming: Dynamic programming can be applied to produce global 

and local alignments. This can be done by applying Needleman-Wunsch algorithm for 

global alignment and Smith-Waterman algorithm for the local alignments. In general, 

alignments use a substitution matrix to assign scores for matches or mismatches, and a 

gap penalty for matching an in one sequence with a gap in the other.  

DNA and RNA alignments may use a different scoring matrix, but in practice often 

simply assign a positive match score, a negative mismatch score, and a negative gap 

penalty. Dynamic programming can be useful in aligning nucleotide to protein 

sequences. The framesearch method produces a series of global or local pair-wise 

alignments between a query nucleotide sequence and a search set of protein sequences, 

or vice versa. The BLAST and EMBOSS provide basic tools for creating alignments of 

the sequences. 

c) Word Method: Word or k-tuple methods are heuristic methods but are not guaranteed 

to find an optimal alignment solution. These methods are especially useful in large-

scale database searches Word methods are best known for their implementation in the 

database search tools FASTA and BLAST family. Word methods identify a series of 

short, non-overlapping subsequences ("words") that are matched to candidate database 

sequences. The relative positions of the word in the two sequences being compared are 

subtracted to obtain an offset; this will indicate a region of alignment if multiple distinct 

words produce the same offset.  

In the FASTA method, the user defines a value k to use as the word length with which 

to search the database. The method is slower but more sensitive for lower values of k, 

which are preferred for searching a very short query sequence. The BLAST family of 

search methods provides a number of algorithms optimized for particular types of 

queries. BLAST was developed to provide a faster alternative to FASTA without 

sacrificing accuracy. BLAST uses a word search of length k, but evaluates only the 

most significant word matches. Most BLAST implementations use a fixed default word 

length that is optimized for the query and database. Web based implementations are 

available such as EMBL FASTA and NCBI BLAST. 
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3. Global and Local Alignment 

Global Alignment 

Global alignments, which attempt to align every residue of each sequence, when the 

size of the sequences are similar or of equal size. A general global alignment technique 

is based on dynamic programming i.e., Needleman-Wunsch algorithm. This can be 

easily understood with the following two sequences aligned globally as follows 

G A A T T C A G T T A  (sequence #1)  

G G A T C G A   (sequence #2)  

In simple dynamic programming principle, we construct a matrix. The matrix will be 

filled by inserting 0 or 1 where ever there is a mismatch or match. We also penalize the 

gaps with 0 as a simple case. Following steps are needed for construction of the matrix 

i. Initialization  

ii. Matrix fill (scoring)  

iii. Traceback (alignment)  

i. Initialization  

The first step is to create a matrix with M + 1 columns and N + 1 rows where M and N 

are the sizes of the sequences to be aligned.  

With the given sequences, length of sequence #1 = 11 and length of sequence #2 is 7. 

The size of the matrix will be 12*8 (11+1 * 7+1). The first row and first column of the 

matrix can be initially filled with 0 because we assume assumes there is no gap opening 

or gap extension penalty as shown in fig. 3.  

 

Fig. 3. Initial matrix with two sequences 

ii. Matrix Fill  

One possible way of filling the matrix is to find the maximum global alignment score 

by starting from the upper left hand corner of the matrix and find the maximal score 

Mi,j for each position in the matrix.  

For each position, Mi,j is defined to be the maximum score at position i,j  i.e.,  

Mi,j = MAXIMUM[ 

     Mi-1, j-1 + Si,j (match/mismatch in the diagonal), 

     Mi,j-1 + w (gap in sequence #1), 

     Mi-1,j + w (gap in sequence #2)] 
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In fig. 4, Mi-1,j-1 will be red, Mi,j-1 will be blue and Mi-1,j will be green. The score at 

position 1,1 in the matrix can be calculated. Since the first residue in both sequences is 

a G i.e., a match, so score S1,1 = 1. We assumed the gap penalty as 0. 

Thus, M1,1 = MAX[M0,0 + 1, M1, 0 + 0, M0,1 + 0] = MAX [1, 0, 0] = 1.  

A value of 1 is then placed in position 1,1 of the scoring matrix.  

 

Fig. 4. Sample fill of the entry M1,1 

Now the element M1,2, the value is the max of 0 (for a mismatch), 0 (for a vertical gap) 

or 1 (horizontal gap). The rest of element of first row can be filled up similarly. At this 

point, there is a G in both sequences (light blue). Thus, the value for the cell at row 1 

column 8 is the maximum of 1 (for a match), 0 (for a vertical gap) or 1 (horizontal gap). 

The value will again be 1 as in fig. 5 

 

Fig. 5. Sample fill of the entry whene there is a collosion of two cells for M1,8 

Now similarly at column 2. The location at row 2 will be assigned the value of the 

maximum of 1(mismatch), 1(horizontal gap) or 1 (vertical gap). So its value is 1.  

After filling in all of the values the score matrix is shown in fig. 6:  
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Fig. 6. Final filled matrix 

iii. Traceback Step 

After the matrix fill step, find the the maximum alignment score for the two test 

sequences. The traceback step determines the actual alignment(s) that result in the 

maximum score. Note that with a simple scoring algorithm such as one that is used here, 

there are likely to be multiple maximal alignments.  

The traceback step begins in the matrix that leads to the maximal score. In this case, 

there is a 6 in that location. Traceback takes the current cell and looks to the neighbor 

cells that could be direct predecessors. This means that it looks to the neighbor to the 

left (gap in sequence #2), the diagonal neighbor (match/mismatch), and the neighbor 

above it (gap in sequence #1). The algorithm for traceback chooses as the next cell in 

the sequence one of the possible predacessors. In this case, the neighbors are marked in 

red. They are all also equal to 5 as in fig 7.  

 

Fig. 7. Traceback process start where the score is maximum 

 

Since the current cell has a value of 6 and the scores are 1 for a match and 0 for anything 

else, the only possible predecessor is the diagonal match/mismatch neighbor. If more 

than one possible predecessor exists, any can be chosen. The corresponding row and 

column can be crossed out as in fig. 8. This gives us a current alignment of  

    (Seq #1)      A  

                         | 

    (Seq #2)      A 

 

Fig. 8. Traceback steps and crossing of the row and column 
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Now, look at the current cell and determine which cell is its direct predecessor. In this 

case, it is the cell with the red 5 as in fig. 9. The alignment as described in the above 

step adds a gap to sequence #2 , so the current alignment is 

    (Seq #1)     T A 

                           | 

    (Seq #2)     _ A 

Once again, the direct predecessor produces a gap in sequence #2.  

 

Fig. 9. Traceback steps and crossing of the row and column 

 

After this step, the current alignment is 

      (Seq #1)     T T A 

                                 | 

                          _ _ A 

Continuing on with the traceback step, we eventually get to a position in row 0 and 

column 0, which tells us that traceback is completed as in fig. 10.  

 

Fig. 10. Final matrix with the traceback steps  

 

One possible maximum alignment is   

          G A A T T C A G T T A 

           |       |      |   |      |         |  

          G G A _ T C _ G _ _  A 
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Local Alignment 

Local alignments are more useful for dissimilar sequences that may contains regions of 

similarity or similar sequence motifs within their larger sequence context. The Smith-

Waterman algorithm is a general local alignment method based on dynamic 

programming. A local alignment searches for regions of local similarity between two 

sequences and need not include the entire length of the sequences. This can be done by 

reading a scoring matrix that contains values for every possible residue or nucleotide 

match or mismatch. The Smith-Waterman algorithm is a member of the class of 

algorithms that can calculate the best score and local alignment in the order of m*n 

steps, where 'm' and 'n' are the lengths of the two sequences. Local alignment methods 

only report the best matching areas between two sequences while there may be a large 

number of alternative local alignments which do not score as highly as the best 

alignment done by this algorithm. 

Consider the two DNA sequences to be globally aligned are: 

 ACACACT (x=7, length of sequence 1) 

 AGCACAC (y=7, length of sequence 2) 

It also follows three steps 

i. Initialization  

ii. Matrix fill (scoring)  

iii. Traceback (alignment)  

 Let us assume the simple scoring scheme as 

 Si,j = 2  if there is a match  

 Si,j = -1 if there is a mismatch  

 w = -1 as gap penalty 

i. Initialization 

The first step in the global alignment dynamic programming approach is to create a 

matrix with M + 1 columns and N + 1 rows where M and N correspond to the size of 

the sequences to be aligned. In this example, we assume that there is no gap opening or 

gap extension penalty. The first row and first column of the matrix can be initially filled 

with 0 as in fig. 11.  
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Fig. 11. Initial matrix with first row and first column element as 0 

ii. Matrix Fill  

One way to fill the matrix is to find the maximum global alignment score by starting 

from the upper left hand corner in the matrix and get the maximal score Mi,j for each 

position in the matrix. In order to find Mi,j for any i,j it is minimal to know the score for 

the matrix positions to the left, above and diagonal to i, j. In terms of matrix positions, 

it is necessary to know Mi-1,j, Mi,j-1 and Mi-1, j-1.  

For each position, Mi,j is defined to be the maximum score at position i,j; i.e.  

Mi,j = MAXIMUM[ 

     Mi-1, j-1 + Si,j (match/mismatch in the diagonal), 

     Mi,j-1 + w (gap in sequence #1), 

     Mi-1,j + w (gap in sequence #2)] 

Using this information, the score at position 1,1 in the matrix can be calculated. Since the 

first residue in both sequences is A, S1,1 = 2, and by the assumptions stated at the 

beginning, w = 0. Thus, M1,1 = MAX[M0,0 + 2, M1, 0 -1, M0,1 -1] = MAX [2, -1, -1] = 2.  

A value of 2 is then placed in position 1,1 of the scoring matrix as in fig. 12. And 

subsequently the whole matrix is filled in the same way. 

 

Fig. 12. Final filled matrix 

iii. Traceback 

After the matrix fill step, the maximum alignment score for these two test sequences is 

11. The traceback step determines the actual alignment(s) for the maximum score. It is 

not mandatory that the last cell  has the maximum alignment score. 

The traceback step begins with the position that leads to the maximal score. In this case, 

there is 11 in that location.  

Trace back takes the current cell and looks to the neighbor cells that could be direct 

predecessors. This means it looks to the neighbor to the left (gap in sequence #2), the 

diagonal neighbor (match/mismatch), and the neighbor above it (gap in sequence #1) 

as in fig. 13. The algorithm for trace back chooses as the next cell in the sequence one 

of the possible predecessors. This continues till cell with value 0 is reached. 
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Fig. 13. Traceback Step 

The only possible predecessor is the diagonal match/mismatch neighbor. If more than 

one possible predecessor exists, any can be chosen. This gives us a current alignment 

of  

    (Seq #1)       C 

                          | 

    (Seq #2)       C 

So now we look at the current cell and determine which cell is its direct predecessor. In 

this case, it is the cell with the red 9 as in fig. 14.  

     

    (Seq #1)       C A 

                          |   | 

    (Seq #2)       C A 

 

 

Fig. 14. Traceback step with the correct arrows 

Continuing with the traceback step, we eventually get a position in column 0 or row 0 

which tells us that traceback is completed as in fig. 15.  
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Fig. 15. Final Traceback Matrix 

The possible maximum alignment is: 

          AG C A C A C 

           |      |   |   |   |   |  

          A _ C A C A C  

There is a combination of these two methods which is called hybrid methods, also 

known as semiglobal or "glocal" methods. This method attempts to find the best 

possible alignment that includes the start and end of one or the other sequence. This can 

be especially useful when the downstream part of one sequence overlaps with the 

upstream part of the other sequence. In this case, neither global nor local alignment is 

entirely appropriate. 

4. Significance of Sequence Alignment 

Sequence alignments are useful in bioinformatics for identifying sequence similarity, 

producing phylogenetic trees, and developing homology models of protein structures. 

However, the biological relevance of sequence alignments is not always clear. 

Alignments are often assumed to reflect a degree of evolutionary change between 

sequences descended from a common ancestor; however, it is formally possible that 

convergent evolution can occur to produce apparent similarity between proteins that are 

evolutionarily unrelated but perform similar functions and have similar structures. 

In database searches such as BLAST, statistical methods can determine the likelihood 

of a particular alignment between sequences or sequence regions arising by chance with 

the given the size and composition of the database being searched. These values can 

vary significantly depending on the search space. In particular, the likelihood of finding 

a given alignment by chance increases, if the database consists only of sequences from 

the same organism as the query sequence. Repetitive sequences in the database or query 

can also distort both the search results and the assessment of statistical significance. 

BLAST automatically filters such repetitive sequences in the query to avoid apparent 

hits that are statistical artifacts. 

The choice of a scoring function that reflects biological or statistical observations 

about known sequences is important to producing good alignments. Protein sequences 

are frequently aligned using substitution matrices that reflect the probabilities of given 

character-to-character substitutions. A series of matrices called PAM matrices (Point 
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Accepted Mutation matrices, originally defined by Margaret Dayhoff and sometimes 

referred to as "Dayhoff matrices") explicitly encode evolutionary approximations 

regarding the rates and probabilities of particular amino acid mutations. Another 

common series of scoring matrices, known as BLOSUM (Blocks Substitution Matrix), 

encodes empirically derived substitution probabilities. Variants of both types of 

matrices are used to detect sequences with differing levels of divergence, thus allowing 

users of BLAST or FASTA to restrict searches to more closely related matches or 

expand to detect more divergent sequences. Gap penalties account for the introduction 

of a gap - on the evolutionary model, an insertion or deletion mutation - in both 

nucleotide and protein sequences, and therefore the penalty values should be 

proportional to the expected rate of such mutations. The quality of the alignments 

produced therefore depends on the quality of the scoring function. 

5. Sequence Databases 

The repositories for the genomic sequences are  

National Center for Biotechnology Information (NCBI) is part of the United States 

National Library of Medicine (NLM), a branch of the National Institutes of Health. The 

NCBI is located in Bethesda, Maryland and was founded in 1988 through legislation 

sponsored by Senator Claude Pepper. The NCBI houses genome sequencing data in 

GenBank and an index of biomedical research articles in PubMed Central and PubMed, 

as well as other information relevant to biotechnology. All these databases are available 

online through the Entrez search engine. The NCBI is directed by David Lipman, one 

of the original authors of the BLAST sequence alignment program and a widely 

respected figure in Bioinformatics. The NCBI has had responsibility for making 

available the GenBank DNA sequence database since 1992 as shown in fig. 16. 

GenBank coordinates with individual laboratories and other sequence databases such 

as those of the European Molecular Biology Laboratory (EMBL) and the DNA Data 

Bank of Japan (DDBJ). Since 1992, NCBI has grown to provide other databases in 

addition to GenBank. NCBI provides Online Mendelian Inheritance in Man, the 

Molecular Modeling Database (3D protein structures), dbSNP a database of single-

nucleotide polymorphisms, the Unique Human Gene Sequence Collection, a Gene Map 

of the human genome, a Taxonomy Browser, and coordinates with the National Cancer 

Institute to provide the Cancer Genome Anatomy Project.  
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Fig. 16. NCBI portal 

The NCBI assigns a unique identifier (Taxonomy ID number) to each species of 

organism. The NCBI has software tools that are available by WWW browsing or by 

FTP. For example, BLAST is a sequence similarity searching program. BLAST can do 

sequence comparisons against the GenBank DNA database in less than 15 seconds. The 

NCBI Bookshelf is a collection of freely available, downloadable, on-line versions of 

selected biomedical books. The Bookshelf has various titles covering aspects of 

molecular biology, biochemistry, cell biology, genetics, microbiology, a couple of 

disease states from a molecular and cellular point of view, research methods, and 

virology. Some of the books are online versions of previously published books, while 

others, such as Coffee Break (book), are written and edited by NCBI staff. The 

Bookshelf is a complement to the Entrez PubMed repository of peer-reviewed 

publication abstracts in that Bookshelf contents provide established perspectives on 

evolving areas of study and a context in which many disparate individual pieces of 

reported research can be organized. 

European Molecular Biology Laboratory (EMBL) is a molecular biology research 

institution supported by 20 European countries and Australia as associate member state. 

The EMBL was created in 1974 and is a non-profit organisation funded by public 

research money from its member states. Research at EMBL is conducted by 

approximately 85 independent groups covering the spectrum of molecular biology. The 

Laboratory operates from five sites: the main Laboratory in Heidelberg, and Outstations 

in Hinxton (the European Bioinformatics Institute (EBI)), Grenoble, Hamburg, and 

Monterotondo near Rome as in fig. 17. Each of the sites has a research specific field. 

At EBI, the research is oriented towards computational biology and bioinformatics. At 

Grenoble and Hamburg the research is in the field of structural biology. At 

Monterotondo the research is focused mainly on mouse models for clinical research. At 

the headquarters in Heidelberg, there are big departments in Cell Biology and Gene 

Expression as well as smaller complementing the aforementioned research fields.  
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Fig. 17. EMBL portal 

The cornerstones of EMBL's mission are: to perform basic research in molecular 

biology and molecular medicine, to train scientists, students and visitors at all levels, to 

offer vital services to scientists in the member states, to develop new instruments and 

methods in the life sciences, and to actively engage in technology transfer. EMBL's 

international PhD Programme has a student body of about 170. The Laboratory also 

sponsors an active Science and Society programme. Many scientific breakthroughs 

have been made at EMBL, most notably the first systematic genetic analysis of 

embryonic development in the fruit fly by Christiane Nüsslein-Volhard and Eric 

Wieschaus, for which they were awarded the Nobel Prize for Medicine in 1995. 

DNA Data Bank of Japan (DDBJ) is a DNA data bank. It is located at the National 

Institute of Genetics (NIG) in the Shizuoka prefecture of Japan. It is also a member of 

the International Nucleotide Sequence Database Collaboration or INSDC. It exchanges 

its data with European Molecular Biology Laboratory at the European Bioinformatics 

Institute and with GenBank at the National Center for Biotechnology Information on a 

daily basis. Thus these three databanks contents the same data at any given time. DDBJ 

began data bank activities since 1986 at NIG and it boasts to be the only nucleotide 

sequence data bank in Asia. Although DDBJ mainly receives its data from Japanese 

researchers, however it can accept data from a contributor belonging to any other 

country as in fig. 18.  
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Fig. 18. DDBJ Portal 

DDBJ is primarily funded by the Japanese Ministry of Education, Culture, Sports, 

Science and Technology (MEXT). DDBJ has an international advisory committee 

which consists of nine members, 3 members each from Europe, US, and Japan. This 

committee advice DDBJ about its maintenance, management and future plans once a 

year. Apart from this DDBJ also has an international collaborative committee which 

advises on various technical issues related to international collaboration and consists of 

working-level participants. 

6. Softwares Used in Sequence Alignment 

 S. 

No. 
Name Function Website Link 

1 ALIGN  Sequence Analysis http://www.ebi.ac.uk/Tools/emboss/align  

2 CENSOR Sequence Analysis http://www.ebi.ac.uk/Tools/censor/  

3 CLUSTALW2 Sequence Analysis http://www.ebi.ac.uk/Tools/clustalw2/  

4 CpG Plot/ 

CpGreport 

Sequence Analysis http://www.ebi.ac.uk/Tools/emboss/ 

cpgplot/  

5 Genewise Sequence Analysis http://www.ebi.ac.uk/Tools/Wise2/ 

6 Kalign Sequence Analysis http://www.ebi.ac.uk/Tools/kalign  

7 MAFFT Sequence Analysis http://www.ebi.ac.uk/Tools/mafft/  

8 MUSCLE Sequence Analysis http://www.ebi.ac.uk/Tools/muscle/  
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9 Pepstats/ 

Pepwindow/Pepinfo 

Sequence Analysis http://www.ebi.ac.uk/Tools/emboss/ 

pepinfo/ 

10 PromoterWise Sequence Analysis http://www.ebi.ac.uk/Tools/Wise2/ 

promoterwise.html  

11 SAPS Sequence Analysis http://www.ebi.ac.uk/Tools/saps/  

12 T-coffee Sequence Analysis http://www.ebi.ac.uk/Tools/t-coffee/  

13 Transeq Sequence Analysis http://www.ebi.ac.uk/Tools/emboss/transeq/  

14 COBALT Sequence Analysis http://www.ncbi.nlm.nih.gov/tools/ cobalt/  

15 Genome 

Workbench 

Sequence Analysis http://www.ncbi.nlm.nih.gov/projects/ 

gbench/  

16 ORF Finder Sequence Analysis http://www.ncbi.nlm.nih.gov/gorf/gorf/ 

html 

17 Primer - BLAST Sequence Analysis http://www.ncbi.nlm.nih.gov/tools/ primer-

blast 

18 ProSplign Sequence Analysis http://www.ncbi.nlm.nih.gov/sutils/static/pr

osplin/prosplign.html 

19 Splign Sequence Analysis http://www.ncbi.nlm.nih.gov/sutils/ splign/  

20 VecScreen Sequence Analysis http://www.ncbi.nlm.nih.gov/VecScreen/Ve

cScreen.html  

21 Sequence Analysis Sequence analysis http://www.informagen.com/SA/ 

22 SeWeR Sequence analysis http://www.bioinformatics.org/sewer/  

23 Motif Search Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/ 

motifsearch2/ index.pl  

24 DNA Translator Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/JDT/ 

25 Non coding RNA 

Gene Finder 

Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/ 

ncRnaGeneFinder/index.pl  

26 TransTerm Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/ 

transterm/  
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27 QRNA Sequence analysis http://nbc11.biologie.unikl.de/framed/ 

left/menu/auto/right/qrna/  

28 Clustalformatter 5 Sequence analysis http://nbc11.biologie.uni-

kl.de/framed/left/menu/auto/right/ 

ClustalFormatter/  

29 BioEdit Sequence 

Alignment Editor 

http://www.mbio.ncsu.edu/BioEdit/ 

bioedit.html 

30 FASTA Sequence Similarity 

Search 

http://www.ebi.ac.uk/Tools/fasta/  

31 HMMER Homology of 

protein 

http://hmmer.janelia.org/  

32 JAligner Pairwise seq. 

alignment 

http://jaligner.sourceforge.net/  

33 JSTRING Java Search for 

Tandem Repeats IN 

Genomes 

http://bioinf.dms.med.uniroma1.it/ 

JSTRING/  

34 NCBI BLAST Aligning Sequences http://blast.ncbi.nlm.nih.gov/Blast.cgi  

35 Gene Runner/ Motif 

Runner 

Motif based 

sequence analysis 

http://www.generunner.net/  

36 GoCore Protein Seq. 

Alignment & 

Analysis 

http://www.helsinki.fi/project/ritvos/ 

GoCore/ 

37 MAFFT Multiple alignment http://mafft.cbrc.jp/alignment/server/ 

index.html 

38 MAUVE Multiple alignment http://gel.ahabs.wisc.edu/mauve/  

39 MEME Suite Motif based 

sequence analysis 

http://meme.nbcr.net/    

40 CORAL (CDTree) Aligning Core 

Conserved Regions 

http://www.ncbi.nlm.nih.gov/Structure/ 

cdtree/cdtree.shtml  

41 BlastAlign Align N Seq. with 

large INDELs 

http://www.bioafrica.net/blast/BlastAlign.h

tml 

42 ARB software Sequence DB 

Handling and Data 

Analysis 

http://www.arb-home.de/  
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43 Automated Codon 

Usage Analysis 

Software - ACUA 

Nucleotide Analysis http://www.bioinsilico.com/acua  

44 AnnHyb Nucleotide Analysis http://www.bioinformatics.org/annhyb/  

45 SOAP2 Short read 

Alignment 

http://soap.genomics.org.cn/  

46 ACT (Artemis 

Comparison Tool) 

DNA Sequence 

Comparison 

http://www.sanger.ac.uk/resources/ 

software/act/  

47 WU-BLAST Multiple Sequence 

Alignment 

www.ebi.ac.uk/Tools/blast2/  

48 CLUSTALW2 multiple sequence 

alignment 

http://www.ebi.ac.uk/Tools/clustalw2/  
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Introduction 

Until the genome revolution, genes were identified by researchers with specific interests in a 

particular protein or cellular process. Once identified, these genes were isolated, typically by 

cloning and sequencing cDNAs, usually followed by targeted sequencing of the longer 

genomics segments that code for the cDNAs. Once an organism’s entire genome sequence 

becomes available, there is strong motivation for finding all the genes encoded by a genome at 

once rather than in a piecemeal approach. Such catalogue is immensely valuable to researchers, 

as they can learn much more from the whole picture than from a much more limited set of 

genes. For example, genes of similar sequence can be identified, evolutionary and functional 

relationships can be elucidated, and a global picture of how many and what types of genes are 

present in a genome can be seen. A significant portion of the effort in genome sequencing is 

devoted to the process of annotation, in which genes, regulatory elements, and other features 

of the sequence are identifies as thoroughly as possible and catalogued in a standard format in 

public databases so that researchers can easily use the information. Functional genomics 

research has expanded enormously in the last decade and particularly the plant biology research 

community. Functional annotation of novel DNA sequences is probably one of the top 

requirements in functional genomics as this holds, to a great extent, the key to the biological 

interpretation of experimental results.  

Computational Gene Prediction 

Computational gene prediction is becoming more and more essential for the automatic analysis 

and annotation of large uncharacterized genomic sequences. In the past two decades, many 

algorithms have been evolved to predict protein coding regions of the DNA sequences. They 

all have in common, to varying degree, the ability to differentiate between gene features like 

Exons, Introns, Splicing sites, Regulatory sites etc. Gene prediction methods predicts coding 

region in the query sequences and then annotates the sequences databases. 

Gene Structure and Expression 

The gene structure and the gene expression mechanism in eukaryotes are far more complicated 

than in prokaryotes. In typical eukaryotes, the region of the DNA coding for a protein is usually 

not continuous. This region is composed of alternating stretches of exons and introns. During 

transcription, both exons and introns are transcribed onto the RNA, in their linear order. 

Thereafter, a process called splicing takes place, in which, the intron  
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Fig. 1: Representative Diagram of Protein Coding Eukaryotic Gene 

sequences are excised and discarded from the RNA sequence. The remaining RNA segments, 

the ones corresponding to the exons are ligated to form the mature RNA strand. A typical multi-

exon gene has the following structure (as illustrated in Fig. 1). It starts with the promoter region, 

which is followed by a transcribed but non-coding region called 5' untranslated region (5' 

UTR). Then follows the initial exon which contains the start codon. Following the initial exon, 

there is an alternating series of introns and internal exons, followed by the terminating exon, 

which contains the stop codon. It is followed by another non-coding region called the 3' UTR. 

Ending the eukaryotic gene, there is a polyadenylation (polyA) signal: the nucleotide Adenine 

repeating several times. The exon-intron boundaries (i.e., the splice sites) are signalled by 

specific short (2bp long) sequences. The 5'(3') end of an intron (exon) is called the donor site, 

and the 3'(5') end of an intron (exon) is called the acceptor site. The problem of gene 

identification is complicated in the case of eukaryotes by the vast variation that is found in gene 

structure.  

Gene Prediction Methods 

There are mainly two classes of methods for computational gene prediction (Fig. 2). One is 

based on sequence similarity searches, while the other is gene structure and signal-based 

searches, which is also referred to as Ab initio gene finding. 

Sequence Similarity Searches 

Sequence similarity search is a conceptually simple approach that is based on finding similarity 

in gene sequences between ESTs (expressed sequence tags), proteins, or other genomes to the 

input genome. This approach is based on the assumption that functional regions (exons) are 

more conserved evolutionarily than non-functional regions (intergenic or intronic regions). 

Once there is similarity between a certain genomic region and an EST, DNA, or protein, the 

similarity information can be used to infer gene structure or function of that region. EST-based 

sequence similarity usually has drawbacks in that ESTs only correspond to small portions of 

the gene sequence, which means that it is often difficult to predict the complete gene structure 

of a given region. Local alignment and global alignment are two methods based on similarity 

searches. The most common local alignment tool is the BLAST family of programs, which 

detects sequence similarity to known genes, proteins, or ESTs. The biggest limitation to this 
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type of approaches is that only about half of the genes being discovered have significant 

homology to genes in the databases. 

Ab initio Gene Prediction Methods 

The second class of methods for the computational identification of genes is to use gene 

structure as a template to detect genes, which is also called ab initio prediction. Ab initio gene 

predictions rely on two types of sequence information: signal sensors and content sensors. 

Signal sensors refer to short sequence motifs, such as splice sites, branch points, poly 

pyrimidine tracts, start codons and stop codons. Exon detection must rely on the content 

sensors, which refer to the patterns of codon usage that are unique to a species, and allow 

coding sequences to be distinguished from the surrounding non-coding sequences by statistical 

detection algorithms. 

Many algorithms are applied for modeling gene structure, such as Dynamic Programming, 

linear discriminant analysis, Linguist methods, Hidden Markov Model and Neural Network. 
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Based on these models, a great number of ab initio gene prediction programs have been 

developed. 

Fig. 2: Diagrammatic Representation of Gene Prediction and Annotation 

Gene Discovery in Prokaryotic Genomes 

Discovery of genes in Prokaryote is relatively easy, due to the higher gene density typical of 

prokaryotes and the absence of introns in their protein coding regions. DNA sequences that 

encode proteins are transcribed into mRNA, and the mRNA is usually translated into proteins 

without significant modification. The longest ORFs (open reading frames) running from the 

first available start codon on the mRNA to the next stop codon in the same reading frame 

generally provide a good, but not assured prediction of the protein coding regions. Several 

methods have been devised that use different types of Markov models in order to capture the 

compositional differences among coding regions, “shadow" coding regions (coding on the 

opposite DNA strand), and noncoding DNA. Such methods, including ECOPARSE, the widely 

used GENMARK, and Glimmer program, appear to be able to identify most protein coding 

genes with good performance (Fig. 3). 

         Fig. 3: Flow Diagram of Prokaryotic Gene Discovery 

 

Gene Discovery in Eukaryotic Genome 

It is a quite different problem from that encountered in prokaryotes. Transcription of protein 

coding regions initiated at specific promoter sequences is followed by removal of noncoding 

sequences (introns) from pre-mRNA by a splicing mechanism, leaving the protein encoding 

exons. Once the introns have been removed and certain other modifications to the mature RNA 

have been made, the resulting mature mRNA can be translated in the 5` to 3` direction, usually 

from the first start codon to the first stop codon. As a result of the presence of intron sequences 
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in the genomic DNA sequences of eukaryotes, the ORF corresponding to an encoded gene will 

be interrupted by the presence of introns that usually generate stop codons (Fig.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Flow Diagram of Eukaryotic Gene Discovery 

Gene Prediction Program 

There are two basic problems in gene prediction: prediction of protein coding regions and 

prediction of the functional sites of genes. Gene prediction program can be classified into four 

generations. The first generation of programs was designed to identify approximate locations 

of coding regions in genomic DNA. The most widely known programs were probably 

TestCode and GRAIL. But they could not accurately predict precise exon locations. The second 

generation, such as SORFIND and Xpound, combined splice signal and coding region 

identification to predict potential exons, but did not attempt to assemble predicted exons into 

complete genes. The next generation of programs attempted the more difficult task of 

predicting complete gene structures. A variety of programs have been developed, including 

GeneID, GeneParser, GenLang, and FGENEH. However, the performance of those programs 

remained rather poor. Moreover, those programs were all based on the assumption that the 

input sequence contains exactly one complete gene, which is not often the case. To solve this 
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problem and improve accuracy and applicability further, GENSCAN and AUGUSTUS were 

developed, which could be classified into the fourth generation.  

 

GeneMark 

GeneMark uses a Markov Chain model to represent the statistics of the coding and noncoding 

frames. The method uses the dicodon statistics to identify coding regions. Consider the analysis 

of a sequence x whose base at the ith position is called xi. The Markov chains used are fifth 

order, and consist of a terms such as P(a/x1x2x3x4x5), which represent the probability of the 

sixth base of the sequence x being given a given that the previous five bases in the sequence x 

where x1x2x3x4x5, resulting in the first dicodon of the sequence being x1x2x3x4x5a. These terms 

must be defined for all possible pentamers with the general sequence b1b2b3b4b5. The values of 

these terms can be obtained of analysis of data, consisting of nucleotide sequence in which the 

coding regions have been actually identified. When there are sufficient data, they are given by 

𝑃(
𝑎

𝑏1𝑏2𝑏3𝑏4𝑏5
) =

𝑛𝑏1𝑏2𝑏3𝑏4𝑏5𝑎

∑ 𝑛𝑏1𝑏2𝑏3𝑏4𝑏5𝑎𝑎=𝐴,𝐶,𝐺,𝑇
 

where, 𝑛𝑏1𝑏2𝑏3𝑏4𝑏5𝑎 is the number of times the sequence b1b2b3b4b5a occurs in the training data. 

This is the maximum likelihood estimators of the probability from the training data. 

Glimmer 

The core of Glimmer is Interpolated Markov Model (IMM), which can be described as a 

generalized Markov chain with variable order. After GeneMark introduces the fixed-order 

Markov chains, Glimmer attempts to find a better approach for modeling the genome content. 

The motivational fact is that the bigger the order of the Markov chain, the more non-

randomness can be described. However, as we move to higher order models, the number of 

probabilities that we must estimate from the data increases exponentially. The major limitation 

of the fixed-order Markov chain is that models from higher order require exponentially more 

training data, which are limited and usually not available for new sequences. However, there 

are some oligomers from higher order that occur often enough to be extremely useful 

predictors. For the purpose of using these higher-order statistics, whenever sufficient data is 

available, Glimmer IMMs.  

Glimmer calculates the probabilities for all Markov chains from 0th order to 8th. If there are 

longer sequences (e.g. 8-mers) occurring frequently, IMM makes use of them even when there 

is insufficient data to train an 8-th order model. Similarly, when the statistics from the 8-th 

order model do not provide significant information, Glimmer refers to the lower-order models 

to predict genes.  

Opposed to the supervised GeneMark, Glimmer uses the input sequence for training. The ORFs 

longer than a certain threshold are detected and used for training, because there is high 

probability that they are genes in prokaryotes. Another training option is to use the sequences 

with homology to known genes from other organisms, available in public databases. Moreover, 

the user can decide whether to use long ORFs for training purposes or choose any set of genes 

to train and build the IMM. 

GeneMark.hmm 
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GeneMark.hmm is designed to improve GeneMark in finding exact gene starts. Therefore, the 

properties of GeneMark.hmm are complementary to GeneMark. GeneMark.hmm uses 

GeneMark models of coding and non-coding regions and incorporates them into hidden 

Markov model framework. In short terms, Hidden Markov Models (HMM) are used to describe 

the transitions from non-coding to coding regions and vice versa. GeneMark.hmm predicts the 

most likely structure of the genome using the Viterbi algorithm, a dynamic programming 

algorithm for finding the most likely sequence of hidden states. To further improve the 

prediction of translation start position, GeneMark.hmm derives a model of the ribosome 

binding site (6-7 nucleotides preceding the start codon, which are bound by the ribosome when 

initiating protein translation). This model is used for refinement of the results.  

Both GeneMark and GeneMark.hmm detect prokaryotic genes in terms of identifying open 

reading frames that contain real genes. Moreover, they both use pre-computed species-specific 

gene models as training data, in order to determine the parameters of the protein-coding and 

non-coding regions. 

Orpheus 

The ORPHEUS program uses homology, codon statistics and ribosome binding sites to 

improve the methods presented so far by using information that those programs ignored. One 

of the key differences is that it uses database searches to help determine putative genes, and is 

thus an extrinsic method. This initial set of genes is used to define the coding statistics for the 

organism, in this case working at the level of codon, not dicodons. These statistics are then 

used to define a larger set of candidate ORFs. From this set, those ORFs with an unambiguous 

start codon end are used to define a scoring matrix for the ribosome-binding site, which is then 

used to determine the 5` end of those ORFs where alternative start are present.    

EcoParse  

EcoParse is one of the first HMM model based gene finder, was developed for gene finding in 

E.coli. It focuses on the uses the codon structure of genes. With EcoParse a flora of HMM 

based gene finder, usuing dynamic programming and the viterbi algorithm to parse a sequence, 

emerged.     

Evaluation of Gene Prediction Programs 

In the field of gene prediction accuracy can be measured at three levels 

a. Coding nucleotides (base level) 

b. Exon structure (exon level) 

c. Protein product (protein level) 

At base level gene predictions can be evaluated in terms of true positives (TP) (predicted 

features that are real), true negatives (TN) (non-predicted features that are not real), false 

positives (FP) (predicted features that are not real), and false negatives (FN) (real features that 

were not predicted) Fig. 5. Usually the base assignment is to be in a coding or non coding 

segment, but this analysis can be extended to include non coding parts of genes, or any 

functional parts of the sequences. 

 TN FN TP FP TN FP TP FN TN 

 
Real          
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Real          

 
Predicted          

Fig. 5: Four Possible Comparisons of Real and Predicted Genes 

 

 
Sensitivity (Sn): The fraction of bases in real genes that are correctly predicted to be in genes 

is the sensitivity and interpreted as the probability of correctly predicting a nucleotide to be in 

a given gene that it actually is. 

  

 

Specificity (Sp): The fraction of those bases which are predicted to be in genes that actually 

are is called the specificity and interpreted as the probability of a nucleotide actually being in 

a gene given that it has been predicted to be. 

 

Care has to be taken in using these two values to assess a gene prediction program because, as 

with the normal definition of specificity, extreme results can make them misleading.  

Approximate correlation coefficient (AC) has been proposed as a single measure to circumvent 

these difficulties. This defined as AC=2(ACP-0.5), where  

 

 

At the exon level, determination of prediction accuracy depends on the exact prediction of exon 

start and end points. There are two measures of sensitivity and specificity used in the field, 

each of which measures a different but useful property.  

The sensitivity measures used are 

Sn1 = CE/AE and Sn2 = ME/AE 

The specificity measures used are 

Sp1=CE/PE and Sp2=WE/PE  

Where,  

AE = No of actual exons in the data   

PE = No of predicted exons in the data 

CE = No of correct predicted exons 

ME = No of missing exons (rarely occurs) 

WE = No of wrongly predicted exons (Figure-5) 
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Fig. 6: Real and Predicted Exons 

Gene Ontology 

The gene ontology (GO, http:www.geneontology.org)  is probably the most extensive scheme 

today for the description of gene product functions but other systems such as enzyme codes, 

KEGG pathways, FunCat, or COG are also widely used. Here, we describe the Blast2GO (B2G, 

www.blast2go.org) application for the functional annotation, management, and data mining of 

novel sequence data through the use of common controlled vocabulary schemas. The main 

application domain of the tool is the functional genomics of nonmodel organisms and it is 

primarily intended to support research in experimental labs. Blast2GO strives to be the 

application of choice for the annotation of novel sequences in functional genomics projects 

where thousands of fragments need to be characterized. Functional annotation in Blast2GO is 

based on homology transfer. Within this framework, the actual annotation procedure is 

configurable and permits the design of different annotation strategies. Blast2GO annotation 

parameters include the choice of search database, the strength and number of blast results, the 

extension of the query-hit match, the quality of the transferred annotations, and the inclusion 

of motif annotation. Vocabularies supported by B2G are gene ontology terms, enzyme codes 

(EC), InterPro IDs, and KEGG pathways. 

Fig.7 shows the basic components of the Blast2GO suite. Functional assignments proceed 

through an elaborate annotation procedure that comprises a central strategy plus refinement 

functions. Next, visualization and data mining engines permit exploiting the annotation results 

to gain functional knowledge. GO annotations are generated through a 3-step process: blast, 

mapping, annotation. InterPro terms are obtained from InterProScan at EBI, converted and 

merged to GOs. GO annotation can be modulated from Annex, GOSlim web services and 

manual editing. EC and KEGG annotations are generated from GO. Visual tools include 

sequence color code, KEGG pathways, and GO graphs with node highlighting and filtering 

options. Additional annotation data-mining tools include statistical charts and gene set 

enrichment analysis functions. 
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Fig. 7: Schematic Representation of Blast2GO Application. 

The Blast2GO annotation procedure consists of three main steps: blast to find homologous 

sequences, mapping to collect GO terms associated to blast hits, and annotation to assign 

trustworthy information to query sequences.  

 

Blast Step 

The first step in B2G is to find sequences similar to a query set by blast. B2G accepts nucleotide 

and protein sequences in FASTA format and supports the four basic blast programs (blastx, 

blastp, blastn, and tblastx). Homology searches can be launched against public databases such 

as (the) NCBI nr using a query-friendly version of blast (QBlast). This is the default option and 

in this case, no additional installations are needed. Alternatively, blast can be run locally against 

a proprietary FASTA-formatted database, which requires a working www-blast installation. 

The Make Filtered Blast-GO-BD function in the Tools menu allows the creation of customized 

databases containing only GO annotated entries, which can be used in combination with the 

local blast option. Other configurable parameters at the blast step are the expectation value (e-

value) threshold, the number of retrieved hits, and the minimal alignment length (hsp length) 

which permits the exclusion of hits with short, low e-value matches from the sources of 

functional terms. Annotation, however, will ultimately be based on sequence similarity levels 

as similarity percentages are independent of database size and more intuitive than e-values. 

Blast2GO parses blast results and presents the information for each sequence in table format. 

Query sequence descriptions are obtained by applying a language processing algorithm to hit 

descriptions, which extracts informative names and avoids low content terms such as 

“hypothetical protein” or “expressed protein”. 

Mapping Step 
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Mapping is the process of retrieving GO terms associated to the hits obtained after a blast 

search. B2G performs three different mappings as follows.  

a. Blast result accessions are used to retrieve gene names (symbols) making use of two 

mapping files provided by NCBI (geneinfo, gene2accession). Identified gene names are 

searched in the species-specific entries of the gene product table of the GO database.  

b. Blast result GI identifiers are used to retrieve UniProt IDs making use of a mapping file 

from PIR (Non-redundant Reference Protein database) including PSD, UniProt, Swiss-Prot, 

TrEMBL, RefSeq, GenPept, and PDB.  

c. Blast result accessions are searched directly in the DBXRef Table of the GO database. 

Annotation Step 

This is the process of assigning functional terms to query sequences from the pool of GO terms 

gathered in the mapping step. Function assignment is based on the gene ontology vocabulary. 

Mapping from GO terms to enzyme codes permits the subsequent recovery of enzyme codes 

and KEGG pathway annotations. The B2G annotation algorithm takes into consideration the 

similarity between query and hit sequences, the quality of the source of GO assignments, and 

the structure of the GO DAG. For each query sequence and each candidate GO term, an 

annotation score (AS) is computed (see Figure 8). The AS is composed of two terms. The first, 

direct term (DT), represents the highest similarity value among the hit sequences bearing this 

GO term, weighted by a factor corresponding to its evidence code (EC). A GO term EC is 

present for every annotation in the GO database to indicate the procedure of functional 

assignment. 

 

 

 

 

Fig. 8: Blast2GO Annotation Rule 

ECs vary from experimental evidence, such as inferred by direct assay (IDA) to unsupervised 

assignments such as inferred by electronic annotation (IEA). The second term (AT) of the 

annotation rule introduces the possibility of abstraction into the annotation algorithm. 

Abstraction is defined as the annotation to a parent node when several child nodes are present 

in the GO candidate pool. This term multiplies the number of total GOs unified at the node by 

a user defined factor or GO weight (GOw) that controls the possibility and strength of 

abstraction. When all ECw’s are set to 1 (no EC control) and the GOw is set to 0 (no abstraction 

is possible), the annotation score of a given GO term equals the highest similarity value among 

the blast hits annotated with that term. If the ECw is smaller than one, the DT decreases and 

higher query-hit similarities are required to surpass the annotation threshold. If the GOw is not 

equal to zero, the AT becomes contributing and the annotation of a parent node is possible if 

multiple child nodes coexist that do not reach the annotation cutoff. Default values of B2G 

annotation parameters were chosen to optimize the ratio between annotation coverage and 

annotation accuracy. Finally, the AR selects the lowest terms per branch that exceed a user-

defined threshold. 
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Blast2GO includes different functionalities to complete and modify the annotations obtained 

through the above-defined procedure. Enzyme codes and KEGG pathway annotations are 

generated from the direct mapping of GO terms to their enzyme code equivalents. Additionally, 

Blast2GO offers InterPro searches directly from the B2G interface. B2G launches sequence 

queries in batch, and recovers, parses, and uploads InterPro results. Furthermore, InterPro IDs 

can be mapped to GO terms and merged with blast-derived GO annotations to provide one 

integrated annotation result. In this process, B2G ensures that only the lowest term per branch 

remains in the final annotation set, removing possible parent-child relationships originating 

from the merging action. 
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Introduction 

Genome annotation is the process of identifying functional elements within a genome, such as 

genes, regulatory regions, and repeat elements. The goal of genome annotation is to create an 

accurate and comprehensive description of the genome's structure and function. This can be a time-

consuming process, but it is essential for understanding how genes and other functional elements 

work together to control an organism's biology. 

One powerful tool for genome annotation is Blast2GO (Conesa et al., 2005). Blast2GO is a 

commercial bioinformatics software suite that provides comprehensive functional annotation of 

nucleotide and protein sequences. It combines powerful sequence similarity search algorithms, 

such as BLAST (Altschul et al., 1997) and HMMER (Finn et al., 2011), with functional annotation 

tools, such as InterProScan (Zdobnov et al., 2001) and Gene Ontology (GO) mapping, to provide 

a detailed functional analysis of genomic and transcriptomic data. 

Blast2GO works by first performing a sequence similarity search, typically using BLAST, to 

identify sequences with homology to known sequences in public databases. The resulting hits are 

then annotated using a variety of functional annotation tools, including InterProScan, which 

identifies conserved protein domains and functional motifs, and GO mapping, which assigns GO 

terms based on the functional categories of annotated genes. 

Blast2GO also includes tools for statistical analysis and data visualization, allowing users to 

explore functional trends and patterns in their data. It can be used to analyze a wide range of 

genomic and transcriptomic data sets. One of the strengths of Blast2GO is its user-friendly 

interface, which allows even non-experts to perform complex functional annotation analyses. 

Blast2GO is also highly customizable, allowing users to tailor the annotation process to their 

specific needs and research questions. 
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Here are the four broad steps involved in genome annotation using Blast2GO: 

 Sequence quality control and assembly: Before annotating a genome, it is important to ensure 

that the quality of the sequencing data is high and that the genome has been properly 

assembled. This may involve trimming low-quality sequences, filtering out contaminants, and 

performing de novo assembly or mapping to a reference genome. 

 Sequence similarity search: The first step in genome annotation is to identify sequences with 

homology to known sequences in public databases. This is typically done using BLAST or a 

similar tool. The resulting hits can provide clues about the function and evolutionary 

relationships of the sequences in question. 

 Functional annotation: Once sequences have been identified using a sequence similarity 

search, functional annotation tools can be used to identify functional domains and motifs, 

assign Gene Ontology terms, and perform other types of functional analysis. Blast2GO 

includes a number of annotation tools, including InterProScan, which searches for conserved 

domains and motifs in protein sequences, and GO mapping, which assigns Gene Ontology 

terms based on the functional categories of annotated genes. 

 Data analysis and visualization: Once the sequences have been annotated with functional 

information, the data can be analyzed and visualized in a variety of ways. Blast2GO includes 

tools for statistical analysis and data visualization. The results of the analysis can be exported 

in a variety of formats for further analysis. 

 

Installation of Blast2GO: 

Following are the general steps to install Blast2GO: 

1. System requirements: Check that your computer meets the system requirements for Blast2GO. 

Blast2GO is compatible with Windows, macOS, and Linux operating systems, and requires at least 

8 GB of RAM. 

2. Download Blast2GO: Visit the Blast2GO website (https://www.blast2go.com/) and download the 

appropriate installation file for your operating system. You may need to create an account and 

purchase a license, depending on your intended use of the software. 

3. Install Blast2GO: Double-click the downloaded installation file and follow the on-screen 

instructions to install Blast2GO (as depicted in Figure 1). You may need to provide administrator 

permissions, depending on your operating system and security settings. 
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4. Configure Blast2GO: Once Blast2GO is installed, you will need to configure it to work with your 

specific computing environment. This may include setting preferences for sequence databases, 

annotation tools, and other settings. 

5. Activate license: If you have purchased a license for Blast2GO, you will need to activate it before 

you can use the software. This typically involves entering a license key or activating the license 

through an online portal. 

Once Blast2GO is installed and configured, you can begin using it to analyze and annotate your 

genomic or transcriptomic data. 

 

Figure 1: Installation steps of Blast2GO in Windows system. 

Stepwise guide to perform annotation using Blast2GO 

1. Open Blast2GO: Launch Blast2GO on your computer. 

2. Load sequences: Load your sequence file(s) into Blast2GO. This can be done by clicking on 

"Load data" in the main menu and selecting the appropriate file type (e.g., FASTA). 

3. Run BLAST search: In the main menu, click on "Run BLAST" and select the appropriate 

database for your search (e.g., NCBI non-redundant protein database) as shown in Figure 2. 

You can choose to run a BLASTP (protein query against protein database) or a BLASTX 
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(nucleotide query against protein database) search. You can also set various search parameters, 

such as the e-value threshold and the maximum number of hits to return. 

4. View BLAST results: Once the BLAST search is complete, you can view the results in the 

BLAST results table (as shown in Figure 3). The table will show the sequence ID, the best hit, 

the e-value, the bit score, and other relevant information. You can sort the table by various 

columns to help you identify the best hits. 

5. Import BLAST results: To import the BLAST results into the Blast2GO annotation pipeline, 

select the sequences you want to annotate and click on "Import selected hits". This will import 

the BLAST results and link them to the appropriate sequences in the annotation pipeline. 

 

Figure 2: BLAST search. 
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Figure 3: BLAST result. 

6. Run InterProScan: In the main menu, click on "Run InterProScan" and select the appropriate 

database for your search (e.g., InterPro database). You can choose to run the search on protein 

or nucleotide sequences (Figure 4a). 

7. Set search parameters: You can set various search parameters, such as the e-value threshold, 

the maximum number of sequences to align, and the type of analysis to perform (e.g., Pfam, 

Prosite, SMART, etc.) (Figure 4b). 
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Figure 4: InterProScan search. 

8. View InterProScan results: Once the InterProScan search is complete, you can view the results 

in the InterProScan results table. The table will show the sequence ID, the best match, the e-

value, the score, and other relevant information (Figure 5). You can sort the table by various 

columns to help you identify the best matches. 

 

Figure 5: InterProScan result. 

9. Import InterProScan results: To import the InterProScan results into the Blast2GO annotation 

pipeline, select the sequences you want to annotate and click on "Import selected hits". This 

will import the InterProScan results and link them to the appropriate sequences in the 

annotation pipeline. 

10. Perform mapping: Once the BLAST results have been imported, you can use the Blast2GO 

mapping tools to map your sequences to Gene Ontology (GO) terms (Figure 6). This involves 

using the BLAST results to transfer functional annotations from similar sequences to your own 

sequences. 
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Figure 6: Mapping. 

11. Edit mappings: You can edit the mappings manually, by adding or removing GO terms, or by 

changing the evidence codes. You can also remove or filter out low-confidence mappings, 

based on various criteria such as the e-value, the similarity score, or the GO term specificity. 

12. Export mapping results: Once your sequences have been mapped, you can export the results in 

a variety of formats, such as tab-delimited text files or FASTA files (Figure 7). These results 

can be used for further analysis. 

 

Figure 7: Mapping result. 
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13. Annotate sequences: Once the InterProScan results have been imported, you can use the 

Blast2GO annotation tools to assign functional information to your sequences (Figure 8). This 

may include mapping Gene Ontology (GO) terms, performing enrichment analysis, and 

performing other types of functional analysis. 

 

Figure 8: Annotate. 

14. Export annotation results: Once your sequences have been annotated, you can export the results 

in a variety of formats, such as tab-delimited text files or FASTA files. These results can be 

used for further analysis, visualization, or sharing with collaborators. 
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Figure 9: Annotate result. 

15. Generate Gene Ontology (GO) graph: To create a GO graph in Blast2GO, click on "Graphs" 

in the main menu and select "GO Graph" (Figure 10). This will generate a graphical 

representation of the GO terms assigned to your sequences, based on the hierarchical structure 

of the Gene Ontology. 

 

Figure 10. Generate GO graph. 

16. Customize GO graph: You can customize the appearance of the GO graph by changing the 

colors, font sizes, or layout. You can also filter the GO terms based on various criteria such as 
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the level in the hierarchy, the number of sequences assigned to the term, or the statistical 

significance of the enrichment. 

17. Analyze GO graph: Once you have generated a GO graph, you can use it to analyze the 

functional annotations of your sequences. This can include identifying overrepresented or 

underrepresented GO terms, comparing the GO profiles of different datasets or treatments, or 

visualizing the relationships between different biological processes, molecular functions, or 

cellular components (Figure 11). 

 

Figure 11: GO graph. 

18. Export GO graph: Once you have customized and analyzed your GO graph, you can export it 

in a variety of formats, such as PNG, PDF, or SVG. These graphs can be used for presentations, 

publications, or further analysis with other tools or software. 

19. Perform pathway analysis: To perform pathway analysis in Blast2GO, you need to use the 

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database. In the main menu, 

click on "Annotation" and select "Pathway annotation". This will open the pathway annotation 

dialog box (Figure 12). 
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Figure 12. Run Pathway Analysis. 

20. Select pathway database: In the pathway annotation dialog box, select the "KEGG" database 

and click on "Start". Blast2GO will download and install the latest version of the KEGG 

database on your computer. 

21. Run pathway analysis: Once the KEGG database is installed, you can use the Blast2GO 

pathway analysis tools to identify the KEGG pathways that are enriched in your sequences. 

This involves comparing the frequency of KEGG pathway terms in your sequences to the 

frequency of these terms in a reference dataset, such as the entire KEGG database. 

22. Filter and visualize pathways: Once the pathway analysis is complete, you can use the 

Blast2GO pathway analysis tools to filter and visualize the enriched pathways. This can 

involve setting statistical thresholds, such as the false discovery rate (FDR) or the p-value, or 

selecting specific pathways based on their relevance to your research question. 

23. Analyze pathways: Once you have identified the enriched pathways, you can use the Blast2GO 

pathway analysis tools to analyze the functional annotations and gene products associated with 

these pathways. This can include identifying the key enzymes or regulators, comparing the 

pathway profiles of different datasets or treatments, or visualizing the relationships between 

different metabolic or signaling pathways (Figure 13). 
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Figure 13. Pathway graph. 

24. Export pathway data: Once you have customized and analyzed your pathway data, you can 

export it in a variety of formats, such as Excel, CSV, or XML. These data can be used for 

further analysis with other tools or software, or for visualizing and communicating the results 

of your pathway analysis. 
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Introduction 

R is a programming language that allows for advanced statistical computing and 

graphics. It was created by the statisticians Ross Ihaka and Robert Gentleman. It is 

supported by the R Core Team and the R Foundation for Statistical Computing. The 

language is very powerful for writing programs. Output may be limited based on 

the function, but even small code can generate wonderful graphics. It is very 

sensitive to syntax, case, punctuation used, even spacing. R is open source and free 

on the Internet. R is used among statisticians, computer scientists and 

bioinformaticians for data analysis and developing statistical software. The official 

R software environment is an open-source free software environment within 

the GNU package, available under the GNU General Public License. It is written 

primarily in C, Fortran, and R itself (partially self-hosting). 

Precompiled executables are provided for various operating systems. R has 

a command line interface as well as multiple third-party graphical user 

interfaces such as RStudio (an integrated development environment) and Jupyter 

(a notebook interface). 

 
Working in R and RStudio 

R can be installed in Linux, Unix, Windows and Mac platforms from www.r-

project.org. For downloading R, please visit https://cloud.r-project.org/.  

 
The R GUI 
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RStudio is a free, open-source IDE (integrated development environment) for R. It 

can be downloaded from https://www.rstudio.com/products/rstudio/download/. 

One must install R before installing RStudio. The interface is organized so that the 

user can clearly view graphs, data tables, R code, and output all at the same time. 

 
R Studio Interface 

 

There are various ways for working in R: 

• Work directly from the R editor to type in your script and execute the script 

completely (batch) or line-by-line (highlight and execute) 

• Write script in an external editor (Notepad or software that interfaces with R) 

and execute in R by copy/paste or highlighting 

• Beyond the native R GUI, external GUI can work with R to help in writing 

scripts, selecting functions, procedures, statistical tests, or graphics 

  
Getting started: R 
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Getting started: RStudio 

R is an expression language with a very simple syntax. It is case sensitive as are 

most UNIX based packages. For example, A and a are different symbols and refer 

to different variables. The set of symbols which can be used in R names depends 

on the operating system and country within which R is being run (technically on 

the locale in use). Normally all alphanumeric symbols are allowed (and in some 

countries this includes accented letters) plus ‘.’ and ‘_’, with the restriction that a 

name must start with ‘.’ or a letter, and if it starts with ‘.’ the second character must 

not be a digit. Elementary commands consist of either expressions or assignments. 

If an expression is given as a command, it is evaluated, printed (unless specifically 

made invisible), and the value is lost. An assignment evaluates an expression and 

passes the value to a variable but the result is not automatically printed. Commands 

are separated either by a semi-colon (‘;’), or by a newline. Elementary commands 

can be grouped together into one compound expression by braces (‘{’ and ‘}’). 

Comments can be put almost anywhere, starting with a hashmark (‘#’), everything 

to the end of the line is a comment. If a command is not complete at the end of a 

line, R will give a different prompt, by default + on second and subsequent lines 

and continue to read input until the command is syntactically complete. 
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R Workspace 

R workspace is temporary space on your CPU’s RAM that “disappears” at the end 

of R session. It includes any user-defined objects (vectors, matrices, data frames, 

lists, functions). All data, analyses, output are stored as objects in the R workspace. 

This workspace is not saved on disk unless you tell R to do so. This means that your 

objects are lost when you close R and not save the objects, or worse when R or your 

system crashes on you during a session. When you close the RGui or the R console 

window, the system will ask if you want to save the workspace image. If you select 

to save the workspace image then all the objects in your current R session are saved 

in a file “.RData”. “.RData” is a binary file located in the working directory of R, 

which is by default the installation directory of R. During your R session, you can 

also explicitly save the workspace image.  

Go to the ‘Session’ menu and then select ‘Save Workspace as’ 

 > save.image(“example1.Rdata”) 

If you have saved a workspace image and you start R the next time, it will restore 

the workspace. So all your previously saved objects are available again.  

Go to the ‘Session’ menu and then select ‘Load Workspace’. 

 > load.image(“example1.Rdata”) 

 

• Windows uses a \ (left slash) to delineate locations in CPU: 

 C:\Users\hp\Documents 

• R uses / (right slash) to delineate locations in CPU: 

 C:/Users/hp/Documents 

• An alternative to R’s / (single right) is \\ (two left) slashes: 

 C:\\Users\\hp\\Documents 

• There is no issue in the MAC OS/Linux as they have retained the / (right slash) 

as the basis for directory delineation 

• Print the current working directory  

 > getwd() 
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• List the objects in the current workspace  

 > ls() 

• Change to my directory  

 > setwd(mydirectory) 

• Display last 25 commands 

 > history() 

• Display all previous commands 

 > history(max.show=Inf) 

• Saving R workspace 

 > x <- 5 # object x; x is assigned value 5 

 > y <- 10 # object y; y is assigned value 10 

 > z <- x+y # object z (addition of numbers x and y); z is assigned the value x+y 

 > save(x, y, file = "example1_xy.RData") # save two specified objects x and y 

 > save.image(file = "example1.RData") # save entire workspace 

• Removing objects R workspace: Use rm() 

> ls() 

[1] "x" "y" "z" 

> rm(x, y) # removes objects x and y 

> ls() 

[1] "z" 

• Use load() to add previously saved objects or workspaces to your current R 

session. 

> load(file = "example1.RData") 

> ls() 

[2]  "x" "y" "z" 
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Getting help with functions and features 

To get more information on any specific named function, use help() function or ? 

help operator. 

> help(lm) or > help(“lm”) 

> ?lm 

For a feature specified by special characters, the argument must be enclosed in 

double or single quotes, making it a “character string”. This is also necessary for a 

few words with syntactic meaning including if, for and function. 

> help("[[") 

The convention is to use double quote marks for preference. 

On most R installations help is available in HTML format by running help.start() 

which will launch a Web browser that allows the help pages to be browsed with 

hyperlinks. The help.search command (alternatively ??) allows searching for help 

in various ways. 

> help.search("lm") 

> ??lm 

The examples on a help topic can normally be run by 

> example(lm) 

Windows versions of R have other optional help systems: Use ?help for further 

details. 

 

R Datasets 

R comes with a number of sample datasets that you can experiment with. One has 

to type data( ) to see the available datasets. The results will depend on which 

packages you have loaded. For getting details on a sample dataset, type 

help(datasetname). Example: > help("AirPassengers") 

 

R Packages 

One of the strengths of R is that the system can easily be extended. The system 

allows you to write new functions and package those functions in a so called `R 

package' (or `R library’). The R package may also contain other R objects, for 

example data sets or documentation. There is a lively R user community and many 

R packages have been written and made available on CRAN for other users. For 
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example, there are packages for statistics, bioinformatics and many more. To attach 

package to the system you can use the menu or the library function.  

• Via the menu in RGui: Select the ‘Packages’ menu and select ‘load package...’, 

a list of available packages on your system will be displayed. Select one and 

click ‘OK’. 

• Via the library function: > library( ) 

 

Data Management 

Everything in R is an object. An object is simply a data structure that has some 

methods and attributes. The data elements in any R object has attributes. These 

attributes describe the nature of the elements. Object attributes are modes, class and 

types. 

• Modes: logical (TRUE, FALSE), numeric, character (string), complex 

(complex number) 

• Type (e.g. vectors can be character, numeric, logical or complex) 

• Class: Describes object type and mode of object or element that is specified. 

Objects in R: 

• Scalar: a single number (1x1 vector) 

• Vector: all elements of the same type (Type: logical, character, numeric or 

complex) 

• List: can contain objects of different types 

• Matrix: table of vectors, where all elements are numeric (or complex) 

• Data frame: table of number and/or character vectors. Can contain lists, too. 

Data objects in R can exist in many different modes, classes, and types. mode( ) 

function returns the mode of an object. Some object classes like arrays and matrices 

require all elements to be of the same mode. A vector can have only mode type of 

elements. It can have only numeric, character, logical or complex elements. Other 

objects (data frames, lists) allow for different modes to exist, i.e. objects within data 

frames and lists can be of different modes. Class describes object type and mode of 

object or element that is specified. class( ) function returns class of an object. 

Examples: “vector”, “data.frame”, “numeric”, “factor” 

> z <- 0:9 

> z 

 [1] 0 1 2 3 4 5 6 7 8 9 
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> digits <- as.character (z) 

> digits 

[1] "0" "1" "2" "3" "4" "5" "6" "7" "8" "9" 

> d <- as.integer (digits) 

> d 

[1] 0 1 2 3 4 5 6 7 8 9 

> class (z) 

[1] "integer" 

> class (digits) 

[1] "character" 

> class (d) 

[1] "integer" 

 

Vector Arithmetic 

<- the arrow is the assignment symbol, used to assign a value or function to a 

symbol or object. The ‘=’ operator can be used as an alternative. 

> 5+10 

[1] 15 

> x <- 5 # object x; x is assigned value 5 

> y <- 10 # object y; y is assigned value 10 

> z <- x+y # object z; z is assigned the value x+y 

> z # Display z 

[1] 15 

> sqrt(z) 

[1] 3.872983 

> ls() # List objects 

[1] "x" "y" "z" 

Here, x, y and z are scalar objects, each having a single value. 

 

Assignment statement using c() function 

> x <- c(9.5, 10.8, 2.5, 3.9, 19.6) 

> x 

[1]  9.5 10.8  2.5  3.9 19.6 

> assign("x", c(9.5, 10.8, 2.5, 3.9, 19.6)) 

> x 
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[1]  9.5 10.8  2.5  3.9 19.6 

> c(9.5, 10.8, 2.5, 3.9, 19.6) -> x 

> x 

[1]  9.5 10.8  2.5  3.9 19.6 

> 1/x 

[1] 0.10526316 0.09259259 0.40000000 0.25641026 0.05102041 

> y <- c(x, 1, 0, 1, x) 

> y 

 [1]  9.5 10.8  2.5  3.9 19.6  1.0  0.0  1.0  9.5 10.8  2.5  3.9 19.6 

 

The elementary arithmetic operators: 

• +, -, *, / and ^ 

• log, exp, sin, cos, tan, sqrt 

• max and min select the largest and smallest elements of a vector respectively.  

• range is a function whose value is a vector of length two, namely c(min(x), 

max(x)).  

• length(x) is the number of elements in x. 

• sum(x) gives the total of the elements in x. 

• prod(x) gives the product. 

> x <- c(1:10) 

> x 

[1]  1  2  3  4  5  6  7  8  9 10 

> x [x>6] 

[1]  7  8  9 10 

> x [(x>6) | (x<4)] 

[1]  1  2  3  7  8  9 10 

> x <- seq (1,10) 

> x 

 [1]  1  2  3  4  5  6  7  8  9 10 

> rev (x) # reverse order 

 [1] 10  9  8  7  6  5  4  3  2  1 

> x <- (1:4)^2 

> x 

[1]  1  4  9 16 
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Missing values 

Arithmetic functions on missing values yield missing values.  

> x <- c(1, 5, 4, NA, 6) 

> x 

[1]  1  5  4 NA  6 

> mean(x) 

[1] NA 

> mean(x, na.rm = TRUE) 

[1] 4 

The function is.na(x) gives a logical vector of the same size as x with value TRUE 

if and only if the corresponding element in x is NA. 

> is.na(x) 

[1] FALSE FALSE FALSE  TRUE FALSE 

Impossible values (e.g., dividing by zero) are represented by the symbol NaN (Not 

a Number). 

> 5/0 

[1] Inf 

> 0/0 

[1] NaN 

> Inf - Inf 

[1] NaN 

is.na(xx) is TRUE both for NA and NaN values.  

is.nan(xx) is only TRUE for NaNs. 

> color <-c("red", "green", "blue") 

> color # the values of character variable color are red, green and blue 

[1] "red"   "green" "blue"  

> cat(color) # remove quotation marks 

red green blue 

> cat(color[1]) 

red 

 

Assign names to the Elements 

> x <- c(Delhi="red", Mumbai="green", Kolkata="blue") 

> x 

  Delhi  Mumbai Kolkata  

  "red" "green"  "blue"  
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> names(x) 

[1] "Delhi"   "Mumbai"  "Kolkata" 

> fruit <- c(2, 3, 6) 

> names(fruit) <- c("orange", "apple", "banana") 

> fruit 

orange  apple banana  

     2      3      6  

> fruit[c("apple","orange")] 

 apple orange  

     3      2  

> Fruit <- c(orange=2, apple=3, banana=6) 

> Fruit 

orange  apple banana  

     2      3      6  

All elements of a vector must have the same type. If you concatenate vectors of 

different types, they will be converted to the least "restrictive" type.  

> c(2, "car") 

[1] "2"   "car” 

Logical values are converted to 0 / 1 OR "TRUE"/ "FALSE".  

> c(FALSE, 5) 

[1] 0 5 

> c(FALSE, "red") 

[1] "FALSE" "red"  

 

Background in Vector Arithmetic: Vector addition required the vectors to be the 

same length (dimension). 

 

x <- c(9, 2) 

> x 

[1] 9 2 

> y <- c(5, 1) 

> y 

[1] 5 1 

> x + 5 

[1] 14  7 

> x + y 
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[1] 14  3 

> x - y 

[1] 4 1 

> x*y 

[1] 45  2 

> 2*x+y+5 

[1] 28 10 

> x/y 

[1] 1.8 2.0 

 

Concatenate – c() 

c(x, y) 

> z <- c(6, 4, 1, 0) 

> z 

[1] 6 4 1 0 

> x <- c(6, 4) 

> x 

[1] 6 4 

> y <- c(1, 0) 

> y 

[1] 1 0 

> z <- c(x, y) 

> z 

[1] 6 4 1 0 

 

Generating regular sequences – seq() 

> x1 <- 1:10 

> x1 

 [1]  1  2  3  4  5  6  7  8  9 10 

> x2 <- seq(1, 10) 

> x2 

 [1]  1  2  3  4  5  6  7  8  9 10 

> x3 <- seq(1, 10, by = 2) 

> x3 

[1] 1 3 5 7 9 

> x4 <- seq(10, 22, length = 5) 
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> x4 

[1] 10 13 16 19 22 

> x5 <- seq(length = 31, from = -5, by = 3) 

> x5 

 [1] -5 -2  1  4  7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 

73 

[28] 76 79 82 85 

 

Generating regular sequences – rep() 

Replicate or repeat 

> x6 <- rep(3, 5) 

> x6 

[1] 3 3 3 3 3 

> x7 <- 1:3 

> x7 

[1] 1 2 3 

> x8 <- rep(x7, times = 5) # put five copies of x7 end-to-end in x8 

> x8 

 [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

> x9 <- rep(x7, each = 5) # repeats each element of x7 five times before moving 

on to the next 

> x9 

 [1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 

 

Summaries and Subscripting 

> x <- c(1, 3, 4, 7, 11, 32) 

> x[1:3] 

[1] 1 3 4 

> x[c(1:3, 6)] 

[1]  1  3  4 32 

> x[-(1:4)] 

[1] 11 32 

> mean(x) # Mean 

[1] 9.666667 

> m1 <- sum(x)/length(x) 

> m1 
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[1] 9.666667 

> var(x) # Variance 

[1] 131.8667 

> sum((x-m1)^2)/(length(x)-1) 

[1] 131.8667 

> sd(x) # Standard deviation 

[1] 11.48332 

> sqrt(sum((x-m1)^2)/(length(x)-1)) 

[1] 11.48332 

> summary(x) # Summary 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  1.000   3.250   5.500   9.667  10.000  32.000  

> summary(x[1:4]) # Summary 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

   1.00    2.50    3.50    3.75    4.75    7.00  

 

Matrices 

Matrices or more generally arrays are multi-dimensional generalizations of vectors. 

In fact, they are vectors that can be indexed by two or more indices.  

> X <- matrix(1:12, nrow = 3, ncol = 4) 

> X 

     [,1] [,2] [,3] [,4] 

[1,]    1    4    7   10 

[2,]    2    5    8   11 

[3,]    3    6    9   12 

> dim(X) 

[1] 3 4 

> Y <- matrix(1:12, nrow = 3, ncol = 4, byrow = TRUE) 

> Y 

     [,1] [,2] [,3] [,4] 

[1,]    1    2    3    4 

[2,]    5    6    7    8 

[3,]    9   10   11   12 

Assigning names to rows and columns 

> rownames(X) <- c("A", "B", "C") 

115



> X 

  [,1] [,2] [,3] [,4] 

A    1    4    7   10 

B    2    5    8   11 

C    3    6    9   12 

> colnames(X) <- c("X1", "X2", "X3", "X4") 

> X 

  X1 X2 X3 X4 

A  1  4  7 10 

B  2  5  8 11 

C  3  6  9 12 

Accessing elements of a matrix 

> X 

  X1 X2 X3 X4 

A  1  4  7 10 

B  2  5  8 11 

C  3  6  9 12 

> X[,1] 

A B C  

1 2 3  

> X[1,] 

X1 X2 X3 X4  

 1  4  7 10  

> X[2, 3] 

[1] 8 

Adding additional rows or binding matrices – rbind() 

Adding additional columns or binding matrices – cbind() 

> X <- matrix(1:12, nrow = 3, ncol = 4) 

> X 

     [,1] [,2] [,3] [,4] 

[1,]    1    4    7   10 

[2,]    2    5    8   11 

[3,]    3    6    9   12 

> rbind(X, c(5, 1, 2, 6)) 

     [,1] [,2] [,3] [,4] 

[1,]    1    4    7   10 
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[2,]    2    5    8   11 

[3,]    3    6    9   12 

[4,]    5    1    2    6 

> cbind(X, c(3, 4, 9)) 

     [,1] [,2] [,3] [,4] [,5] 

[1,]    1    4    7   10    3 

[2,]    2    5    8   11    4 

[3,]    3    6    9   12    9 

 

Transpose – t(); Determinant – det(); Inverse – solve() 

> X <- matrix(c(1, 3, 8, 12), nrow = 2, byrow = TRUE) 

> X 

     [,1] [,2] 

[1,]    1    3 

[2,]    8   12 

> t(X) # Transpose of matrix 

     [,1] [,2] 

[1,]    1    8 

[2,]    3   12 

> det(X) # Determinant of matrix 

[1] -12 

> solve(X) # Inverse of matrix 

           [,1]        [,2] 

[1,] -1.0000000  0.25000000 

[2,]  0.6666667 -0.08333333 

 

List and Data Frame 

An R list is an object consisting of an ordered collection of objects known as its 

components. 

> Lst <- list(name="Fred", wife="Mary", no.children=3, child.ages=c(4,7,9)) 

> Lst 

$name 

[1] "Fred" 

$wife 

[1] "Mary" 

$no.children 
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[1] 3 

$child.ages 

[1] 4 7 9 

> length(Lst) # Length 

[1] 4 

> names(Lst) # Names 

[1] "name"        "wife"        "no.children" "child.ages“ 

 > Lst$no.children 

[1] 3 

> Lst[[3]] 

[1] 3 

 

A data frame object in R has similar dimensional properties to a matrix but it may 

contain categorical data, as well as numeric (mixed modes). The standard layout is 

to put data for one observation across a row and variables as columns. Columns can 

be thought of as vectors, being either numeric or character. Columns can have 

column names, similar to variable names. Column names can be of any length, 

consisting of letters, numbers and a period (.) if desired. Underscores are not 

allowed. Column names must start with a letter. Columns (vectors) in a data.frame 

must be of the same length. On one level, as the notation will reflect, a data frame 

is a list. Each component corresponds to a variable, i.e., the vector of values of a 

given variable for each sample. Therefore, a data frame is like a list with 

components as columns of table. Lists have columns of the same lengths. 

A list can be made into a data.frame: 

 Components must be vectors (numeric, character, logical) or factors. 

 All vectors and factors must have the same lengths. 

Matrices and even other data frames can be combined with vectors to form a data 

frame if the dimensions match up. 

> students <- data.frame(gender = c("F", "M","F"), ht = c(170, 188.5, 168.3), wt = 

c(91.8,90, 82.6)) 

> students 

  gender    ht   wt 

1      F 170.0 91.8 

2      M 188.5 90.0 

3      F 168.3 82.6 

> students[1, 2]  # Identify the row 1, col 2 element in object Students 
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[1] 170 

> names(students) # Identify the column names in object Students 

[1] "gender" "ht"     "wt"     

> rownames(students) <- c("S1", "S2", "S3") # Apply row names to object Students 

> students 

  gender    ht   wt 

S1      F 170.0 91.8 

S2      M 188.5 90.0 

S3      F 168.3 82.6 

 

Lists 

Lists combine a collection of objects into a larger composite object. 

> intake.pre <- c(23,35,34,13,46, 45,34) 

> intake.post <- c(56,57,36,58,36,67,32) 

> mylist <- list(before=intake.pre, after=intake.post) 

> mylist 

$before 

[1] 23 35 34 13 46 45 34 

$after 

[1] 56 57 36 58 36 67 32 

> mylist[1] 

$before 

[1] 23 35 34 13 46 45 34 

> mylist[[1]] 

[1] 23 35 34 13 46 45 34 

> dat <- data.frame(intake.pre, intake.post) 

> dat 

  intake.pre intake.post 

1         23          56 

2         35          57 

3         34          36 

4         13          58 

5         46          36 

6         45          67 

7         34          32 

> dat$intake.pre 
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[1] 23 35 34 13 46 45 34 

> dat$intake.pre[3] 

[1] 34 

> dat$intake.pre[c(1,3)] 

[1] 23 34 

> dat$intake.pre[-3] 

[1] 23 35 13 46 45 34 

 

Factor 

Factors are the data objects which are used to categorize the data and store it as 

levels. They can store both strings and integers. They are useful in the columns 

which have a limited number of unique values such as gender (Male, Female), etc.  

factor(x = character(), levels, labels = levels, ordered = is.ordered(x)) 

> gender <- c("male","male","female","female","male","female","male") 

> gender 

[1] "male"   "male"   "female" "female" "male"   "female" "male"   

> class(gender) 

[1] "character“ 

> gender <- factor(gender) 

> gender 

[1] male   male   female female male   female male   

Levels: female male 

> class(gender) 

[1] "factor" 

 

Two-way Layout 

Consider our two-way layout problem, where we produced the indicator variables 

using rep(). A better way to do this is using the function gl, which will generate 

factors. 

> clevels <- gl(3,8) 

> clevels 

 [1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 

+ 3 

Levels: 1 2 3 

> rlevels <- gl(4,2,length=24) 

> rlevels 
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[1] 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4  

+ 4 

Levels: 1 2 3 4 

Use the function expand.grid to produce a data frame with the desired factors. 

> reps 

[1] 1 2 

> colLevels <- 1:3 

> colLevels 

[1] 1 2 3 

> rowLevels <- 1:4 

> rowLevels 

[1] 1 2 3 4 

> height = seq(60, 80, 10) 

> height 

[1] 60 70 80 

> weight = seq(100, 200, 50) 

> weight 

[1] 100 150 200 

> sex = c("Male","Female") 

> sex 

[1] "Male"   "Female" 

 

Generating Random Numbers 

As a language for statistical analysis, R has a comprehensive library of functions 

for generating random numbers from various statistical distributions. 

Example: Generate 5 random integers between 1 and 10 

> set.seed (100) # function in R used to reproduce results 

> sample (1:10, 5) # sampling without 

 replacement is the default 

[1] 10  7  6  3  1 

> sample (1:10, 5, replace = TRUE) 

[1] 10  7  6  6  4 

> sample (c("H","T"),5, replace = TRUE) 

[1] "H" "T" "T" "H" "H" 

> runif (5, 0, 1) # generating between 0 and 1, excluding 0 and 1 

[1] 0.6902905 0.5358112 0.7108038 0.5383487 0.7489722 
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> rnorm (5, 1, 3) # generating random numbers from normal dist with (1,3) 

[1]  0.3950981  3.2195215  1.3701385  0.9120499 -0.1665627 

Importing Data 

> mydata <- read.table ("mydata.txt", header=TRUE) # From Text file 

> head(mydata) 

  Height Weight   Sex 

1     60     100  Male 

2     70     100  Male 

3     80    100   Male 

4     60     150  Male 

5     70     150  Male 

6 80     150  Male 

> mydata <- read.table ("mydata.csv", header=TRUE) # From CSV file 

> mydata <- read.delim ("mydata.csv") # Importing file with a separator character 

> mydata <- read.delim2("mydata.csv") 

 

Importing from Excel: Importing from 1st worksheet 

We will require a package named ‘xlsx’. 

> library(xlsx) 

Warning message: 

package ‘xlsx’ was built under R version 4.0.5  

> mydata <- read.xlsx("mydata.xlsx", 1) 

Importing SPSS 

library(foreign) 

mydata <- read.spss(“mydata.sav”, to.data.frame=TRUE, 

use.value.labels=FALSE) 

Importing SAS files 

library(sas7bdat) 

mydata <- read.sas7bdat(“mydata.sas7bdat”) 

Importing Minitab files 

library(foreign) 

mydata <- read.mtp(“mydata.mtp”) 
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Descriptive Statistics 

Descriptive statistics investigates the variables separately. Various descriptive 

statistics can be computed by using in-built R functions as given below. 

Name of function Use of function 

mean calculates the mean of an input 

median calculates the median of an input  

var calculates the variance of an input  

sd calculates the standard deviation of an input  

IQR calculates the interquartile range of an input 

min calculates the minimum value of an input  

max calculates the maximum of an input  

range returns a vector containing the minimum and 

maximum of all given arguments 

summary returns a vector containing a mixture of the above 

functions (minimum, first quartile, median, mean, 

third quartile, maximum) 

 

> data(trees) 

> head(trees) 

  Girth Height Volume 

1   8.3     70   10.3 

2   8.6     65   10.3 

3   8.8     63   10.2 

4  10.5     72   16.4 

5  10.7     81   18.8 

6  10.8     83   19.7 

 

> summary(trees) 

     Girth           Height       Volume      

 Min.   : 8.30   Min.   :63   Min.   :10.20   

 1st Qu.:11.05   1st Qu.:72   1st Qu.:19.40   

 Median :12.90   Median :76   Median :24.20   

 Mean   :13.25   Mean   :76   Mean   :30.17   

 3rd Qu.:15.25   3rd Qu.:80   3rd Qu.:37.30   

 Max.   :20.60   Max.   :87   Max.   :77.00   
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> mean(trees$Height) 

[1] 76 

> sd(trees$Height) 

[1] 6.371813 

> range(trees$Height) 

[1] 63 87 

 

Graphics 

Histogram plots the frequencies that data appears within certain ranges. 

> data(trees) 

Add a title: The “main” statement will give the plot an overall heading. 

Add axis labels: Use “xlab” and “ylab” to label the X and Y axes, respectively. 

Changing colors: Use the col statement 

hist(trees$Height, main="Height of Cherry Tree", xlab="Height", 

ylab="Frequency", col="red")  

 

 

 

 

 

 

 

 

 

 

A boxplot provides a graphical view of the median, quartiles, maximum, and 

minimum of a data set. 

> boxplot(trees$Volume,main='Volume of Timber', ylab='Volume (cubic ft)') 
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Partitioning the Graphics Window 

A useful facility before beginning is to divide a page into smaller pieces so that 

more than one figure can be displayed graphically. 

par: used to set or query graphics parameters 

par(mfrow=c(2,2)) 

# This will create a window of graphics with 2 rows and 2 columns. 

# The windows are filled up row-wise. 

# Use mfcol instead of mfrow to fill up column-wise. 

 

> data(trees) 

> par(mfrow=c(2,2)) 

> hist(trees$Height) 

> boxplot(trees$Height) 

> hist(trees$Volume) 

> boxplot(trees$Volume) 

> par(mfrow=c(1,1)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Use layout() 

Example: layout(matrix(1:4,2,2)) will partition the window into 4 equal parts 

One can view the layout with layout show (n = 4) 
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A scatter plot provides a graphical view of the relationship between two sets of 

numbers. 

> plot(trees$Height, trees$Volume, xlab="Height", ylab="Volume", 

main="Scatter Plot", pch=20) 

 

 

 

 

 

 

 

parameter pch stands for ‘plotting character’. 

> pairs(trees) 

A matrix of scatterplots is produced. 

 

Density plot is a representation of the distribution of a numeric variable that uses 

a kernel density estimate to show the probability density function of the variable.  

126



In R Language we use the density() function which helps to compute kernel density 

estimates. 

> plot(density(gtemp), ylim=c(0, 2), col = "green",main = "Density plot") 

> lines(density(gtemp2), col="red") 

> legend(0.5,1.5, cex=0.8, c("gtemp", "gtemp2"), col=c("green", "red"), lty=1:1) 

 

 

 

 

 

 

 

 

 

 

Writing functions 

A function is a set of statements organized together to perform a specific task. R 

has a large number of in-built functions such as seq(), mean(), max(), sum(), etc. 

The user can create their own functions. 

General form of the function: 

func_name <- function(arg1, arg2, ...) { 

Function body 

} 

func_name is the name of actual name of function. 

The argument can be any type of object (like a scalar, a matrix, a data frame, a 

vector, a logical, etc) 

 

Local vs global environment 

It’s not necessarily to use return() at the end of your function. The reason you return 

an object is if you’ve saved the value of your statements into an object inside the 

function. In this case, the objects in the function are in a local environment and 

won’t appear in your global environment. 

fun1 <- function(x){ 

   2*x+3 

} 
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> fun1(4) 

[1] 11 

 

fun2 <- function(x){ 

   y <- 2*x+3 

} 

> fun2(4) 

> print(y) 

Error in print(y) : object 'y' not found 

We can return the value of y using return(y) at the end of the function. 

 

fun2_1 <- function(x){ 

   y <- 2*x+3 

   return(y) 

} 

> fun2_1(4) 

[1] 11 

 

fun3 <- function(x, y){ 

  z1 <- 2*x+y 

  z2 <- x+2*y 

  z3 <- 2*x+2*y 

  z4 <- x/y 

  return(c(z1, z2, z3, z4)) 

} 

> fun3(1, 2) 

[1] 4.0 5.0 6.0 0.5 

 

If we need to return multiple objects from a function, we can use list() to list them 

together. To extract objects from output, use [[ ]] operator. 

fun4 <- function(x, y){ 

  m1 <- mean(x) 

  m2 <- mean(y) 

  sd1 <- sd(x) 

  sd2 <- sd(y) 

  cor.xy <- cor(x, y) 
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  xy <- cbind(x, y) 

  list(m1, m2, sd1, sd2, cor.xy, xy) 

} 

 

> x <- c(1, 4, 8, 11, 20, 23) 

> y <- c(2, 6, 3, 8, 21, 29) 

> fun4(x, y) 

[[1]] 

[1] 11.16667 

[[2]] 

[1] 11.5 

[[3]] 

[1] 8.750238 

[[4]] 

[1] 10.96814 

[[5]] 

[1] 0.9471335 

[[6]] 

      x  y 

[1,]  1  2 

[2,]  4  6 

[3,]  8  3 

[4,] 11  8 

[5,] 20 21 

[6,] 23 29 

 

for loops 

-The for loop is used when iterating through a list. 

-The basic structure of the for loop: 

for(index in list){ 

 commands 

} 

 

cars <- c("Toyota", "Ford", "Chevy") 

for(I in cars) { 

  print(i) 
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} 

[1] "Toyota" 

[1] "Ford" 

[1] "Chevy" 

 

while loop 

The while loop is used when you want to keep iterating as long as a specific 

condition is satisfied. The basic structure of the while loop: 

while(condition) { 

  commands 

} 

i <- 3 

while(i <= 6) { 

  i <- i+1 

  print(i) 

} 

[1] 4 

[1] 5 

[1] 6 

[1] 7 

 

Ifelse function 

The ifelse function is very handy because it allows the user to specify the action 

taken for the test condition being true or false. Like the if statement the ifelse 

function can be included in any function or loop. 

The basic structure of the ifelse function: 

Ifelse(test, action.if.true, action.if.false) 

 

> x <- seq(1:10) 

> ifelse(x < 6, "T", "F") 

[1] "T" "T" "T" "T" "T" "F" "F" "F" "F" "F" 

 

R Packages for Bioinformatics 

R packages are extensions to the R statistical programming language. R packages 

contain code, data, and documentation in a standardised collection format that can 

be installed by users of R. A large number of R packages are freely through CRAN 
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(the Comprehensive R Archive Network; https://cran.r-project.org/) and 

Bioconductor set of R packages (www.bioconductor.org). Some well-known 

bioinformatics R packages are the Bioconductor set of R packages 

(www.bioconductor.org). Bioconductor is a free, open source and open 

development software project for the analysis and comprehension of genomic data. 

 

R Packages for analysis of biological sequence analysis and retrieval of 

genomic data 

 seqinr 

 tidysq 

 biomartr 

 rentrez 

 

R packages for sequence alignment 

 Biostrings 

 msa 

 msaR 

 ggmsa 

 AlignStat 

 

R Packages for differential gene expression analysis of microarray data 

 amda 

 maGUI 

 maEndToEnd 

 limma 

 GEOlimma 

 

R packages for differential gene expression analysis of RNA-Seq data 

 edgeR 

 DESeq2 

 ideal 

 DEvis 

 

R Packages for protein structure analysis 

 Bio3D 

 Rpdb 
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 XLmap 

 

R packages for protein-protein interaction graphs 

 graph 

 RBGL 

 Rgraphviz 

 crosstalkr 

 igraph 

 

R Packages for proteomics data analysis  

 RforProteomcs 

 protti 

 Proteus 

 DanteR 

 MSstats 

 MSqRob 

 DAPAR 

 

R Packages for metagenomics data analysis 

 MicrobiomeExplorer 

 matR 

 MegaR 

 

R Packages for GWAS and genomic selection 

 statgenGWAS 

 GWASTools 

 BlueSNP 

 rrBLUP 

 lme4GS 

 BWGS 

 GSelection 

 learnMET 

 GAPIT 
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Demonstration of an R package “GAPIT: Genomic Association and Prediction 

Integrated Tool” 

GAPIT implemented a series of methods for Genome Wide Association (GWAS) 

and Genomic Selection (GS). The GWAS models include 

 General Linear Model (GLM) 

 Mixed Linear Model (MLM or Q+K) 

 Compressed MLM (CMLM) 

 Enriched CMLM 

 SUPPER 

 Multiple Loci Mixed Model (MLMM) 

 FarmCPU 

 BLINK 

The GS models include  

 gBLUP 

 Compressed BLUP  

 SUPER BLUP 

GAPIT is an R package which can be freely downloaded from http://www.r-

project.org or http://www.rstudio.com.  

There are two sources to install GAPIT package. 

Zhiwu Zhang Lab website 

source("http://zzlab.net/GAPIT/GAPIT.library.R") 

source("http://zzlab.net/GAPIT/gapit_functions.txt") 

GitHub 

install.packages("devtools") 

devtools::install_github("jiabowang/GAPIT3",force=TRUE) 

library(GAPIT3) 

Help manual: https://zzlab.net/GAPIT/gapit_help_document.pdf 

# Import data from Zhiwu Zhang Lab 

myY <- read.table("http://zzlab.net/GAPIT/data/mdp_traits.txt", head = TRUE) 

myGD=read.table(file="http://zzlab.net/GAPIT/data/mdp_numeric.txt",head=T) 

myGM=read.table(file="http://zzlab.net/GAPIT/data/mdp_SNP_information.txt",

head=T) 

# GWAS 

myGAPIT=GAPIT( 

  Y=myY[,c(1,2,3)], #fist column is ID 

  GD=myGD, 
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  GM=myGM, 

  PCA.total=3, 

  model=c("FarmCPU", "Blink"), 

  Multiple_analysis=TRUE) 

 

 

References 

Giorgi, F. M., Ceraolo, C. and Mercatelli, D. (2022). The R Language: An Engine 

for Bioinformatics and Data Science. Life (Basel, Switzerland), 12(5), 648. 

https://doi.org/10.3390/life12050648 

Ihaka, R. and Gentleman, R (1996). R: A Language for Data Analysis and 

Graphics. Journal of Computational and Graphical Statistics, 5, 299–314. 

doi: 10.1080/10618600.1996.10474713 

W. N. Venables, D. M. Smith and the R Core Team. An Introduction to R. Notes 

on R: A Programming Environment for Data Analysis and Graphics, Version 

4.2.2 (2022-10-31), URL: https://cran.r-project.org/doc/manuals/r-release/R-

intro.pdf 

https://en.wikipedia.org/wiki/R_(programming_language) 

https://en.wikipedia.org/wiki/Bioconductor 

https://www.cran.r-project.org/  

https://www.bioconductor.org/ 

134



 

Overview of Genomic Selection Methods  

Neeraj Budhlakoti and D. C. Mishra 

ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India 

 

Abstract 

Since the inception of the theory and conceptual framework of genomic selection (GS), 

extensive research has been done on evaluating its efficiency for utilization in crop 

improvement. Though marker-assisted selection has proven its potential for improvement of 

qualitative traits that are controlled by one to few genes with large effects, its role in improving 

quantitative traits that are controlled by several genes with small effects is limited. In this 

regard, GS that utilizes genomic-estimated breeding values of individuals obtained from 

genome-wide markers to choose candidates for the next breeding cycle is a powerful approach 

to improve quantitative traits. In the past 20 years, GS has been widely adopted in animal 

breeding programs globally because of its potential to improve selection accuracy, minimize 

phenotyping, reduce cycle time and increase genetic gains. Improved statistical models that 

leverage the genomic information to increase the prediction accuracies are critical for the 

effectiveness of GS-enabled breeding programs. 

Keywords: GEBVs, GS, LD, MAS, QTL, SNP.  

Introduction  

As it is known earlier selection based on phenotypic data has been successfully used in past. 

As abundance of DNA and marker data, trend slightly shifted to marker assisted selection 

(MAS). MAS is an indirect selection process where a trait of interest is selected, not based on 

the trait itself, but on a marker linked to it. MAS has been shown to be efficient and effective 

for traits that are associated with one or a few major genes with large effect but does not 

perform as well when it is used for selection of polygenic traits (Bernardo 2008).As most 

economic traits are influenced by many genes, tracking a small number of these through DNA 

markers will only explain a small proportion of the genetic variance. In addition, individual 

genes are likely to have small effects and so a large amount of data is needed to accurately 

estimate their effects. To overcome these difficulties, Meuwissen et al. (2001) proposed a 

variant of MAS that they called genomic selection. The key features of this method are that 

markers covering the whole genome are used so that potentially all the genetic variance is 

explained by the markers and the markers are assumed to be in linkage disequilibrium (LD) 
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with the Quantitative trait loci (QTL), so that the number of effects per QTL to be estimated is 

small.  

Any successful GS program, starts with forming a training population in such a way that 

individuals/lines/variety are genotyped for genomic markers distributed over entire genome 

and should be representative of whole population. The training individuals are further subjected 

to extensive phenotyping for underlying trait of interest. The information of individual 

genotype and phenotype is used for identification and building of suitable statistical model 

using phenotype as a response and genotype as independent variable whereas part of training 

data can also be used for validation of fitted model. Genomic Estimated Breeding Values 

(GEBVs) of the individuals of the breeding population (where only information of genotyped 

individuals is available with no phenotypic records) is being calculated using their genotyped 

information where marker effect are estimated from developed model. Ultimately 

individuals/line/variety from the breeding population can be selected based on superiority of 

their estimated value of GEBVs. 

 

 

Fig. 1: Basic schema of genomic selection process 
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The major limitation to the implementation of genomic selection has been the large number of 

markers required and the cost of genotyping these markers are very high. Recently both these 

limitations have been overcome in most livestock and plant species following the sequencing 

of the livestock genomes, the subsequent availability of hundreds of thousands of single 

nucleotide polymorphisms (SNP), and dramatic improvements in development of SNP 

genotyping technology. Various regression methods have been developed for predicting 

phenotype. Methods are based on analysis of data consist of genotype and phenotype 

information. These methods are primarily based on linear models, which are easy to interpret 

and able to fit to the data without over fitting. However, the relationship between breeding 

value and genetic markers is likely to be more complex than a simple linear relationship, 

particularly when large numbers of SNPs are fitted simultaneously in the model. To answer 

these issues, model-free or so-called nonparametric methods which side-step linearity and 

require lesser genetic assumptions have gained more attention (Gianola et al, 2006).  

Statistical model for Genomic Selection 

Process of selecting the suitable individuals in GS starts with a simple linear model sometime 

also called as least squares regression or ordinary least squares regression (OLS).  

 

𝑌 =  1𝑛µ +  𝑋𝛽 +  𝜀 

 

where, Y =  𝑛 ×  1 vector of observations; µ is the mean; 𝜷 =  𝑝 ×  1 vector of marker 

effects; 𝜀 =  𝑛 ×  1 vector of random residual effects; 𝑿 =  design matrix of order 

𝑛 ×  𝑝 (where each row represents the genotype/individuals/lines (n) and column corresponds 

to marker (p)), 𝜀~𝑁(0, 𝜎𝑒
2). 

 

One major problem in linear models using several thousands of genome-wide markers is that 

number of markers (p) exceed the number of observations (n) i.e. genotype/individuals/lines 

and this creates the problem of over-parameterization (large ‘p’ and small ‘n’ problem (p>>n)).  

Using a subset of the significant markers can be an alternative for dealing with large ‘p’ and 

small ‘n’ problem. Meuwissen et al. (2001) used a modification of the least squares regression 

for GS. They performed least squares regression analysis on each maker separately with 

following model 

𝑌 =   𝑋𝑗𝛽𝑗 +  𝜀 

where,  

𝑋𝑗 = 𝑗𝑡ℎcolumn of the design matrix of marker 

𝛽𝑗 = genetic effect of 𝑗𝑡ℎ marker 
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Marker with significant effects are selected using the log likelihood of this model and those are 

further used for estimation of breeding values. However, it has to be noted that some crucial or 

key information may be lost by selection based on subset of markers. 

 

Hence, an efficient solution for the over-parameterization problem in linear models is using 

ridge regression (RR), which is a penalized regression-based approach (Meuwissen et al., 

2001). It also solves the problems of multicollinearity at the same time (i.e. correlated 

predictors e.g. SNP or markers). RR shrinks the coefficients of correlated predictors equally 

towards zero and solves the regression problem using ℓ2 penalized least squares. Here, the goal 

is to derive an estimator of parameter 𝛽 with smaller variance than the least square estimator. 

Similar to RR, least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996; Usai 

et al., 2009) is other variant of penalized regression, which uses the ℓ1 penalized least squares 

criterion to obtain a sparse solution. LASSO sometime may not work well highly correlated 

predictors (e.g. SNPs in high linkage disequilibrium) (Ogutu et al., 2012). The elastic net 

(ENET) is an extension of the lasso that is robust to extreme correlations among the predictors 

(Friedman et al., 2010) and it is a compromise between ℓ1 penalty (lasso) and ℓ2 penalty (ridge 

regression) (Zou and Hastie, 2005).  

 

The RR model considers that each marker contribute to equal variance, which is not the case 

for all traits. Therefore, the variance of the markers based on the trait genetic architecture has 

to be modeled. For this purpose, several Bayesian models have been proposed where it is 

assumed that there is some prior distribution of marker effects. Further, inferences about model 

parameters are obtained on the basis of posterior distributions of the marker effects. There are 

several variants of Bayesian models for genomic prediction such as Bayes A, Bayes B, Bayes 

Cπ and Bayes Dπ (Meuwissen et al., 2001; Habier et al., 2011) and other derivatives e.g. 

Bayesian LASSO,  Bayesian ridge regression (BRR). Besides the marker-based models, the 

best linear unbiased prediction (BLUP), is one of the most commonly used genomic prediction 

method. There are many variants of BLUP available for this purpose e.g. genomic BLUP 

(GBLUP), single-step GBLUP (ssGBLUP), ridge regression BLUP (RRBLUP), GBLUP with 

linear ridge kernel regression (rrGBLUP), of which is GBLUP is very frequently used. While 

the BLUP has been used in other plant and animal breeding studies traditionally for various 

purposes (Henderson et al., 1959), the GBLUP uses the genomic relationships calculated using 

markers instead of the conventional pedigree-based BLUP which uses the pedigree 

relationships to obtain the GEBVs of the lines or individuals (Meuwissen et al., 2001).  
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The genomic prediction models discussed so far perform well for traits with additive genetic 

architecture but their performance becomes very poor in case of epistatic genetic architectures.  

Hence, Gianola et al. (2006) first used nonparametric and semiparametric methods for 

modeling complex genetic architecture. Subsequently, several statistical methods were 

implemented to model both main and epistatic effects for genomic selection (Xu, 2007; Cai et 

al., 2011; Legarra and Reverter, 2018). There are several nonparametric methods have been 

studied in relation to genomic selection e.g. NW (Nadaraya-Watson) estimator (Gianola et al., 

2006), RKHS (Reproductive Kernel Hilbert Space) (Gianola et al., 2006), SVM (support vector 

machine) (Maenhout et al., 2007; Long et al., 2011), ANN (Artificial Neural Network) 

(Gianola et al., 2011) and RF (Random Forest) (Holliday et al., 2012) among them 

nonparametric methods SVM, NN and RF are based on machine learning approach. 

Methods discussed earlier in this section are based on genomic information where information 

is available for single-trait i.e. single-trait genomic selection (STGS). As performance of STGS 

based methods may be affected significantly in case of pleiotropy i.e., one gene linked to 

multiple traits. A mutation in a pleiotropic gene may have an effect on several traits 

simultaneously. It was also observed that low heritability traits can borrow information from 

correlated traits and consequently achieve higher prediction accuracy can be achieved. Also 

STGS based methods considers the information of each trait independently. Hence we may 

lose crucial information which may ultimately result in poor genomic prediction accuracy. 

Now-a-days we are also getting data on multiple traits, so multi-trait genomic selection 

(MTGS) based methods may provide more accurate GEBVs and subsequently the higher 

prediction accuracy. Several MTGS based methods have been studied in relation to GS e.g. 

Multivariate mixed model approach (Jia and Jannink, 2012; Klápště et al., 2020), Bayesian 

multi-trait model (Jia and Jannink, 2012; Cheng et al., 2018), MRCE (Multivariate Regression 

with Covariance Estimation)(Rothman et al., 2010), cGGM (conditional Gaussian Graphical 

Models) (Chiquet et al., 2017). Jia et al. (2012) presented three multivariate linear models (i.e., 

GBLUP, Bayes A, and Bayes Cπ) and compared them to uni-variate models and a detailed 

comparison of various STGS and MTGS based methods has also been studied by Budhlakoti 

et al. (2019). A brief structure of different STGS and MTGS based methods used in GS studies 

are given in Fig. 2. 

 

139



 

 
 

 
Fig. 2: Overall summary of the most commonly used models in Genomic Selection 

 

Tools and packages to implement Genomic Selection 

Several tools and packages have been developed for the evaluation of genomic prediction and 

implementation of GS, some of which are discussed below. 

Tools/Package

s 

Description URL Reference 

GMStool It is a genome-wide association 

study (GWAS)-based tool for 

genomic prediction using genome-

wide marker data 

https://github.com/ 

JaeYoonKim72/GM

Stool  

 

Jeong et al. 

(2020) 

 

rrBLUP R package based on BLUP models 

its and other derivatives 

 

https://CRAN.R-

project.org/ 

package=rrBLUP 

Endelman, 

(2011) 

BWGS It has a wide choice of totally 15 

parametric and nonparametric 

statistical models for estimation of 

GEBV for selection candidates. 

https://CRAN.R-

project.org/package

=BWGS 

Charmet 

et al. 

(2020) 

BGLR This package is an extension of the 

BLR package (Perezand Campos, 

2014) and can be used to implement 

several Bayesian models 

https://CRAN.R-

project.org/package

=BGLR 

Perez 

and 

Campos, 

(2014) 

GenSel Used for estimation of molecular 

marker–based breeding values of 

animals for trait under evaluation 

https://github.com/ 

austin-putz/GenSel 

Fernando 

and 

140



 

Garrick, 

(2009) 

lme4GS This package can be used for fitting 

mixed models with covariance 

structures with user defined 

parameter 

https://github.com/p

erpdgo/lme4GS 

Caamal-Pat 

et al. 

(2021) 

GSelection Package comprises of a set of 

functions to select the important 

markers and estimates the GEBV of 

selection candidates using an 

integrated model framework 

https:// 

CRAN.R-

project.org/package

=GSelection 

Majumdar 

et al. 

(2019) 

STGS It is a comprehensive package which 

gives a single-step solution for 

genomic selection based on most 

commonly used statistical methods 

(i.e., RR, BLUP, LASSO, SVM, 

ANN, and RF). 

https://CRAN.Rproj

ect. 

org/package=STGS 

Budhlakoti 

et al. 

(2019a) 

MTGS MTGS is a comprehensive package 

which gives a single-step solution 

for genomic selection using various 

MTGS-based methods (MRCE, 

MLASSO, i.e., multivariate 

LASSO, and KMLASSO, i.e., 

kernelized multivariate LASSO). 

https://CRAN.R-

project.org/ 

package=MTGS 

Budhlakoti 

et al. 

(2019) 

 

Issues and challenges in genomic selection 

Genomic selection is a powerful tool for plant and animal breeding, but it also presents a 

number of challenges and issues. Some of the key challenges and issues in genomic selection 

include: 

1. Data quality and quantity: Genomic selection requires large amounts of high-quality 

genomic data. However, obtaining this data can be challenging, especially in species 

with complex genomes or limited genomic resources. 

2. Genetic diversity: Genomic selection works best when there is a large amount of genetic 

diversity in the population. However, in some species, there may be limited genetic 

diversity, which can limit the effectiveness of genomic selection. 

3. Phenotyping: In order to train genomic selection models, accurate and consistent 

phenotypic data is required. However, phenotyping can be time-consuming, expensive, 

and difficult to standardize. 
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4. Trait heritability: The effectiveness of genomic selection depends on the heritability of 

the trait being selected. Some traits may have low heritability, making it difficult to 

accurately predict their values using genomic data. 

5. Statistical model used: The choice of statistical model used in genomic selection is 

important because it can impact the accuracy of the predictions and the efficiency of 

the analysis. Some of the key concerns related to the type of statistical model used in 

genomic selection include: 

i. Overfitting: Overfitting can occur when a model is too complex for the data, 

leading to high accuracy in the training set but poor performance on new data. 

This can be a concern in genomic selection, particularly when using models 

with a large number of parameters or when the sample size is small. 

ii. Model assumptions: Different statistical models have different assumptions 

about the data, and violating these assumptions can lead to biased or inaccurate 

predictions. For example, linear regression assumes that the residuals are 

normally distributed and homoscedastic, and violating these assumptions can 

lead to poor performance. 

iii. Scalability: Some statistical models are computationally intensive and may not 

be feasible for very large datasets. This can be a concern in genomic selection, 

particularly as the amount of genomic data continues to grow. 

iv. Interpretability: Some statistical models are more interpretable than others, 

which can be important for understanding the biological basis of the trait being 

predicted. For example, linear regression models can provide insight into which 

genomic regions are associated with the trait, while more complex models may 

be more difficult to interpret. 

v. Incorporation of external information: Some statistical models can incorporate 

external information, such as gene annotation or pathway information, to 

improve predictions. However, the quality and relevance of this external 

information can impact the performance of the model. 
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6. Integration with traditional breeding: Genomic selection is most effective when it is 

integrated with traditional breeding methods. However, this can be challenging, 

especially in species with long breeding cycles or complex genetic architectures. 

 

Conclusion and perspectives 

Genomic selection has improved genetic gains in plant and animal breeding research over the 

past two decades. Advances in cheaper next-generation sequencing technologies have resulted 

in the availability of high-density SNP genotyping chips and completely sequenced crop and 

animal genomes, boosting the predictive ability of a genomic selection model. However, there 

is still scope for improvement in the methodology of genomic selection, such as imputation of 

missing genotypic value and implementation of GxE interaction, to successfully implement it 

in breeding programs. Regular updating of the training set and evaluation under controlled 

conditions is necessary for better performance. To achieve fruitful outcomes, a structured 

program is needed that includes human resource development, advanced data recording 

methodologies, and trait phenotyping. 
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Genome-wide association study (GWAS) is a research strategy to find genetic variations that 

are statistically linked to a disease or a particular trait. The approach involves scanning the 

genomes of a large number of individuals in search of genetic variants that are more prevalent 

in persons with a particular disease or trait than in people without the disease or trait. These 

genomic variants are often utilised to look for neighbouring variants that are directly 

responsible for the disease or trait once they have been found. 

Linkage disequilibrium (LD) between the markers being studied and the functional 

polymorphisms of the causal genes is the basis for GWAS. On the chromosome, loci that are 

physically close to one another are separated by recombination less frequently than loci that 

are farther apart. Gametic-phase disequilibrium, often known as LD, is the nonrandom 

connection of alleles at two loci. The SNPs close to the causal locus may have strong LD with 

the functional polymorphisms and hence be linked to the desired trait. These relationships are 

discovered through genome-wide association studies, which also highlight the genomic areas 

that contain the significant SNPs and the relevant genes. 

Genome-wide association study (GWAS) attempts to predict association of specific traits 

(phenotype) with genetic variants (genotype) by statistical analysis at population level. 

Phenotypic information can be obtained by systematically measuring the phenotype (physical 

and physiological traits) that can be influenced by various genetic and environmental factors. 

Individual genotyping is usually done with microarrays for common variations or next-

generation sequencing technologies like WES or WGS for rare variants. Due to the current 

expense of next-generation sequencing, microarray-based genotyping is the most frequently 

used approach for retrieving genotypes for GWAS. However  resequencing the entire genome 

has the ability to uncover almost all genetic variations. This genotypic information along with 

phenotypic data can be analysed to identify the genetic markers (SNPs, SSRs etc.), QTLs or 

candidate genes associated with a specific trait.  

The input files for GWA studies usually include the genotype file i.e., marker information and 

the phenotype file i.e., trait information and also coded family relations between individuals. 

Following the data input, producing reliable GWAS results requires meticulous quality control. 
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Testing for associations 

 

The biometrical model underpins the genetic association theory. Depending on whether the 

phenotype is continuous (such as plant height, grain yield etc.) or binary (such as the presence 

or absence of disease), linear or logistic regression models are typically employed in GWAS 

to test for associations. To account for stratification and eliminate confounding effects from 

demographic characteristics, covariates such as age, sex, and ancestry are added, with the 

caveat that this may impair statistical power for binary traits in ascertained samples. Adding an 

additional individual-specific random effect term to linear or logistic mixed models to account 

for genetic relatedness among individuals might improve statistical power for genome 

discovery and boost control for stratification at the expense of increased complexity. Adding 

an additional individual-specific random effect term to linear or logistic mixed models to 

account for genetic relatedness between people might boost statistical power for genome 

discovery and increase control for stratification at the cost of more processing resources. When 

doing a GWAS, it's important to remember that genotypes of genetic variants that are 

physically close together aren't independent because they are in linkage disequilibrium; this 

test dependency should be taken into account as well. 

 

The following equation depicts the linear regression model for testing the association between 

a marker and a trait: 

 

𝑌~𝑋𝛼 + 𝑍𝑠𝛽𝑠 + 𝑒 

𝑒~𝑁(0, 𝜎𝑒
2𝐼) 

 

where, for each individual, Y is a vector of phenotype values, X is a matrix assigning records 

to phenotypes fixed effect, α is a corresponding vector of  fixed effects sizes (e.g., the mean, 

population structure effects, and age), 𝑍𝑠 is a vector of genotype values for all individuals at 

genetic variations, 𝛽𝑠 is the corresponding fixed effect size of genetic variants, 𝜎𝑒
2 measures 

residual variance and I is an identity matrix.  

The underlying assumption is that if the marker will have effect on trait only if it is in linkage 

disequilibrium with an unseen QTL. The null hypothesis for the study asserts that marker has 

no effect on the trait, while the alternative hypothesis states that it does have an effect on the 

trait (as it is in LD with a QTL). If F > 𝐹𝛼;1;2 where F is the F statistic obtained from the data 
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and 𝐹𝛼;1;2 is the value from a F distribution at  level of significance and 1, 2 degrees of 

freedom, the null hypothesis is rejected. 

There are numerous statistical models to find associations between marker loci and a variety 

of traits, ranging from simple to highly complex. Accurate decoding of complex traits in 

diverse population requires more comprehensive statistical models which takes care of false 

positives arising from family relatedness and population structure, at the same time also keeps 

in check the number of false negatives due to over correction. Confounding effects due to 

population structure and kinship among individuals is taken into account by using these 

covariates in the statistical model. STRUCTURE (Pritchard et al., 2000), PCA (Price et al., 

2006), and a discriminant analysis of principal components (DAPC) (Jombart et al., 2010) are 

methods for determining population organisation by using genetic markers. False positives 

arising due to common ancestry and family relatedness can be addressed by incorporating 

kinship matrix into the statistical model. One of the most often used methods for estimating 

family relatedness among individuals in a diverse population is identity-by-state (Loiselle et 

al., 1995).  

Inclusion of population structure and a kinship matrix as covariates in mixed linear models 

(MLM) to reduce false positives is a widely used approach. Many MLM-based approaches 

have been presented since Yu et al. (2006) published the first MLM of association mapping 

(Zhang et al., 2010; Wang et al., 2014). All of these models are called single-locus models as 

they do a unidimensional genome scan by examining one marker at a time and then iterate the 

process for each marker in the dataset. But the true genetic model of complex traits that are 

governed by multiple loci at the same time cannot be explained by single locus models. 

Multilocus association mapping models have been suggested as a solution to this problem since 

they consider the input from all loci at the same time (Wang et al., 2016). One more constraint 

of MLM based models is increase in number of false negatives due to overfitting which may 

lead to omission of certain potentially valuable association (Liu et al., 2016). False negatives 

may arise during multiple comparison adjustments for evaluating statistical significance. 

Bonferroni correction (Holm, 1979) and false discovery rate (FDR) (Benjamini and Hochberg, 

1995) are two commonly used multiple comparison approaches in association mapping for 

determining the significant threshold. Highly conservative standards can result in a high rate 

of false negatives. As a result, selection of a proper model and threshold are critical steps in 

detecting true trait associated markers that may be located inside or in high LD with genes that 

govern trait variation, while minimizing both false-positive and false-negative associations. 
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Statistical models for GWAS 

Some popular models for GWAS include:  

(1) analysis of variance (ANOVA) 

(2) general linear model with principle component analysis (GLM + PCA) (Price et al., 2006), 

(3) MLM with principle component analysis and Kinship matrix for family relatedness 

estimates (GLM+PCA+K) (Yu et al., 2006) 

(4) compressed MLM (Zhang et al., 2010)  

(5) enriched compressed MLM (Li et al., 2014) 

(6) settlement of MLM under progressively exclusive relationship (SUPER) (Wang et al., 

2014) 

(7) multiple loci MLM (MLMM) (Segura et al., 2012) 

(8) fixed and random model circulating probability unification (FarmCPU) (Liu et al., 2016).  

Models from (1) to (6) are single locus models, while (7) and (8) are multilocus models. 

 

Among these popular models of GWAS, the GLM and MLM are said to have a better control 

of false positives than ANOVA (Price et al., 2006; Yu et al., 2006). The GLM with PCA model 

is supposed to lower the number of false positives caused by population structure alone (Price 

et al., 2006). The kinship matrix is included in the MLM with PCA and K model, which is 

intended to reduce false positives caused by family relatedness (Yu et al., 2006). By controlling 

false positives, the MLM model is said to perform better than the GLM model alone (Yu et al., 

2006). The benefit of MLM model in controlling false positives disappears when complex 

qualities are connected with population structure with considerable genetic divergence, The 

MLM approach does a good job of controlling P-value inflation, but it also produces false 

negatives, making it difficult to identify actual correlations (Zhang et al., 2010). The 

compressed MLM model (CMLM), which clusters individuals into groups and fits genetic 

values of groups as random effects in the model, was created to address this challenge (Zhang 

et al., 2010). When compared to traditional MLM methods, the CMLM method boosts 

statistical power (Zhang et al., 2010). Another option for dealing with P-value deflation caused 

by MLM is to adopt a SUPER model, in which just the linked genetic markers are utilised as 

pseudo–Quantitative Trait Nucleotides (QTNs) to determine kinship, rather than all of the 

markers (Wang et al., 2014). When a pseudo QTN is associated with the testing marker, it is 

not included in the kinship analysis. Between the pseudo QTNs and the testing marker, the 

SUPER model applies an LD threshold. When compared to using total kinship from all 
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markers, this strategy improves statistical power. FarmCPU is a multilocus model that was 

created to reduce false positives while keeping false negatives to a minimum (Liu et al.,2016). 

To partially minimise the confusion between testing markers and kinship, the FarmCPU model 

use a modified MLM method called multiple loci linear mixed model (MLMM), which 

combines many markers simultaneously as covariates in a stepwise MLM. When compared to 

other models, this model is said to improve statistical power, computing efficiency, and the 

capacity to control false positives and false negatives (Liu et al., 2016).  

 

Single-locus models, such as the general linear model (GLM) and the mixed linear model 

(MLM) require multiple tests that undergo a Bonferroni correction (Bradbury et al., 2007) for 

multiple comparison adjustments. The typical Bonferroni correction is often too conservative, 

which results in many important loci associated with the target traits being eliminated because 

they do not satisfy the stringent criterion of the significance test. The multi-locus models are 

better alternatives for GWASs because they do not require the Bonferroni correction, and thus 

more marker-trait associations may be identified. Recently, several new multi-locus GWAS 

models, such as multi-locus RMLM (mrMLM, Wang et al., 2016), fast multi-locus random-

SNP-effect EMMA (FASTmrEMMA, Wen et al., 2017), and Iterative modified-Sure 

Independence Screening EM-Bayesian LASSO (ISIS EM-BLASSO, Tamba et al., 2017), have 

been developed.  

Representation of GWAS Results 

GWAS results are typically represented as two types of p-value plots: genome-wide association 

plots (Manhattan plots) and quantile-quantile (QQ) plots. In Manhattan plot marker loci are 

represented as chromosomes and position on the chromosome in genomic order on x-axis and 

negative logarithm of their p values (-log10P) on y-axis (Fig1). The Manhattan plot resembles 

the Manhattan skyline because clusters of significant P values tend to ascend to the top due to 

local correlation of the genetic variants brought on by linkage. 
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Fig 1: An illustration of a Manhattan plot depicting several strongly associated loci to the trait 

Quantile-quantile plots (QQ plots) are widely used to display the proportion of significant 

results in relation to the projected number of significant results at a specific P value (Fig 2). 

The figure unambiguously demonstrated that, at levels more than P 0.001, more significant 

SNP were discovered in their analysis than would have been expected by chance. 

 

Fig 2: Quantile-quantile (QQ) plot. Comparison of GWAS P-values (black dotted line) to those 

expected for a null distribution (red line). 
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TASSEL also known as Trait Analysis by aSSociation, Evolution and Linkage is a powerful 

statistical software to conduct association mapping such as General Linear Model (GLM) and 

Mixed Linear Model (MLM). The GUI (graphical user interface) version of TASSEL is very well 

built for anyone who does not have a background or experience in working in command line. The 

following section demonstrates how to prepare input files and run association analysis in TASSEL 

in stepwise manner. 

1. Download and install TASSEL software 

Download and install the latest version of the TASSEL software at this link: 

https://www.maizegenetics.net/tassel 

 

 

2. Preparing the Input files 

Phenotype file 

Phenotype file can be prepared as shown below in the figure below  

153

https://www.maizegenetics.net/tassel


 

Please remember if your data has covariates such as sex, age or treatment, then, please categories 

them with header name factor. 

 

Genotype file 

TASSEL supports various genotype file formats such as VCF (variant call format), .hmp.txt, and 

plink. We are using the hmp.txt version of the genotype file for this demonstration. The below 

screenshot of the hmp.txt genotype file. 

 

 

 

3. Importing phenotype and genotype files 

Import the files by following the steps shown below.  
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Start Tassel -> go to “file” menu -> select “open” -> specify the “folder” where files are located -

> choose the “files” to open holding CTRL button -> click on “open” 

 

 

4. Phenotype distribution plot 

It is always a wise idea to look at the phenotype distribution by plotting to check for any outliers.  

Select the “phenotype” file -> go to “Results” -> go to “Charts” -> select graph type as 

“Histogram” -> select the trait under “Series 1” 

 

 

5. Genotype summary analysis 

Next crucial step is to look at the genotype data by simply following the steps shown.  

Select genotype data -> go to “Data” menu -> click “Geno Summary” 
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The output will be as shown in the figure below. The arrow depicts missing genotypic data to see 

if it requires to be imputed. 

 

 

 

Minor allele frequency distribution 

Select genotype _SiteSummary -> go to “Results” -> click on “Charts” -> select “Minor Allele 

Frequency” under “Series 1” 

 

 

Proportion of heterozygous in the samples to check for selfed samples. 
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Select genotype_TaxaSummary -> go to “Results” -> click on “Charts” -> select “Proportion 

Heterozygous” under “Series 1” 

 

 

6. Imputation of missing values 

Select genotype file -> go to “impute” -> click on “LD KNNi imputation” -> set parameters -

>click “okay” 

 

7. Filter Markers based on Minor allele frequency (MAF) 

Steps to filter markers based on Minor allele frequency (MAF) are shown below: 

0.05 Minor allele Frequency (set filter thresholds for rare alleles) 

157



Select genotype file -> go to “filter” -> click on “Filter Genotype Table Sites” -> set parameters -

> click “OK” 

 

Conduct GWAS analysis 

8. Principal component analysis (PCA) 

PCA output can be used as the covariate in the GLM or MLM to correct for population structure. 

Please follow the steps shown below: 

Select genotype file -> go to “Analysis” -> go to “Relatedness” -> click on “PCA”-> set parameters 

-> click “ok” 

MAF filter 

Heterozygosity 

filter 
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9. Intersecting the files 

Intersect the genotype, phenotype and PCA files by following the steps below: 

Select genotype, phenotype and PCA files simultaneously by holding ‘CTRL’ button -> go to 

“Data” -> click on “Intersect join” 

 

10. Running General Linear Model (GLM) 

Run the GLM analysis by selecting the intersected files following the steps below: 

Select the intersect joined file “mdp_traits + PC_mdp_genotype + mdp_genotype” -> go to 

“Analysis” -> go to “association” -> click on “GLM” -> set parameters -> click “ok” 
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The output of the GLM analysis is produced under the Result node. The GLM association test can 

be evaluated by plotting Q-Q plot and the Manhattan plot as shown below. 

Select the association analysis output file -> go to “Results” -> click on “Manhattan plot”-> select 

the trait 

 

 

Select the association analysis output file -> go to “Results” -> click on “QQ plot”-> select the 

trait -> click “okay” 

160



 

 

11. Mixed Linear Model (MLM) 

Calculating Kinship matrix 

Follow the below steps to calcuate the kinship matrix: 

Select genotype file -> go to “Analysis” ->go to “Relatedness” -> click on “kinship” -> set 

parameters -> click “ok” 

 

Running Mixed Linear Model (MLM) 

MLM model includes the PCA and the kinship matrix i.e. MLM (PCA+K). 
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Therefore, once the Kinship matrix has been calculated, MLM can be now be conducted by 

following below steps: 

Select the intersect joined file “mdp_traits + PC_mdp_genotype + mdp_genotype” and kinship file 

simultaneously by holding ‘CTRL’ button -> go to “Analysis” -> go to “Association” -> click on 

“MLM” -> set parameters -> click “okay” 

 

Plot the output (MLM stats file in the Results branch following the steps shown for GLM). 

12. Exporting results 

One may export the results in .txt format by the following the below steps: 

Select the file -> go to “File” -> click on “ Save As” ->browse the folder to save the file -> name 

the file ->click “okay” 
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13. Plotting GWAS results in R using qqman package 

The R code to plot GWAS result using QQMAN package is below: 

library(qqman) 

library(dplyr) 

# import TASSEL results 

# note  

TASSEL_MLM_Out <- read.table("mlm_out.txt", header = T, sep = "\t") 

# Number of traits 

head(unique(TASSEL_MLM_Out$Trait)) 

# note: for each plot trait name must be specificed   

# first trait as example (i.e., EarHT) 

Trait1 <-  TASSEL_MLM_Out %>% filter(.$Trait == "EarHT") 

# Bonferroni correction threshold 

nmrk <- nrow(Trait1) 

(GWAS_Bonn_corr_threshold <- -log10(0.05 / nmrk)) 

# Manhattan plot 

(Mann_plot <- manhattan( 
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  TASSEL_MLM_Out, 

  chr = "Chr", 

  bp = "Pos", 

  snp = "Marker", 

  p = "p", 

  col = c("red", "blue"), 

  annotateTop = T, 

  genomewideline = GWAS_Bonn_corr_threshold, 

  suggestiveline = F 

) 

) 

# QQ plot 

QQ_plot <- qq(TASSEL_MLM_Out$p) 

# Manhattan and Q-Q plot arranged in 1 rows and 2 columns  

old_par <- par() 

par(mfrow=c(1,2)) 

(Mann_plot <- manhattan( 

  TASSEL_MLM_Out, 

  chr = "Chr", 

  bp = "Pos", 

  snp = "Marker", 

  p = "p", 

  col = c("red", "blue"), 

  annotateTop = T, 

  genomewideline = GWAS_Bonn_corr_threshold, 

  suggestiveline = F, 

  main = "EarHT" # trait name  

) 
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) 

(QQ_plot <- qq(TASSEL_MLM_Out$p,  main = "EarHT" )) 

 

 

 

The output plot will be as shown below: 

 

 

 

Reference: 

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. 

(2007). TASSEL: software for association mapping of complex traits in diverse 

samples. Bioinformatics, 23(19), 2633-2635. 
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Introduction 

The advent of Next-Generation Sequencing (NGS) technology has transformed genomic 

studies. One important application of NGS technology is the study of the transcriptome, 

which is defined as the complete collection of all the RNA molecules in a cell. Various types 

of RNA that have been classified so far are shown in Fig. 1. All of these molecules are called 

transcripts since they are produced by process of transcription.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Different types of RNA 

(Image source: http://scienceblogs.com/digitalbio/2011/01/08/next-gene-sequencing) 

 

Understanding the transcriptome is essential for interpreting the functional elements of the 

genome and revealing the molecular constituents of cells and tissues, and also for 

understanding development and disease [1]. The main purpose of transcriptomics are: to 

catalogue all species of transcript, including mRNAs, non-coding RNAs and small RNAs; to 

determine the transcriptional structure of genes, in terms of their start sites, 5′ and 3′ ends, 

splicing patterns and other post-transcriptional modifications; and to quantify the changing 

expression levels of each transcript during development and under different conditions. 

The study of transcriptome is carried out through sequencing of RNAs. RNA sequencing 

(RNA-Seq) is a powerful method for discovering, profiling, and quantifying RNA transcripts 

[2]. RNA-Seq uses NGS datasets to obtain sequence reads from millions of individual RNAs. 

The RNA-Seq analysis is performed in several steps: First, all genes are extracted from the 

reference genome (using annotations of type gene). Other annotations on the gene sequences 

are preserved (e.g.CDS information about coding sequences etc). Next, all annotated 
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transcripts (using annotations of type mRNA) are extracted [3]. If there are several annotated 

splice variants, they are all extracted. An example is shown in below Fig. 2(a). 

 

 

Fig. 2(a): A simple gene with three exons and two splice variants. 

The given example is a simple gene with three exons and two splice variants. The transcripts 

are extracted as shown in Fig. 2(b). 

 

Fig. 2(b): All the exon-exon junctions are joined in the extracted transcript. 

Next, the reads are mapped against all the transcripts plus the entire gene [see Fig. 2(c)]. 

 

Fig. 2(c): The reference for mapping: all the exon-exon junctions and the gene 

(Image source: CLC Genomic workbench tutorials) 

From this mapping, the reads are categorized and assigned to the genes and expression values 

for each gene and each transcript are calculated and putative exons are then identified.  

 

RNA Sequencing Experiment 

In a standard RNA-seq experiment, a sample of RNA is converted to a library of 

complementary DNA fragments and then sequenced on a high-throughput sequencing 

platform, such as Illumina's Genome Analyzer, SOLiD or Roche 454 [4]. Millions of short 

sequences, or reads, are obtained from this sequencing and then mapped to a reference 

genome (Fig. 3). The count of reads mapped to a given gene measures the expression level of 

this gene. The unmapped reads are usually discarded and mapped reads for each sample are 

assembled into gene-level, exon-level or transcript-level expression summaries, depending on 

the objectives of the experiment. The count of reads mapped to a given gene/exon/transcript 

measures the expression level for this region of the genome or transcriptome.  

One of the primary goals for most RNA-seq experiments is to compare the gene expression 

levels across various treatments. A simple and common RNA-seq study involves two 

treatments in a randomized complete design, for example, treated versus untreated cells, two 

different tissues from an organism, plants, etc. In most of the studies, researchers are 
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particularly interested in detecting gene with differential expressions (DE). A gene is 

declared differentially expressed if an observed difference or change in read counts between 

two experimental conditions is statistically significant, i.e. if the difference is greater than 

what would be expected just due to random variation [5]. Detecting DE genes can also be an 

important pre-step for subsequent studies, such as clustering gene expression profiles or 

testing gene set enrichments. 

 

Fig. 3: General RNA-seq experiment.  mRNA is converted to cDNA, and fragments from that 

library are used to generate short sequence reads. Those reads are assembled into contigs 

which may be mapped to reference sequences (Wang et al., 2009) 

Analysing RNA-Seq data 

RNA-seq experiments must be analyzed with robust, efficient and statistically correct 

algorithms. Fortunately, the bioinformatics community has been striving hard at work for 

incorporating mathematics, statistics and computer science for RNA-seq and building these 

ideas into software tools. RNA-seq analysis tools generally fall into three categories: (i) those 

for read alignment; (ii) those for transcript assembly or genome annotation; and (iii) those for 

transcript and gene quantification. Some of the open source softwares available for RNA-seq 

analysis are as follows:   

• Data preprocessing 

• Fastx toolkit 

• Samtools 

• Short reads aligners 
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• Bowtie, TOPHAT, Stampy, BWA, Novoalign, etc  

• Expression studies 

• Cufflinks package 

• R packages (DESeq, edgeR, more…) 

• Visualisation 

• CummeRbund, IGV, Bedtools, UCSC Genome Browser, etc. 

Besides there are commercially data analysis pipelines like GenomeQuest, CLCBio etc 

available for researchers to use. The most commonly used pipeline is to identify protein 

coding genes by aligning RNA-Seq data to annotate data from sources like RefSeq.  After 

generating the alignments, the number of aligning sequences is counted for each 

position.  Since each alignment represents a transcript, the alignments allow to count the 

number of RNA molecules produced from every gene. 

Using NGS technology, RNA-Seq enables to count the number of reads that align to one of 

thousands of different cDNAs, producing results similar to those of gene expression 

microarrays [6]. Sequences generated from an RNA-Seq experiment are usually mapped to 

libraries of known exons in known transcripts. RNA-Seq can be used for discovery 

applications such as identifying alternative splicing events, allele-specific expression, and 

rare and novel transcripts [7]. The sequencing output files (compressed FASTQ files) are the 

input for secondary analysis. Reads are aligned to an annotated reference genome, and those 

aligning to exons, genes and splice junctions are counted. The final steps are data 

visualisation and interpretation, consisting of calculating gene- and transcript-expression and 

reporting differential expression. A general Bioinformatics workflow to map transcripts from 

RNA-seq data is shown in Fig. 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: RNA-seq workflow (Adapted from Advancing RNA-Seq analysis Brian J. Haas and 

Michael C. Zody Nature Biotechnology 28, 421-423 (2010) 
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RPKM (Reads per KB per million reads) 

RNA-Seq provides quantitative approximations of the abundance of target transcripts in the 

form of counts. However, these counts must be normalized to remove technical biases 

inherent in the preparation steps for RNA-Seq, in particular the length of the RNA species 

and the sequencing depth of a sample. The most commonly used is RPKM (Reads Per 

Kilobase of exon model per Million mapped reads). The RPKM measure of read density 

reflects the molar concentration of a transcript in the starting sample by normalizing for RNA 

length and for the total read number in the measurement [8]. RPKM is mathematically 

represented as: 

RPKM = 
𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑜𝑛 𝑟𝑒𝑎𝑑𝑠

𝑚𝑎𝑝𝑝𝑒𝑑 𝑟𝑒𝑎𝑑𝑠 (𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠) X 𝑒𝑥𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ (𝐾𝐵)
 

Total exon reads 

This is the number of reads that have been mapped to a region in which an exon is annotated 

for the gene or across the boundaries of two exons or an intron and an exon for an annotated 

transcript of the gene. For eukaryotes, exons and their internal relationships are defined by 

annotations of type mRNA. 

Exon length 

This is calculated as the sum of the lengths of all exons annotated for the gene. Each exon is 

included only once in this sum, even if it is present in more annotated transcripts for the gene. 

Partly overlapping exons will count with their full length, even though they share the same 

region. 

Mapped reads 

The total gene reads for a gene is the total number of reads that after mapping have been 

mapped to the region of the gene. A gene's region is that comprised of the flanking regions, 

the exons, the introns and across exon-exon boundaries of all transcripts annotated for the 

gene. Thus, the sum of the total gene reads numbers is the number of mapped reads for the 

sample.  

Applications of RNA-seq 

This technique can be used to: 

 Measure gene expression 

 Transcriptome assembly, gene discovery and annotation 

 Detect differential transcript abundances between tissues, developmental stages, 

genetic backgrounds, and environmental conditions 

 Characterize alternative splicing, alternative polyadenylation, and alternative 

transcription. 

Future Directions 

Although RNA-Seq is still in the infancy stages of use, it has clear advantages over 

previously developed transcriptomic methods. Compared with microarray, which has been 

the dominant approach of studying gene expression in the last two decades, RNA-seq 

technology has a wider measurable range of expression levels, less noise, higher throughput, 
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and more information to detect allele-specific expression, novel promoters, and isoforms [9]. 

For these reasons, RNA-seq is gradually replacing the array-based approach as the major 

platform in gene expression studies. The next big challenge for RNA-Seq is to target more 

complex transcriptomes to identify and track the expression changes of rare RNA isoforms 

from all genes. Technologies that will advance achievement of this goal are pair-end 

sequencing, strand-specific sequencing and the use of longer reads to increase coverage and 

depth. As the cost of sequencing continues to fall, RNA-Seq is expected to replace 

microarrays for many applications that involve determining the structure and dynamics of the 

transcriptome. 
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Identification of differentially expressed genes from the RNA-Seq data is an important area of 

bioinformatics data analysis. There are several packages available in R to carry out the differential 

gene expression analysis, like DESeq2 (Love et al., 2014), edgeR (Robinson et al., 2010), limma 

(Smyth et al., 2005) etc. After preprocessing and quantification of reads in RNA-Seq data, we get 

a matrix of read counts of each gene in every sample. Then we can use the “DESeq2” package to 

identify differentially expressed genes. Here, we demonstrate the differential gene expression 

analysis with R using a sample dataset available in the R package airway (Himes et al., 2014) in 

following steps. 

i) Download the sample dataset from the “airway” package. The package contains 2 data 

files. One file contains read counts of 64102 genes in 8 samples obtained from the RNA-

Seq experiment on 4 primary human airway smooth muscle cell lines treated with 1 

micromolar dexamethasone for 18 hours. Another file contains sample-wise metadata 

information, viz., treated or untreated. Import the count matrix and metadata file into 

RStudio. 

R code to collect sample dataset from “airway” package: 

# installing Bioconductor packages 
if (!requireNamespace("BiocManager", quietly=TRUE)) 

install.packages("BiocManager")  

BiocManager::install("airway") 

library(airway) 

data(airway) 

airway 

sample_info <- as.data.frame(colData(airway)) 

sample_info <- sample_info[,c(2,3)] 

sample_info$dex <- gsub('trt', 'treated', sample_info$dex) 

sample_info$dex <- gsub('untrt', 'untreated', sample_info$dex) 

names(sample_info) <- c('cellLine', 'dexamethasone') 
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# Get the samplewise metadata file 

write.table(sample_info, file = "/sample_info.csv", sep = ',', col.names = T, row.names = T, quote 

= F) 

# Get the matrix of read counts for each gene in every sample 

countsData <- assay(airway) 

write.table(countsData, file = "/counts_data.csv", sep = ',', col.names = T, row.names = T, quote = 

F) 

ii) Then we have to load the package “DESeq2” to perform the subsequent differential 

gene expression analysis. We have to create a DESeqDataSet object and then run the 

‘DESeq()’ function to perform the said analysis. 

Differential gene expression analysis using the “DESeq2” package in R 

BiocManager::install("DESeq2") 

library(DESeq2) 

# read in counts data 

counts_data <- read.csv('/counts_data.csv') 

# read in sample info 

colData <- read.csv('/sample_info.csv') 

# making sure the row names in colData matches to column names in counts_data 

all(colnames(counts_data) %in% rownames(colData)) 

# are they in the same order? 

all(colnames(counts_data) == rownames(colData)) 

dds <- DESeqDataSetFromMatrix(countData = counts_data, colData = colData, design = ~ 

dexamethasone) 

dds 

#pre-filtering: removing rows with low gene counts 

# keeping rows that have at least 10 reads total 

keep <- rowSums(counts(dds)) >= 10 

dds <- dds[keep,] 

# set the factor level 

dds$dexamethasone <- relevel(dds$dexamethasone, ref = "untreated") 
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# --------Run DESeq ---------------------- 

dds <- DESeq(dds) 

res <- results(dds) 

res 

summary(res) 

res0.01 <- results(dds, alpha = 0.01) # When padj = 0.01 

summary(res0.01) 

Here, we are trying to find the genes which are differentially expressed in Dexamethasone treated 

conditions as compared to untreated conditions. Hence, the reference level is set as ‘untreated’. 

After the analysis, the result contains base means, log2FoldChange values, p-values, adjusted p-

values, etc. for each gene. If at 1% level, the adjusted p-value for a gene is found as > 0.01, it means 

the result has been obtained purely by chance, i.e., a non-significant result. Otherwise, that gene is 

differentially expressed if the adjusted p-value is < 0.01. In the latter case, if the log2FoldChange 

value is > 0, the gene is upregulated and if it is < 0, then that gene is downregulated. Thus, we can 

find out differentially expressed genes using R.  

iii) Visualization of differentially expressed genes in R. After identifying differentially 

expressed genes, we can visualize the result in terms of various plots such as MA plot, 

volcano plot, heatmap, etc. Several R packages are available to develop these plots. MA 

plot can be generated using the ‘plotMA()’ function. We can use the “ggplot2” package 

to develop volcano plot. Similarly, R package “heatmap2”, “pheatmap” etc. are useful 

to create heatmaps. MA plot (fig 1), volcano plot (fig 2) and heatmap (fig 3) created 

from the result of the previous analysis. 

R code to visualize the result of differential gene expression analysis 

# MA plot 

plotMA(res) 

# Volcano plot 

library(ggplot2) 

library(tidyverse)  

df<-as.data.frame(res) 
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df$diffexpressed <- "non-significant" 

# if log2Foldchange > 0 and padj < 0.01, set as "UP"  

df$diffexpressed[df$log2FoldChange > 0 & df$padj < 0.01] <- "UP" 

# if log2Foldchange < 0 and padj < 0.01, set as "DOWN" 

df$diffexpressed[df$log2FoldChange < 0 & df$padj < 0.01] <- "DOWN" 

ggplot(df, aes(log2FoldChange, -log10(padj), col= 

diffexpressed))+geom_point()+scale_color_manual(values = c("red", "black", "green")) 

 

# Developing Heatmap of first 10 genes for better demonstration 

library(pheatmap) 

library(RColorBrewer) 

breaksList = seq(-0.4, 0.5, by = 0.04) 

rowLabel = row.names(counts_data[1:10,]) 

pheatmap(df$log2FoldChange[1:10], color = colorRampPalette(c("dark blue", "white", 

"yellow"))(25), breaks = breaksList, border_color = "black", cellheight = 25, cellwidth = 25, 

cluster_rows = F,cluster_cols = F, fontsize = 12, labels_row = rowLabel) 

 

Fig 1: MA plot showing significantly upregulated and downregulated genes as blue dots. 
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Fig 2: Volcano plot representing upregulated genes as green, downregulated genes as red and 

non-significant genes as black dots.  

 

Fig 3: Heatmap representing the expression levels of first 10 genes in terms of 

log2FoldChange values in a scale of -0.4 to 0.4 where, blue colour represents downregulated 

genes, yellow represents upregulated genes and expression levels of remaining genes are 

represented by gradation of colour between blue and yellow.  
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Non-coding RNAs (ncRNAs) are RNA molecules that do not code for proteins. They are 

transcribed from DNA and can be categorized into two main types: long non-coding RNAs 

(lncRNAs) and small non-coding RNAs (sncRNAs). While sncRNAs are shorter than 200 

nucleotides, lncRNAs are usually longer than 200 nucleotides. Non-coding RNAs have been 

found to play important roles in a variety of cellular processes, including gene expression, cell 

differentiation, and development. 

One of the most well-studied classes of sncRNAs are microRNAs (miRNAs). miRNAs are 

single-stranded RNA molecules that are about 21-25 nucleotides long. They play important 

roles in post-transcriptional regulation of gene expression by targeting mRNAs for degradation 

or translational repression. This means that miRNAs can control the amount of protein that is 

produced from a particular gene. miRNAs have been implicated in a variety of biological 

processes, including cell proliferation, differentiation, and apoptosis. Dysregulation of miRNA 

expression has been linked to various diseases, such as cancer, neurological disorders, and 

cardiovascular disease. 

Another type of sncRNA is the small interfering RNA (siRNA). Like miRNAs, siRNAs are 

about 21-25 nucleotides long and are involved in gene regulation by inducing degradation of 

specific mRNAs. However, siRNAs are usually exogenously introduced into cells for 

therapeutic purposes or for use in research. They can be used to specifically target and silence 

disease-causing genes or to study gene function in experimental systems. 

Piwi-interacting RNAs (piRNAs) are a class of sncRNAs that interact with a family of proteins 

known as Piwi proteins. piRNAs are typically longer than miRNAs or siRNAs and are 
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expressed primarily in the germ cells of animals. They play important roles in protecting the 

genome from transposable elements (mobile genetic elements that can cause mutations) by 

inducing their silencing or degradation. piRNAs have also been implicated in other processes 

such as epigenetic regulation and germ cell development. 

In addition to sncRNAs, lncRNAs have also been found to play important roles in various 

biological processes. They are involved in gene regulation at multiple levels, including 

transcription, splicing, and chromatin remodeling. lncRNAs can interact with DNA, RNA, and 

proteins to modulate gene expression. Dysregulation of lncRNA expression has been 

implicated in a variety of diseases, such as cancer, cardiovascular disease, and neurological 

disorders. 

One example of a lncRNA is Xist, which is involved in X chromosome inactivation in female 

mammals. Xist is expressed from one of the two X chromosomes in female cells and coats the 

same chromosome it is transcribed from, leading to silencing of most genes on that 

chromosome. Another example is HOTAIR, which is involved in regulating gene expression 

during development and has been found to be dysregulated in various types of cancer. 

In conclusion, non-coding RNAs are a diverse group of RNA molecules that play important 

roles in a variety of cellular processes. While sncRNAs like miRNAs and siRNAs are involved 

in post-transcriptional regulation of gene expression, piRNAs are involved in transposon 

silencing in germ cells. lncRNAs, on the other hand, are involved in gene regulation at multiple 

levels and have been implicated in various diseases. With the continued development of new 

technologies for studying RNA, we can expect to uncover many more functions and roles for 

these fascinating molecules in the future. 
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Long non-coding RNAs (lncRNAs) are a diverse class of RNA molecules that have been found 

to play important roles in gene regulation and other biological processes in many different 

organisms, including plants. In this discussion, we will explore the current understanding of 

lncRNAs in plants, their functions, and their potential applications in agriculture. 

Plant lncRNAs are typically longer than 200 nucleotides and are transcribed from intergenic 

regions, introns, and other non-coding regions of the genome. They can be classified into 

several different categories based on their genomic origin and structure, including natural 

antisense transcripts (NATs) and long intergenic non-coding RNAs (lincRNAs). 

One of the most well-studied plant lncRNAs involved in growth and development is 

COOLAIR, a natural antisense transcript (NAT) of the FLOWERING LOCUS C (FLC) gene 

in Arabidopsis thaliana. FLC is a key regulator of flowering time, and the expression of 

COOLAIR promotes FLC mRNA decay, leading to earlier flowering. COOLAIR is also 

involved in regulating the expression of other genes related to plant development, such as genes 

involved in the biosynthesis of gibberellins, a class of plant hormones that promote stem 

elongation and other growth processes. 

Another lncRNA involved in the regulation of flowering time is IPS1 (Induced by Phosphate 

Starvation 1) in Arabidopsis. IPS1 is a lincRNA that is induced by phosphate starvation and 

negatively regulates the expression of miR399, a microRNA that targets a gene involved in 

phosphate homeostasis. The downregulation of miR399 by IPS1 promotes the expression of 

genes involved in phosphate uptake and transport, leading to earlier flowering. 

LINC5 is another lincRNA involved in the regulation of flowering time in Arabidopsis. LINC5 

is specifically expressed in the shoot apical meristem, where it interacts with the transcription 

factor WUSCHEL (WUS) to promote its expression. WUS is a key regulator of stem cell 

maintenance and differentiation in the shoot apical meristem, and the expression of LINC5 is 
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required for normal shoot development. Similarly, in rice, a lincRNA called LDMAR is 

involved in the regulation of lateral root development. LDMAR is specifically expressed in 

lateral root primordia and promotes the expression of genes involved in lateral root 

development. Knockdown of LDMAR leads to a reduction in the number of lateral roots, 

indicating its importance in this process. 

In addition to their roles in plant growth and development, lncRNAs have also been implicated 

in stress responses. For example, a lincRNA called COLDAIR in Arabidopsis is involved in 

the regulation of the COLD-REGULATED (COR) genes in response to cold stress. COLDAIR 

interacts with a transcription factor called CBF1 to promote the expression of COR genes, 

which are involved in protecting plants from freezing damage. 

LincRNAs, on the other hand, are transcribed from intergenic regions of the genome and can 

interact with DNA, RNA, and proteins to modulate gene expression. They can act as scaffolds 

for the assembly of regulatory complexes, as well as serve as guides for chromatin-modifying 

enzymes. In rice, a lincRNA called NERICA1 is involved in promoting nodulation in response 

to symbiotic bacteria by interacting with chromatin-modifying enzymes to regulate gene 

expression. 

Plant lncRNAs have also been found to play important roles in stress responses, such as 

drought, salt, and cold stress. For example, in Arabidopsis, a lincRNA called COLDAIR is 

involved in regulating the expression of COLD-REGULATED (COR) genes in response to 

cold stress. COLDAIR interacts with a transcription factor called CBF1 to promote the 

expression of COR genes, which are involved in protecting plants from freezing damage. 

The roles of plant lncRNAs in development have also been extensively studied. In maize, a 

lincRNA called Zm401 is involved in regulating the expression of key genes during the 

transition from vegetative growth to reproductive development. Zm401 interacts with a 
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chromatin-modifying complex to regulate the expression of genes involved in flowering and 

other developmental processes. 

 

One study identified 285 lncRNAs in potato leaves and tubers and analyzed their expression 

patterns during potato development. The researchers found that many lncRNAs were 

differentially expressed in different tissues and developmental stages, indicating their potential 

roles in regulating potato growth and development. 

Another study investigated the role of a potato lncRNA called lncRNA1604 in response to 

potato virus Y (PVY) infection. The researchers found that lncRNA1604 was induced in 

response to PVY infection and was involved in regulating the expression of genes involved in 

defense responses. Knockdown of lncRNA1604 resulted in increased susceptibility to PVY 

infection, indicating its role in potato resistance to viral infections. 

In addition to their roles in development and stress responses, lncRNAs in potato have also 

been implicated in other biological processes. For example, a recent study identified a potato 

lncRNA called StTILLING1 that was involved in regulating the production of starch in potato 

tubers. Knockdown of StTILLING1 resulted in reduced starch content and altered starch 

granule morphology, indicating its role in starch synthesis. 

Overall, the study of lncRNAs in plants is still in its early stages, and much remains to be 

learned about their functions and mechanisms of action. However, the identification of 

lncRNAs involved in growth and development processes in plants provides new insights into 

the regulatory networks underlying these processes and offers new targets for crop 

improvement and genetic engineering. 
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Circular RNAs (circRNAs) are a relatively new class of lncRNAs that are formed by back-

splicing events, in which a downstream splice acceptor is joined to an upstream splice donor. 

circRNAs can act as sponges for microRNAs (miRNAs) and other RNA-binding proteins, 

thereby regulating gene expression. In tomato, a circRNA called ciRs-7 is involved in 

regulating fruit ripening by sequestering miR-7, which targets several genes involved in fruit 

ripening. Some of the known functions of circRNAs in plants include regulating gene 

expression at both the transcriptional and post-transcriptional levels, modulating alternative 

splicing, and participating in stress responses. For example, a circRNA called 

circRNA_022653 has been shown to regulate the expression of the transcription factor 

WRKY40 in response to salt stress in Arabidopsis thaliana. 

 

In addition, circRNAs have been implicated in plant development, particularly in the regulation 

of flowering time. A circRNA called circFTO has been found to play a role in the photoperiodic 

flowering pathway in Arabidopsis, by regulating the expression of a key flowering-time 

regulator called CONSTANS. 
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Introduction  

Metagenomics is the study of overall genomes present in any environment without the need for prior 

individual identification or amplification. It encompasses microbial communities sampled directly from 

their natural environment, without prior culturing.  Community genomics, environmental genomics, 

and population genomics are synonyms for the same approach. Metagenomics term was first used 

by Jo Handelsman et al. and first appeared in publication in 1998. The field initially started with 

the cloning of environmental DNA, followed by functional expression screening and was then 

quickly complemented by direct random shotgun sequencing of environmental DNA. The idea of 

cloning DNA directly from environmental samples was first proposed by Pace in 1991.There has 

been remarkable progress in this field of research due to recent advances in Next Generation Sequencing 

(NGS) technologies. Since over 99.8% of microbes in some environments are still far from culturing in the 

media, metagenomics offers a path to the study of microbial community structure, phylogenetic 

composition, species diversity and abundance, metabolic capacity and functional diversity. 

Metagenomics helps in knowing about the functional gene composition of the microbial 

communities and thus gives more information about the phylogenetic surveys, which are more 

often based on the diversity of one gene like 16s rRNA gene. It gives genetic information on 

potentially novel biocatalysts or enzymes, genomic linkages between function and phylogeny for 

uncultured organisms, and evolutionary profiles of community function and structure. So it acts as 

novel tool for generating novel hypothesis of microbial function. 

Majority of microorganisms have not been cultivated in the laboratory, and almost all of our 

knowledge of microbial life is based on organisms raised in pure culture. Metagenomics provides 

an additional set of tools to study uncultured species. Metagenomics entails extraction of DNA 

from a community so that all of the genomes of organisms in the community are pooled. These 

genomes are usually fragmented and cloned into an organism that can be cultured to create 

‘metagenomic libraries’, and these libraries are then subjected to analysis based on DNA sequence 

or on functions conferred on the surrogate host by the metagenomic DNA. 

For a typical sequence-based metagenome project one need to go through sampling and 

processing, sequencing technology, assembly, binning, annotation, experimental design, statistical 

analysis, and data storage and sharing. 

These steps are described as follow: 

Sampling and Processing 

DNA extracted should represent all cell present in the sample and sufficient amount of high-quality 

nucleic acids must be obtained for subsequent library production and sequencing. Also processing 

requires specific protocols for each sample type. The physical and chemical structure of each 

microbial community affects the quality, size, and amount of microbial DNA that can be extracted. 
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Sequencing Technology 

High-throughput sequencing technologies has improved the capabilities of metagenomic studies to a greater 

strength but at the same time, it has led to generation of huge and big data sets that largely require high end 

algorithms and computational tools for data analysis and storage. Metagenome sequencing, also called 

shotgun sequencing, refers to sequencing DNA fragments extracted from microbial populations. 

Over the past few years metagenomic shotgun sequencing has gradually shifted from classical 

Sanger sequencing technology to next-generation sequencing (NGS). However, Sanger 

sequencing is still best because of its low error rate, long read length (> 700 bp) and large insert 

sizes (e.g. >30 Kb for fosmids or bacterial artificial chromosomes (BACs)). The only drawback 

associated is the labor intensive cloning process.  

Bioinformatics Approach 

Metagenomic projects running worldwide pose several levels of challenges with respect to the processing, 

analyzing and storing huge data being accumulated. Some of the major computational challenges include 

the assembly of the whole data, phylogenetic surveys, gene finding and comparative metagenomic analysis 

for the metabolic pathways.  

The data generated by metagenomics experiments are both enormous and inherently noisy. 

Collecting, curating, and extracting useful biological information from datasets as well as pre-

filtering steps in which low-quality sequences and sequences of probable eukaryotic origin 

(especially in metagenomes of human origin) are removed.  

Assembly 

DNA sequence data from genomic and metagenomic projects are essentially the same, but 

genomic sequence data offers higher coverage while metagenomic data is usually highly non 

redundant. Furthermore, the increased use of second-generation sequencing technologies with 

short read lengths means that much of future metagenomic data will be error-prone. Taken in 

combination, these factors make the assembly of metagenomic sequence reads into genomes 

difficult and unreliable. Mis-assemblies are caused by the presence of repetitive DNA sequences 

that make assembly especially difficult because of the difference in the relative abundance of 

species present in the sample. Mis-assemblies can also involve the combination of sequences from 

more than one species into chimeric contigs. 

Two strategies can be employed for metagenomics samples: 

i) Reference-based assembly (co-assembly) 

ii) De novo assembly 

Reference-based assembly can be done with software packages such as Newbler (Roche), AMOS 

(http://sourceforge.net/projects/amos/ ), or MIRA. It works well, if the metagenomic dataset 

contains sequences where closely related reference genomes are available.  De novo assembly 

typically requires larger computational resources. Tools based on the de Bruijn graphs was 

specifically created to handle very large amounts of data. Machine requirements for the de Bruijn 

assemblers Velvet or SOAP are still significantly higher than for reference-based assembly (co-

assembly), often requiring hundreds of gigabytes of memory in a single machine and run times 

frequently being days.  
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In metagenomics single reads have generally lower quality and hence lower confidence in accuracy 

than do multiple reads that cover the same segment of genetic information. Therefore, merging 

reads increases the quality of information. So in a complex community with low sequencing depth 

or coverage, it is unlikely to actually get many reads that cover the same fragment of DNA. Hence 

assembly may be of limited value for metagenomics. Hence there is a need for metagenomic 

assembly to obtain high-confidence contigs that enable the study of, e.g., major repeat classes. 

Binning 

Taxonomic binning is another problem in metagenomics analysis. Sequence binning refers to the separation 

of sequences into taxon specific groups. A binning step may be part of the assembly process of metagenomic 

data or may be used for separating the genomes of a few members in order to study the biological processes 

carried by each one of them. Various algorithms have been developed, which employ two types of 

information contained within a given DNA sequence. 

i) First compositional binning makes use of the fact that genomes have conserved nucleotide 

composition (e.g. a certain GC or the particular abundance distribution of k-mers). 

ii) Secondly, the unknown DNA fragment might encode for a gene and the similarity of this gene 

with known genes in a reference database can be used to classify and hence bin the sequence.  

Important considerations for using any binning algorithm are the type of input data available and 

the existence of a suitable training datasets or reference genomes. In general, composition-based 

binning is not reliable for short reads, as they do not contain enough information. It can however 

be improved, if training datasets (e.g. a long DNA fragment of known origin) exist and that is used 

to define a compositional classifier. These “training” fragments can either be derived from 

assembled data or from sequenced fosmids and should ideally contain a phylogenetic marker (such 

as rRNA gene) that can be used for high-resolution, taxonomic assignment of the binned fragment. 

Annotation 

For annotation of metagenomics two approaches are used for annotation of coding regions in the 

assembled contigs. First, if assembly has produced large contigs and reconstructed genomes are 

the objective of the study then it is preferable to use existing pipelines for genome annotation, such 

as RAST or IMG. For this, minimal contigs length of 30,000 bp or longer are required. Second, 

annotation can be performed on the entire community and relies on unassembled reads or short 

contigs. Here the tools for genome annotation are significantly less useful than those specifically 

developed for metagenomic analyses. 

Experimental Design and Statistical Analysis 

For the reduction of sequencing cost and a much wider appreciation of the utility of metagenomics 

to address fundamental questions in microbial ecology require proper experimental designs with 

appropriate replication and statistical analysis. The data from multiple metagenomic shotgun-

sequencing projects can be reduced to tables, where the columns represent samples and the rows 

indicate either a taxonomic group or a gene function (or groups thereof) and the fields containing 

abundance or presence/absence data. As metagenomic data often contain many more species or 

gene functions then the number of samples taken, so appropriate corrections for multiple 

hypothesis testing have to be implemented (e.g. Bonferroni correction for t-test based analyses). 

Sometimes variation between sample types can be due to true biological variation and technical 

variation and this should be carefully considered when planning the experiment. One should kept 
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in mind that many microbial systems are highly dynamic, so temporal aspects of sampling can 

have a substantial impact on data analysis and interpretation. Taking multiple samples and then 

pooling them will lose all information on variability and hence will be of little use for statistical 

purposes. Ultimately, good experimental design of metagenomic projects will facilitate integration 

of datasets into new or existing ecological theories. One of the ultimate aims of metagenomics is 

to link functional and phylogenetic information to the chemical, physical, and other biological 

parameters that characterize an environment.  

Sharing and Storage of Data 

Data sharing is important for the genomic research, there is a requirement for whole new level of 

organization and collaboration to provide metadata and centralized services (e.g., IMG/M, 

CAMERA and MG-RAST) as well as sharing of both data and computational results. Once this 

has been achieved, researchers will be able to download intermediate processed results from any 

one of the major repositories for local analysis or comparison. A suite of standard languages for 

metadata is currently provided by the Minimum Information about any (x) Sequence checklists 

(MIxS). MIxS is an umbrella term to describe MIGS (the Minimum Information about a Genome 

Sequence), MIMS (the Minimum Information about a Metagenome Sequence) and MIMARKS 

(Minimum Information about a MARKer Sequence) and contains standard formats for recording 

environmental and experimental data. The latest of these checklists, MIMARKS builds on the 

foundation of the MIGS and MIMS checklists, by including an expansion of the rich contextual 

information about each environmental sample. 

The US National Center for Biotechnology Information (NCBI) is mandated to store all 

metagenomic data, however, the sheer volume of data being generated means there is an urgent 

need for appropriate ways of storing vast amounts of sequences. As the cost of sequencing 

continues to drop while the cost for analysis and storing remains more or less constant, selection 

of data storage in either biological (i.e. the sample that was sequenced) or digital form in (de-) 

centralized archives might be required. Ongoing work and successes in compression of (meta-) 

genomic data, help in the storage of digital information cost-efficiently. 

Applications of Metagenomics 

Among the enormous applications of metagenomics the most important ones include environmental studies, 

human health, identification of novel microbes, genes, pathways and mechanisms of their survival, 

biodegradation of sewage, ocean pollutants, plastics, garbage, energy generation and bio-fuels and 

biotechnological and industrial implications of the huge meta-sequence data coming out from the unseen 

microbial communities.   

Community Metabolism 

In many bacterial communities, natural or engineered (such as bioreactors), there is significant 

division of labor in metabolism (Syntrophy), during which the waste products of some organisms 

are metabolites for others. Eg. in methanogenic bioreactor. 

Metatranscriptomics 

Metagenomics allows researchers to access the functional and metabolic diversity of microbial 

communities, but it cannot show which of these processes are active. The extraction and analysis 

of metagenomic mRNA (the metatranscriptome) provides information on the regulation and 

expression profiles of complex communities apart from its technical difficulties (e g. the short half-

life of mRNA). 
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Viruses 

Metagenomic sequencing is particularly useful in the study of viral communities. As viruses lack 

a shared universal phylogenetic marker (as 16S RNA for bacteria and archaea, and 18S RNA for 

eukarya), the only way to access the genetic diversity of the viral community from an 

environmental sample is through metagenomics. Viral metagenomes (also called viromes) should 

thus provide more and more information about viral diversity and evolution. 

Advantages of Metagenomics in Different Areas 

Metagenomics has the potential to advance knowledge in a wide variety of fields. It can also be 

applied to solve practical challenges in medicine, engineering, agriculture, sustainability and 

ecology. 

Agriculture 

As one gram of soil contains around 109-1010 microbial cells which comprise about one gigabase 

of sequence information. They perform a wide variety of ecosystem services necessary for plant 

growth, including fixing atmospheric nitrogen, nutrient cycling, disease suppression, and sequester 

iron and other metals. Metagenomic approaches can contribute to improved disease detection in 

crops and livestock and the adaptation of enhanced farming practices which improve crop health 

by harnessing the relationship between microbes and plants. 

Biotechnology 

Recent progress in mining the rich genetic resource of non-culturable microbes has led to the 

discovery of new genes, enzymes, and natural products. The application of metagenomics has 

allowed the development of fine chemicals, agrochemicals and pharmaceuticals etc. 

Ecology 

Metagenomics can provide valuable insights into the functional ecology of environmental 

communities. eg. Breaking down of defecations helps to release the nutrients in the faeces into a 

bioavailable form that can be taken up into the food chain. 

Environmental remediation 

Metagenomics can improve strategies for monitoring the impact of pollutants on ecosystems and 

for cleaning up contaminated environments. Increased understanding of how microbial 

communities cope with pollutants improves assessments of the potential of contaminated sites to 

recover from pollution and increases the chances of bioaugmentation or biostimulation trials to 

succeed. 

Medicine 

Metagenomic sequencing of human microbiome helps to determine the core human microbiome. 

It also helps to understand the changes in the human microbiome that can be correlated with human 

health, and to develop new technological and bioinformatics tools to support these goals. 

Biofuels 

Biofuels are fuels derived from biomass conversion, as in the conversion of cellulose contained in 

corn stalks, switchgrass, and other biomass into cellulosic ethanol. Metagenomic approaches helps 
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in the analysis of complex microbial communities thus allowing the targeted screening of enzymes 

with industrial applications in biofuel production, such as glycoside hydrolases. 

Conclusion 

Metagenomics has changed the way microbiologists approach many problems, redefined the 

concept of a genome, and accelerated the rate of gene discovery. The potential for application of 

metagenomics to human benifit seems endless. Metagenomics gives genetic information on potentially 

novel biocatalysts or enzymes, genomic linkages between function and phylogeny for uncultured organisms 

and evolutionary profile of community function and structure. It can also be complemented with 

metatranscriptomic or metaproteomic approaches to describe expressed activities. Metagenomics is also a 

powerful tool for generating novel hypotheses of microbial functions, remarkable discoveries of 

proteorhodopsin-based photoheterotrophy or ammonia-oxidizing Archaea. One of the primary goals of 

metagenomics projects is to perform a comparative analysis of microbial communities residing in diverse 

ecological niches. Assessing such differences can not only yield valuable insights into the inherent structure 

of these microbial communities, but can also identify genes/proteins/organisms that may confer specific 

functional characteristics to a given environment. Insights gained from such comparative studies are 

expected to have immense potential in several important areas of biological research, ranging from 

healthcare (e.g., disease diagnostics, detection of pathogenic contamination and characterization of novel 

pathogens), industrial biotechnology (bio-prospecting) and bio-remediation studies. 
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1. Introduction 

QIIME 2 is a completely reengineered microbiome bioinformatics platform based on the 

popular QIIME platform, which it has replaced. QIIME 2 facilitates comprehensive and fully 

reproducible microbiome data science, improving accessibility to diverse users by adding 

multiple user interfaces.  

 

Fig. 1: Pipeline for amplicon data analysis 

Key features: 

 

 Integrated and automatic tracking of data provenance 

 Semantic type system 

 Plugin system for extending microbiome analysis functionality 

 Support for multiple types of user interfaces (e.g. API, command line, graphical) 

 

2. Data files: QIIME 2 artifacts 

Data produced by QIIME 2 exist as QIIME 2 artifacts. A QIIME 2 artifact contains data and 

metadata. The metadata describes things about the data, such as its type, format, and how it 

was generated (provenance). A QIIME 2 artifact typically has the .qza file extension when 

stored in a file. 

Since QIIME 2 works with artifacts instead of data files (e.g. FASTA files), data can be 

imported at any step in an analysis, though typically it start by importing raw sequence data. 

QIIME 2 also has tools to export data from an artifact. By using QIIME 2 artifacts instead of 

simple data files, QIIME 2 can automatically track the type, format, and provenance of data for 
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researchers. Using artifacts instead of data files enables researchers to focus on the analyses 

they want to perform, instead of the particular format the data needs to be in for an analysis. 

 

2.1 Data files: visualizations 

Visualizations are another type of data generated by QIIME 2. When written to disk, 

visualization files typically have the .qzv file extension. Visualizations contain similar types of 

metadata as QIIME 2 artifacts, including provenance information. Similar to QIIME 2 artifacts, 

visualizations are standalone information that can be archived or shared with collaborators. 

In contrast to QIIME 2 artifacts, visualizations are terminal outputs of an analysis, and can 

represent, for example, a statistical results table, an interactive visualization, static images, or 

really any combination of visual data representations. Since visualizations are terminal outputs, 

they cannot be used as input to other analyses in QIIME 2. 

 

2.2 Semantic types 

Every artifact generated by QIIME 2 has a semantic type associated with it. Semantic types 

enable QIIME 2 to identify artifacts that are suitable inputs to an analysis. For example, if an 

analysis expects a distance matrix as input, QIIME 2 can determine which artifacts have a 

distance matrix semantic type and prevent incompatible artifacts from being used in the 

analysis (e.g. an artifact representing a phylogenetic tree). Semantic types also help users avoid 

semantically incorrect analyses. For example, a feature table could contain presence/absence 

data (i.e., a 1 to indicate that an OTU was observed at least one time in a given sample, and a 

0 to indicate than an OTU was not observed at least one time in a given sample). However, if 

that feature table were provided to an analysis computing a quantitative diversity metric where 

OTU abundances are included in the calculation (e.g., weighted UniFrac), the analysis would 

complete successfully, but the result would not be meaningful. 

 

This guide assumes that QIIME 2 have been installed using one of the procedures in the install 

documents at https://docs.qiime2.org/2022.8/install/.  

3. Obtaining and importing data 

wget \ 

  -O 'emp-single-end-sequences.zip' \ 

  'https://docs.qiime2.org/2021.11/data/tutorials/moving-pictures-usage/emp

-single-end-sequences.zip' 

 

unzip -d emp-single-end-sequences emp-single-end-sequences.zip 

 

qiime tools import \ 

  --type 'EMPSingleEndSequences' \ 

  --input-path emp-single-end-sequences \ 

  --output-path emp-single-end-sequences.qza 

4. Demultiplexing sequences 

To demultiplex sequences we need to know which barcode sequence is associated with each 

sample. This information is contained in the sample metadata file. You can run the following 

commands to demultiplex the sequences (the demux emp-single command refers to the fact 

that these sequences are barcoded according to the Earth Microbiome Project protocol, and are 

single-end reads). The demux.qza QIIME 2 artifact will contain the demultiplexed sequences.  
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qiime demux emp-single \ 

  --i-seqs emp-single-end-sequences.qza \ 

  --m-barcodes-file sample-metadata.tsv \ 

  --m-barcodes-column barcode-sequence \ 

  --o-per-sample-sequences demux.qza \ 

  --o-error-correction-details demux-details.qza 

 

After demultiplexing, it’s useful to generate a summary of the demultiplexing results. This 

allows you to determine how many sequences were obtained per sample, and also to get a 

summary of the distribution of sequence qualities at each position in your sequence data. 

qiime demux summarize \ 

  --i-data demux.qza \ 

  --o-visualization demux.qzv 

5. Sequence quality control and feature table construction 

QIIME 2 plugins are available for several quality control methods, including DADA2, Deblur, 

and basic quality-score-based filtering. In this tutorial we present this step using DADA2. These 

steps are interchangeable, so you can use whichever of these you prefer. The result of both of 

these methods will be a FeatureTable[Frequency] QIIME 2 artifact, which contains counts 

(frequencies) of each unique sequence in each sample in the dataset, and 

a FeatureData[Sequence] QIIME 2 artifact, which maps feature identifiers in 

the FeatureTable to the sequences they represent. 

qiime dada2 denoise-single \ 

  --i-demultiplexed-seqs demux.qza \ 

  --p-trim-left 0 \ 

  --p-trunc-len 120 \ 

  --o-representative-sequences rep-seqs.qza \ 

  --o-table table.qza \ 

  --o-denoising-stats stats.qza 

 

qiime metadata tabulate \ 

  --m-input-file stats.qza \ 

  --o-visualization stats.qzv 

6. FeatureTable and FeatureData summaries 

qiime feature-table summarize \ 

  --i-table table.qza \ 

  --m-sample-metadata-file sample-metadata.tsv \ 

  --o-visualization table.qzv 

qiime feature-table tabulate-seqs \ 

  --i-data rep-seqs.qza \ 

  --o-visualization rep-seqs.qzv 

7. Generate a tree for phylogenetic diversity analyses 

qiime phylogeny align-to-tree-mafft-fasttree \ 
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  --i-sequences rep-seqs.qza \ 

  --output-dir phylogeny-align-to-tree-mafft-fasttree 

8. Alpha and beta diversity analysis 

qiime diversity core-metrics-phylogenetic \ 

  --i-phylogeny phylogeny-align-to-tree-mafft-fasttree/rooted_tree.qza 

\ 

  --i-table table.qza \ 

  --p-sampling-depth 1103 \ 

  --m-metadata-file sample-metadata.tsv \ 

  --output-dir diversity-core-metrics-phylogenetic 

9. Taxonomic analysis 

wget \ 

  -O 'gg-13-8-99-515-806-nb-classifier.qza' \ 

  'https://docs.qiime2.org/2021.11/data/tutorials/moving-pictures-usage

/gg-13-8-99-515-806-nb-classifier.qza' 

 

qiime feature-classifier classify-sklearn \ 

  --i-classifier gg-13-8-99-515-806-nb-classifier.qza \ 

  --i-reads rep-seqs.qza \ 

  --o-classification taxonomy.qza 

 

qiime metadata tabulate \ 

  --m-input-file taxonomy.qza \ 

  --o-visualization taxonomy.qzv 

 

qiime taxa barplot \ 

  --i-table table.qza \ 

  --i-taxonomy taxonomy.qza \ 

  --m-metadata-file sample-metadata.tsv \ 

  --o-visualization taxa-bar-plots.qzv 
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 Statistical Analysis of Metagenomic Profiles 

Taxonomic and functional differences between metagenomic samples can highlight the 

influence of ecological factors on patterns of microbial life in a wide range of habitats. 

Statistical hypothesis tests help to distinguish ecological influences from sampling 

artifacts, but knowledge of only the p-value is insufficient to make inferences about 

biological relevance. Biological relevance of a feature requires consideration of effect 

sizes and their associated confidence intervals. Interpretation of statistical results can also 

benefit from transforming raw p-values to superior interpretations and by allowing 

interactive filtering that permits focusing on features with specific statistical properties. 

p-value indicates the probability of an observed difference occurring simply by chance. 

Features in a profile with p-values below 0.05 are termed as statistically significant and 

can reasonably be assumed to be enriched in one of the metagenomes due to ecological or 

taxonomic differences as opposed to being the result of a sampling artifact. Fisher’s exact 

test uses hypergeometric distribution to efficiently calculate the exact p-value without the 

requirement of all possible permutation of sequences in a pair of metagenomic samples. 

The chi-square test and G-test are well-known large sample approximations to Fisher’s 

exact test. Barnard’s test is computationally prohibitive for the majority of features in a 

typical metagenomic profile. So, we need to decide between an approximation to 

Barnard’s exact test (e.g., bootstrapping) and Fisher’s exact test. 

A typical metagenomic profile consists of several hundred features. When performing 

multiple hypothesis tests, it is useful to modify the p-values so that they reflect a particular 

interpretation. If we wish to examine a list of features where the probability of observing 

one or more false positive is less than a specified probability, we can use a correction 

method. Commonly applied correction methods include Bonferroni, Holm-Bonferroni and 

Šidák (Abdi, 2007). Alternatively, during exploratory analysis, we may be willing to 

accept a specific percentage of false positives. This can be achieved using the Benjamini–

Hochberg false discovery rate (FDR) procedure (Benjamini and Hochberg, 1995) or the 

Storey FDR approach (Storey and Tibshirani, 2003). These approaches complement each 

other while performing an exploratory analysis. The list of significant features obtained 

without any multiple test correction method gives us an initial global look at those features 

which may be differentially abundant between our samples. An FDR approach can be used 

to refine this initial list and to make the number of expected false positives explicit. Finally, 

a correction technique can be applied to focus our attention to only those features where 

the observed enrichment or depletion is highly unlikely to be a sampling artifact. 

 

 Effect Size and Confidence Intervals 

To assess if a feature is of biological relevance, we should consider the magnitude of the 

observed difference (i.e., an effect size statistic). An arbitrarily small effect can be 

statistically significant if the sample sizes are sufficiently large. So, biological significance 

of a feature must be supported by effect size statistics as well as p-values. 
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Table 1: Contingency table summarising data for a feature of interest 

 
 

Table 2: Effect size statistics of a feature of interest 

 
 

The most intuitive effect size statistic is the difference between proportions (DP) of 

sequences assigned to a given feature in the two samples. Ratio of proportions (RP) is also 

a measure that provides complementary information to the DP. Consideration of multiple 

effect size statistics is often essential while assessing biological relevance as features can 

have a small (or, large) DP, but a large (or, small) RP. The odds ratio (OR) has many 

desirable mathematical properties. However, RP is preferred over OR due to the difficulty 

in interpretation of the latter. 

Confidence interval (CI) indicates the range of effect size values that have a specified 

probability of being compatible with the observed data. A 95% CI gives a lower and upper 

bound in which the true effect size will be contained 19 times out of 20. There is a close 

relationship between p-values and CI. CI that encompasses the identity effect size (e.g., 

DP = 0 or RP = OR = 1) will have a p-value > (1 – the coverage of the CI) (i.e., a p-value 

≥ 0.05 for a 95% CI). If the identity effect size is outside the CI, the p-value will be ≤ 0.05 

for a 95% CI. Critically, CI provides a mean to infer the biological relevance of a feature 

even when it is marginally statistically significant. 

 

 Software: STAMP (Parks et al., 2010) 

 

 Concept of STAMP 

STAMP is a open source software package for analyzing various metagenomic profiles, 

viz., taxonomic profiles indicating the number of marker genes assigned to different 

taxonomic units or functional profiles indicating the number of sequences assigned to 

different subsystems or pathways. A user-friendly, graphical interface permits easy 

exploration of statistical results and generation of publication quality plots for inferring 

biological relevant features present in a metagenomic profile. STAMP facilitates statistical 

hypothesis tests to identify features (e.g., taxa or metabolic pathways) that differ 

significantly between 
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1. Pairs of profiles (Two Sample) 

2. Sets of profiles organized into two groups (Two Groups) 

3. Sets of profiles organized into multiple groups (Multiple Groups) 

 

 Software Installation 

STAMP is implemented in Python and can be installed in any operating system, i.e., 

Windows/ MacOS/Linux. Source codes and executable binary file can be downloaded 

from the following link: 

https://github.com/dparks1134/STAMP/releases/tag/v2.1.3  

 

 
 

Upon installation of the software, some example datasets also get downloaded in the 

installation folder. Here, profile and metadata for the dataset EnterotypeArumugam is used 

for the demonstration of this software. 

 

 

 

 Input files 

STAMP requires 2 input files: 

1. Metagenomic profile file 

2. Metadata file 
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1. Metagenomic profile file: 

STAMP can analyze both taxonomic and functional profiles. User defined input files 

should be text files in tab-separated values (TSV) format. It can contain hierarchical 

profile information for two or more samples. The first row of the file contains headers 

for each column. First few columns indicate the hierarchical structure of a feature in 

an arrangement of the highest to the lowest level. There are no restrictions on the depth 

of the hierarchy but it must form a strict tree structure. Reads that have an unknown 

classification at any point in the hierarchy should be marked as unclassified (case 

insensitive). The parent of a classified child in the hierarchy must also be classified. 

Other columns contain abundance values of features in different samples. 

 

 
 

STAMP can analyze taxonomic or functional profiles obtained from MG-RAST 

software in .tsv format. First column of this MG-RAST profile is the metagenome 

column. To perform statistical analysis using STAMP, MG-RAST profile needs to be 

converted into a STAMP compatible profile (.spf) using: File → Create STAMP profile 

from... → MG-RAST profile 

Similarly, taxonomic and functional profiles from BIOM, Rita, CoMet and mothur can 

also be analyzed using STAMP. It can directly process abundance profiles for multiple 

samples obtained from the JGI IMG/M web portal. COG profiles from IMG/M do not 

contain information about which COG category or higher level class a COG belongs 

to. STAMP can add this information using: Append COG categories to IMG/M profile.  

 

2. Metadata file: 

STAMP requires additional data associated with each sample to perform statistical 

analysis of metagenomic samples organized in two or more groups. These additional 

information are provided in a metadata file in .tsv format. First column of this file 

indicates Sample Ids. Other columns provide information about various grouping 

categories and corresponding values.  
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If metadata file is not provided, STAMP assumes all samples contained in a single 

group and performs only “Two Sample” tests. 

 

 Analyzing Metagenomic Profiles: 

Upload both profile file and metadata file to the STAMP software to perform various 

statistical analysis for multiple groups/ two groups/ two samples.  

 

 Statistical Analysis for Multiple Groups 

Statistical properties can be set through the Properties window. It helps to set a number 

of properties related to performing statistical tests: 

 Parent Level: The proportion of sequences assigned to a feature will be calculated 

relative to the total number of sequences assigned to its parent category. By default, 

it is set as Entire sample. 

 Profile Level: The hierarchical level at which statistical tests will be performed. It 

facilitates analysis of metagenomic profile at different depths of the hierarchy. 

 Unclassified: Unclassified sequences can be handled in 3 ways: a) retained in the 

profile (Retain unclassified reads), removed from the profile (Remove unclassified 

reads), or removed from consideration except when calculating a profile (Use only 

for calculating frequency profiles). 

 Statistical Properties: The statistical test, post-hoc test along with the confidence 

interval width, effect size, and multiple test correction method to use can be 

specified in this section. A list of methods provided in STAMP for analyzing 

multiple groups is given in Table 3. 
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 Filtering: This section provides a number of filters for identifying features that 

satisfy a set of criteria (i.e., desired p-value and effect size). 

 

Table 3: Multiple groups statistical techniques available in STAMP 
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 Graphical exploration of results: 

Statistical analysis results can be graphically represented with the help of various 

plots. The Group legend window helps to select the particular grouping category for 

which we want to explore the results.  

 

 
 

The following plots can be generated for exploring the analysis results of multiple 

groups: 

 PCA plot: Principal component analysis (PCA) plot of the samples. Clicking on a 

marker within the plot indicates the sample represented by the marker. Markers of 

different colours belong to different groups. 
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 Heatmap plot: It represents the proportion of sequences assigned to each feature 

in every sample. Dendrograms can be shown along the sides of the heatmap and 

are used to cluster both the features and samples. 

 

 
 

 Bar plot: Bar plot represents the proportion of sequences assigned to a particular 

feature in every sample. 
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 Box plot: It is similar to a bar plot. Box plot provides a more concise summary of 

the distribution of sequence proportions of a feature in various groups. The box-

and-whiskers graphics show the median of the data as a line, the mean of the data 

as a star, the 25th and 75th percentiles of the data as the top and bottom of the box, 

and uses whiskers to indicate the most extreme data point within 1.5*(75th – 25th 

percentile) of the median. Data points outside of the whiskers are shown as crosses. 

 

 
 

 Post hoc plot: Upon rejection of the null hypothesis, post hoc tests are performed 

to identify which pairs of groups are differing significantly from each other. Post 

hoc plot shows the results of such a test. It provides p-value and effect size measure 

for each pair of groups for a particular feature. 

 

 
 

Each of these plots provides a number of customization options. To customize a plot, 

click the Configure plot button below the plot. Plots can also be sent to a new window 

using the Send plot to window command under the View menu. This allows multiple 

plots to be viewed at once. Plots can be saved in raster (PNG) and vector (PDF, PS, 

EPS, SVG) formats (File → Save plot). 
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 Statistical Analysis for Two Groups 

To analyze a pair of groups, click on the Two groups tab in the Properties window. In 

the Profile section, we have to specify which pair of groups will be analyzed. Data 

points of these 2 groups will be represented by 2 different colours. Groupings are 

determined by the value of the Group field present in the Group legend window. Here, 

the filtering section provides a large number of filters for identifying features that 

satisfy a set of criteria. 

  

 
 

Sequence filter removes features that have been assigned fewer than the specified 

number of sequences. Parent sequence filter does the filtering of sequence counts 

within parental categories. Effect size filters remove features with small effect sizes. 

Here, two different effect size statistics are used. It allows one to filter features based 

on both absolute (i.e., difference between proportions) and relative (i.e., ratio of 

proportions) measure of effect size. 

A list of methods for statistical analysis of metagenomic profiles present in two groups 

is given in Table 4. 
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Table 4: Two groups statistical techniques available in STAMP 

 
 

 Graphical exploration of results: 

Similar to multiple groups, here, bar plot, box plot, PCA plot and heatmap plot can be 

generated to explore the result of statistical analysis for two groups.  
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Other plots: 

 Scatter plot: 

It indicates the mean proportion of sequences within each group which are assigned 

to each feature. This plot is useful for identifying features that are clearly enriched 

in one of the two groups. The spread of the data within each group can be shown 

in various ways (e.g., standard deviation, minimum and maximum proportions). 

 

 
 

 Extended error bar plot: 

It indicates the difference in mean proportion between two groups along with the 

associated confidence interval of this effect size and the p-value of the specified 

statistical test. In addition, a bar plot indicates the proportion of sequences assigned 

to a feature in each group of samples. 
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 Statistical Analysis for Two Samples 

To analyze a pair of samples, click on the Two samples tab in the Properties window. 

The Profile section is used to specify which pair of samples will be analyzed. Data 

points (features) belonging to these 2 samples will be represented by 2 different 

colours. 

  

 
 

Similar to the previous analyses, various statistical properties and filtering criteria can 

be explicitly mention for the analysis of metagenomic profiles belonging to two 

different samples. 

A list of statistical techniques for the analysis of metagenomic profiles belonging to 

two different samples is given in Table 5. 
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Table 5: Two samples statistical techniques available in STAMP 

 

 
 

 Graphical exploration of results: 

Similar to the statistical analysis for two groups, here, bar plot, scatter plot and 

extended error bar plot can be generated to explore the result of statistical analysis of 

metagenomic profiles belonging to two different samples.  

Other plots: 

 Profile bar plot: It is a grouped bar plot indicating the proportion of sequences 

assigned to each feature in the two selected samples. It is recommended for 

investigating higher hierarchical levels of a profile where the number of features is 

relatively small. Confidence intervals for each proportion are calculated using the 

Wilson score method. 
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 Sequence histogram: It gives a general overview of the number of sequences 

assigned to each feature in both the samples. 

 

 
 

 Multiple comparison plots: It can be used to analyze the results of applying a 

multiple test correction technique, e.g., Benjamini-Hochberg FDR. 
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 p-value histogram: It shows the distribution of p-values and corrected p-values 

(i.e., number of features corresponding to a particular p-value) in a metagenomic 

profile. 
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1. Introduction 

Protein structure prediction is the prediction of the three-dimensional structure of 

a protein from its amino acid sequence, i.e., the prediction of its secondary, tertiary, 

and quaternary structure from its primary structure. It is one of the most important goals in 

structural biology. It is important to know the 3D structure of a protein for better understanding 

of its function. There are a number of approaches for protein structure prediction and the 

performance of current methods is assessed in the biennial CASP experiment (Critical 

Assessment of Techniques for Protein Structure Prediction). 

2. Proteins 

Proteins are regular, linear polymers composed of amino acids. Proteins are fundamental to life. 

Like other biological macromolecules such as polysaccharides and nucleic acids, proteins 

participate in virtually every process within cells. They have a remarkable variety of functions. 

For instance, they act as enzymes, catalyzing most biochemical reactions. Proteins also have 

structural or mechanical functions, such as actin and myosin in muscle and the proteins in 

the cytoskeleton, which form a system of scaffolding that maintains cell shape. Other proteins 

are important in cell signaling, immune responses, cell adhesion, and the cell cycle. Proteins 

are also necessary in animals' diets, since animals cannot synthesize all the amino acids they 

require. Through the process of digestion, animals break down ingested protein into free amino 

acids that are then used in metabolism. In short, proteins are of central importance to almost 

every biological process.  

2.1. Amino Acids: An amino acid, also called residue in proteins, is composed of a carboxyl 

group, an amino group and a side chain (Fig.1).  

 

Fig. 1. General structure of an amino acid 

There are 20 amino acids which form the basis for every natural protein and these differ only 

in the side chain atoms as shown in Fig. 2. The amino acids are linked in proteins by the 
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formation of peptide bonds between amino and carboxyl groups of two adjacent residues as 

given in Fig. 3. 

 

Fig. 2. The 20 common amino acids of proteins

 

Fig. 3. Peptide bond formation 
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2.2. Levels of Protein Structure 

Protein structures are defined in the following manner:  

(a) Primary structure: It is the amino acid sequence forming the polypeptide chain.  

(b) Secondary structure: It is defined by the local structural patterns, α-helix, β-strand (groups 

of β-strands assemble into β-sheet), turn and interconnecting loop. 

(c) Tertiary structure: The 3D conformation of the protein is the tertiary structure. This is the 

functional form of the protein. 

(d) Quaternary structure: The aggregation and complex formation of protein having two or 

more polypeptide subunits defines the quaternary structure. 

 

Fig. 4. Levels of structures in proteins 

 

3. Protein Structure Databases and Visualization Tools  

The major protein structure bases are as follows: 

 Protein Data bank (PDB, http://www.rcsb.org/pdb/): It is a very large global repository 

for the processing and distribution of 3D macromolecular structure data primarily 

determined using experimental tools and techniques such as X-ray crystallography, nuclear 

magnetic resonance (NMR) spectroscopy, cryoelectron microscopy, etc. It provides access 

to the structural data as well as methods to visualize the structures. 

 NCBI Molecular Modeling Database  

(MMDB, http://www.ncbi.nlm.nih.gov/Structure/MMDB/mmdb.shtml): It includes 

experimentally resolved structures of proteins, RNA, and DNA, derived from the PDB, with 

value-added features such as explicit chemical graphs, computationally identified 3D 

domains that are used to identify similar 3D structures, etc. 

Some important protein structure visualization databases and tools are as follows: 

 Cn3-D (http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml) 

 Rasmol, Chemscape Chime & Protein Explorer (http://www.umass.edu/microbio/rasmol) 

 SWISS PDBViewer (http://us.expasy.org/spdbv/) 
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4. Primary Structure Analysis 

There are various tools for predicting the physical properties using the sequence information. 

Some of the important tools are as follows: 

(a) Compute pI/Mw (http://ca.expasy.org/tools/pi_tool.html): This tool calculates the 

isoelectric point and molecular weight of an input sequence. The sequence can be input in 

FASTA format.  

(b) Peptide Mass (http://www.expasy.org/tools/peptide-mass.html): It cleaves one or more 

protein sequence from the SWISS-PROT and/ or TrEMBL databases or a user entered 

protein sequence with a chosen enzyme and computes the mass of the generated peptides. It 

also returns theoretical isoelectric point and mass values for the proteins of interest.  

(c) ProtParam (http://ca.expasy.org/tools/protparam.html): It allows the computation of 

various physical and chemical parameters for a given protein stored in SWISSPROT or 

TrEMBL or for a user entered sequence. 

(d) SAPS (http://www.isrec.isb-sib.ch/software/SAPS_form.html): Statistical Analysis of 

Protein Sequences (SAPS) is a tool to evaluate a wide variety of protein sequence properties 

by using statistical criteria. It is a program that provides extensive statistical information in 

any given sequence. 

5. Secondary Structure Prediction and Analysis 

A number of methods for predicting the secondary structure are available and some of the 

important methods are discussed below:  

(a) Chou-Fasman Method: The Chou-Fasman algorithm is one of the most widely used 

methods for the prediction of protein secondary structure. This method depends on assigning 

a set of prediction values to a residue and then applying an algorithm to the conformational 

parameters and positional frequencies. The conformational parameters for each amino acid 

are calculated by considering the relative frequency of a given amino acid within a protein, 

its occurrence in a given type of secondary structure, and the fraction of residues occurring 

in that type of structure. These parameters are measures of a given amino acid’s preference 

to be found in helix, sheet or coil. This method is nearly 50-60 % accurate in predicting the 

secondary structures. 

(b) GOR Method: The GOR method was developed by three scientists, Garnier, Osguthorpe 

and Robson. This method assumes that amino acids up to 8 residues on each side influence 

the secondary structure of the central residue. The accuracy of GOR when checked against 

a set of 267 proteins of known structure is 64%. This implies that 64% of the amino acids 

are correctly predicted as being helix, sheet or coil. The algorithm uses a sliding window of 

17 amino acids. All possible pairs of amino acids in this window are checked for their 
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information content as to predicting the structure of the central amino acid by comparing 

them to a set of 266 other proteins of known structure. The method works better for helix 

than for sheet because sheet is dependent on longer range interactions between non-adjacent 

sequence fragments. GOR under predicts the number of β strands and usually one can 

predict 36.5% of the β strands correctly. 

(c) Nearest Neighbour Method: This method is based on the hypothesis that short homologous 

sequences of amino acids have the same secondary structure tendencies. A list of short 

sequence fragments is made by sliding a window of length n along a set of approximately 

100-400 training sequences of known structure but minimal sequence similarity. For 

example, in SIMPA96 (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page= 

npsa_simpa96.html), one of the implementations of this method, n is 13 and there are 300 

proteins. The secondary structure of the central amino acid in each training window is 

recorded and a sliding window of the same size is then selected from the query sequence.  

NNSSP (http://bioweb.pasteur.fr/seqanal/interfaces/nnssp-simple.html) is another 

program that predicts the secondary structure combining the nearest neighbour and multiple 

sequence alignment approaches. 

(d) Hidden Markov Models (HMMs): HMMs may be used to predict the secondary structure 

of a protein of a given structural class as used in the structural classification databases. Each 

HMM is trained with the sequence of the proteins in that structural class. The models are 

use with a query sequence to predict both the class and secondary structure of the protein. 

Pfam (http://pfam.sanger.ac.uk/Software/Pfam/search.shtml) uses the HMM approach. 

(e) Neural Networks: Most of the effective structure prediction models extract patterns from 

databases of known protein structures. A neural network comprises a particular tool for 

pattern recognition and classification. The simplest layered feed-forward neural network 

consists of a layer of input units and a layer of output units. Signals are transmitted from 

input to output layer (feed forward) via the connections.  

HNN (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_nn.html) is 

Hierarchical Neural Network based program that gives secondary structure prediction. 

nnPredict (www.cmpharm.ucsf.edu/%7Enomi/nnpredict.html) predicts the secondary 

structure type for each residue in an amino acid sequence. The basis of the prediction is a 

two-layer, feed-forward neural network. 

(f) Multiple Alignments Based Self-Optimisation Method: SOPMA (http://npsa-

pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html) is a secondary structure 

prediction program that uses multiple alignments. SOPMA correctly predicts 69.5% of 

amino acids for a three-state description of a secondary structure (alpha-helix, beta-sheet 
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and coil) in a whole database containing 126 chains of non-homologous (less than 25% 

identity) proteins. 

Some tools for secondary structure prediction of proteins: JPred, NetSurf, GOR, MetaPP, 

PREDATOR, Predict Protein, PSIPRED, SymPred, PSSPred 

6. Three-Dimensional Structure Prediction 

With recent advances in large-scale sequencing technologies, an exponential growth in protein 

sequence information has been seen. Protein structures are primarily determined by using X-

ray crystallography or nuclear magnetic resonance (NMR) spectroscopy, but these methods are 

time consuming, expensive, and not feasible for all proteins. A number of different approaches 

for protein structure prediction have been developed. These range in scope from adapting a 

solved structure to match the sequence of an unknown one, to the attempt to fold a protein from 

first principles. Success varies and different methods should be used for different proteins.  

6.1. Methods of Protein Structure Prediction  

Based on the degree of similarity between the unknown structure (target) and structures from 

the database (templates), one can broadly distinguish three approaches:  

(a) Comparative (or homology) modeling: Comparative modeling builds the target structure 

based upon a homologous structure. Stretches of the polypeptide chain presumably differing 

between the two structures have to be edited, but otherwise the structure can be more or less 

copied. For this approach to work, there needs to be a significant sequence similarity detected 

between the target and one or more sequences in the database. This approach relies heavily on 

good sequence comparison and alignment methods. Under these circumstances, it is the method 

of choice, as it will produce fewer errors as compared to other methods.  

Steps involved in homology modeling are as follows: 

 Identify a set of template proteins (with known structures) related to the target protein.  

This is based on sequence homology (BLAST, FASTA) with sequence identity of 30% or 

more. 

 Align the target sequence with the template proteins.  This is based on multiple alignment. 

Identify conserved regions. 

 Build a model of the protein backbone, taking the backbone of the template structures 

(conserved regions) as a model.   

 Model the loops.  In regions with gaps, use a loop-modeling procedure to substitute 

segments of appropriate length. 

 Add side chains to the model backbone. 

 Evaluate and optimize entire structure. 
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Homology modeling tools: SWISS-MODEL, 3DJIGSAW, EasyModeller, Easypred3D, 

FoldX, GeneSilico, Geno3D, HHPred, Modeller, PRIME, ROBETTA, etc. 

(b) Fold recognition: Fold recognition exploits knowledge from the fact that the number of 

naturally occurring protein folds is limited. It is therefore likely that a sequence with no 

significant sequence similarity may still be similar to structures in the database. Two different 

sub-categories exist in fold recognition. Threading is closest to ab initio methods. The target 

sequence is placed on the 3D coordinates of protein structures in a fold library (“threaded”). 

The folds with the substituted amino acid sequence are then evaluated with an energy function. 

Profile or mapping methods instead try to extend the capabilities of sequence comparison 

algorithms to detect weak sequence homologies. In addition, and depending on the method 

used, information like predicted secondary structure and/ or predicted surface accessibility is 

incorporated to improve the results. Once an alignment with a known structure is found, the 

same methods as in comparative modeling may be used to produce a model. 

Threading/fold recognition tools: 3D PSSM, I-TASSER, MUSTER, RAPTOR, etc. 

(c) Ab initio modeling: Ab initio methods attempt to construct a model structure based on the 

physico-chemical properties of the amino acid chain. No knowledge on known structures is 

required. Calculations are based on complex energy functions, which encapsulate the 

information about atomic forces. An optimization method is used to guide the process of 

selecting promising structures throughout construction. In addition, secondary structure 

predictions can be incorporated to produce better structures. Despite recent improvements, the 

ab initio methods still produce more erroneous models for all but the most difficult structures. 

ab initio modeling tools: EVfold, QUARK, I-TASSER, ROBETTA, PEP-FOLD, Bhageerath, 

etc. 

 

Role of Artificial Intelligence in Protein Structure Prediction 

Over the past few years in the field of Artificial Intelligence (AI), there have been a surge of 

learnable programs that excel at challenging problems that are too complicated for humans to 

write down an explicit solution. AlphaFold, developed by DeepMind, based on deep learning 

is one such game-changing program in the field of structural biology (Jumper et al., 2021). It 

employs the power of AI to predict the 3D structure of proteins directly from their amino acid 

sequences, achieving unprecedented accuracy. This program learns from a vast dataset stored 

in the Protein Data Bank (PDB), which contains information about known protein structures. 

The AlphaFold process begins with a complex step called feature extraction. Here, the program 

looks for similar protein sequences to the one it aims to predict. These sequences are found in 

genetic databases, and they are used to create what's known as a Multiple Sequence Alignment 

(MSA). This MSA provides essential information about the protein’s evolutionary 
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relationships, helping AlphaFold understand its structure. The MSA, along with additional 

features, is then transformed into a two-dimensional (2D) array and fed into a deep residual 

convolutional network, known as ResNet. The primary goal of ResNet is to generate a 

"distogram." A distogram is a 2D matrix that represents the distances between all pairs of amino 

acids in the 3D structure of the folded protein. It essentially serves as a map of distances within 

the protein. One advantage of using a distogram is its invariance to rotations and translations 

of the protein. In simple terms, it doesn't matter how the protein is oriented; the distances 

between amino acids remain the same, simplifying the learning process.  

AlphaFold goes further by not merely predicting distances but by providing a distribution 

over distances. This means that for each pixel in the 2D matrix, AlphaFold predicts a 

distribution across 64 possible distance bins, offering valuable insights into the model's 

confidence in these distances. The final step is converting this predicted distogram distribution 

into the actual 3D shape of the protein. This is accomplished using a gradient descent approach. 

A physical model of the protein's chain is constructed, which is parameterized by the phi and 

psi angles between consecutive amino acid residues. This backbone geometry is then refined 

iteratively using a scoring function that combines the neural network's predictions with a set of 

physically simulated forces. This process determines the most probable conformation of the 

protein.  

 

6.2. An Example of Protein Structure Modeling 

Steps in Protein structure modeling are as follows (Fig.5): 

 Open NCBI (http://www.ncbi.nlm.nih.gov). 

 Select protein database and type Accession number of the target protein and then search. 

For example, type ADB44002 in the search box. 

 Download the protein sequence in FASTA format and save it. 

 Perform multiple sequence alignments using BLAST server at NCBI against PDB database 

(Select blastp). 

 Select suitable homologous template for the given protein sequence with highest bit score 

and lowest e-value having similarity greater than 30%.  

In the given example, the Chain A of the “Crystal Structure of The Poplar Glutathione 

Peroxidase 5 In the Reduced Form” (2P5Q_A) has been selected as a template. 

 Download the PDB file of the selected template from Protein Data Bank 

(http://www.rcsb.org/pdb/). 

 Open Accelrys Discovery Studio 3.5; go to File and open Protein Sequence Window. 

 Paste sequence of the target protein in the sequence window. 

>gi|283827717|gb|ADB44002.1| peroxidase [Mangifera indica] 
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DFTVKDAKGNDMDLSIYKGKVLVIVNVASRCGLTNSNYTELSQLYQKYKDQGLE

ILAFPCNQFGAQEPGSNEQIVEFACTRFKAEYPIFDKVDVNGDKAAPIYKFLKSSK

GGLFGDSIKWN 

 Then align sequence to the template using sequence-template alignment tool. 

 Upload the structure of template and run alignment. 

 After aligning click on homology modelling and Generate 3D structure models. 

 Verify the quality of a structure model 

 

 

(i) (ii)

(iii) (iv)
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Fig. 5. (i) to (vi) Different steps of homology modeling  and (vii) Ramachandran plot 

  6.3. Model Validation tools 

To obtain an accurate model, the quality assessment of the model is one of the important steps 

in protein structure prediction. The accuracy of a model determines its usefulness for specific 

applications. The quality assessments of predicted protein structure can be done by using 

QMEAN server and Structure Analysis and Verification Server.  

Model1

(v) (vi)

(vii)
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QMEAN server is available at http://swissmodel.expasy.org/qmean/. The QMEAN 

(Qualitative Model Energy ANalysis) score is a composite score consisting of a linear 

combination of six structural descriptors: C_beta interaction energy, all atom pairwise energy, 

solvation energy, torsion angle energy, secondary structure agreement and solvent accessibility 

agreement.  

Structure Analysis and Verification Server is available at 

http://nihserver.mbi.ucla.edu/SAVES/. There are five tools available at this server.  

PROCHECK is used to check the stereochemical quality of a protein structure by analyzing 

residue-by-residue geometry and overall structure geometry. WHAT_CHECK is used for 

extensive checking of many stereochemical parameters of the residues in the model. ERRAT 

checks the overall quality factor of non-bonded atomic interactions. VERIFY_3D determines 

the compatibility of an atomic model and PROVE calculates the volumes of atoms in 

macromolecules.  
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Introduction  

Molecular dynamics (MD) simulation is a computational technique used to study the behavior 

of atoms and molecules over time. It is based on the laws of classical mechanics, which describe 

how particles move and interact with each other under the influence of forces. In an MD 

simulation, the positions, velocities, and accelerations of the atoms or molecules are calculated 

at each time step, and the system is evolved forward in time. 

The basic principle of MD simulation is based on the integration of Newton's second law of 

motion, which states that the force acting on an object is proportional to its mass times its 

acceleration. In MD, the forces acting on each atom or particle are calculated using a force 

field, which describes the interactions between the atoms or particles in the system. The force 

field is typically based on empirical or theoretical models, which consider the van der Waals 

forces, electrostatic interactions, and bonded interactions such as covalent bonds, hydrogen 

bonds, and torsional angles. The motion of the atoms or particles is then simulated using 

numerical integration of Newton's equations of motion. This process involves calculating the 

position and velocity of each atom or particle at each time step, based on the forces acting on 

it, and then updating the forces based on the new positions and velocities. 

 

MD simulations can provide detailed information on the structure, dynamics, and 

thermodynamics of a system. They can be used to study the behavior of molecules, proteins, 

and materials in different environments, such as solvents, membranes, or under mechanical 

stress. MD simulations can also be used to predict the behavior of systems under different 

conditions or to explore the effects of mutations or drug interactions on protein structures. 

 

Force Fields 

Force fields are critical components of molecular dynamics (MD) simulations. They provide a 

mathematical description of the interatomic or intermolecular forces that govern the behavior 

of the simulated system. Force fields specify the potential energy and its corresponding force 

as a function of the coordinates of the atoms or molecules, which is used to calculate the motion 
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of the system over time. They are mathematical models that include parameters for the bond 

stretching, bond bending, torsion, and non-bonded interactions between atoms (Figure 1). The 

accuracy of the force field determines the accuracy of the MD simulations. 

There are two primary types of force fields used in molecular dynamics simulations: classical 

and quantum mechanical. Classical force fields are most commonly used in biomolecular 

simulations and are based on a set of mathematical functions and empirical parameters to 

describe the interactions between atoms. These force fields are computationally efficient and 

can simulate systems up to millions of atoms. Quantum mechanical force fields, on the other 

hand, consider the electronic structure of atoms and molecules and are computationally more 

intensive but can provide higher accuracy in describing the system.  

A functional form for a force field (also called Potential Energy Function) that can be used to model 

single molecule or assemblies of atoms and / or molecules is as shown below: 

𝜓(𝐫𝑁) = ∑
𝑘𝑖

2𝑏𝑜𝑛𝑑𝑠 (𝑙𝑖 − 𝑙𝑖,0)
2 + ∑

𝑘𝑖

2𝑎𝑛𝑔𝑙𝑒𝑠 (𝜃𝑖 − 𝜃𝑖,0)
2 + ∑

𝑉𝑛

2𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠 (1 + 𝑐𝑜𝑠( 𝑛𝜔 − 𝛾)) +

∑ ∑ (4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)
12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)
6

+
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
])𝑁

𝑗=𝑖+1
𝑁
𝑖=1          … Equation 1 

𝜓(𝑟𝑁) denotes the potential energy, which is a function of the positions (r) of N particles (usually 

atoms). 

The first term in the Equation 1 models the interaction between pairs of bonded atoms, here modelled 

by a harmonic potential that gives the increase in energy as the bond length li deviates from the reference 

value li,0. The second component is a summation over all valence angles in the molecule, modelled using 

a harmonic potential. A valence bond angle is the angle formed between three atoms A-B-C in which 

A and C are both bonded to B. The third component is a torsional potential that models how the energy 

changes as a bond rotates. The fourth component is the non-bonded term. It is calculated between all 

pairs of atoms (i and j) that are in different molecules or that are the same molecule but separated by at 

least three bonds (1, n relationship where n ≥ 4). In a simple force field, the non-bonded term is modelled 

using a Coulomb potential term for electrostatic interactions and a Lennard-Jones potential for van der 

Waals interactions. 

The first three are the components of covalent (or bonded) contribution and the last one is the component 

of non-covalent (or non-bonded) contribution. 
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A simple form of the above equation:  

A potential function or force field calculates the molecular system's potential energy (E) in a given 

conformation as a sum of individual energy terms, 

E = ECovalent + ENon-covalent           … Equation 2 

where, ECovalent = Ebond + Eangle + Edihedral 

ENon-covalent = Eelectrostatic + Evan der Waals 

 

 

Figure 1: Schematic representation of bonded (upper row) and non-bonded (lower row) components 

contributing to a molecular mechanics force field. 

There are several different force fields that have been developed over the years, each with its own 

strengths and limitations. Here are some examples: 

CHARMM (Brooks et al., 2009): The Chemistry at Harvard Macromolecular Mechanics (CHARMM) 

force field is widely used for biomolecular simulations. It includes parameters for all of the major types 

of interactions, including covalent bonds, angles, dihedrals, van der Waals forces, and electrostatics. It 

is known for its accuracy in reproducing protein structures and dynamics. 

 

Bond stretching

Angle bending Bond rotation

(torsion)

Non-bonded interactions

(electrostatic)
Non-bonded interactions

(van der Waals)

δ+

δ+

δ-
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AMBER (Case et al., 2010): The Assisted Model Building with Energy Refinement (AMBER) force 

field is also widely used in biomolecular simulations. It includes parameters for bond stretching, bond 

bending, torsion, and non-bonded interactions, and is known for its accuracy in reproducing 

experimental structures and dynamics. 

OPLS (Damm et al., 1997): The Optimized Potentials for Liquid Simulations (OPLS) force field was 

originally developed for liquid simulations, but has also been used in biomolecular simulations. It 

includes parameters for bond stretching, bond bending, torsion, and non-bonded interactions, and is 

known for its accuracy in reproducing thermodynamic properties of liquids. 

GROMOS (Scott et al., 1999): The Groningen Molecular Simulation (GROMOS) force field is widely 

used in simulations of small molecules and peptides. It includes parameters for bond stretching, bond 

bending, torsion, and non-bonded interactions, and is known for its accuracy in reproducing 

thermodynamic properties of small molecules. 

Conclusion 

In summary, the principle of molecular dynamics simulation is based on the integration of 

classical mechanics, which involves calculating the positions, velocities, and forces of all atoms 

or particles in a system as a function of time. MD simulations can provide detailed information 

on the structure, dynamics, and thermodynamics of a system and can be used to study a wide 

range of molecular and material systems. 

 

**********************************Practical********************************* 

The purpose of this hands-on is to provide an introduction to the fundamental commands 

needed to set up, run, and analyze MD simulations using a suitable simulation tool. GROMACS 

which is one of the most popular Molecular Dynamics (MD) simulation software, will be used 

for the practical session. Before starting with the steps of typical MD simulation, let us have a 

quick look on how to install GROMACS in linux (here, Ubuntu). 

Installation 

To install GROMACS, we need the following software installed on our system: 

i. C & C++ Compiler which comes built-in with Ubuntu. 

ii. CMake – A linux software to make binaries 

iii. BuildEssential – It is a reference for all the packages needed to compile a package. 

iv. FFTW Library: a library used by Gromacs to compute discrete Fourier transform 
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v. DeRegressionTest Package 

Following are commands to install above mentioned pre-requisites: 

sudo apt-get update 

sudo apt-get upgrade 

sudo apt-get install cmake 

sudo apt-get install build-essential 

wget http://gerrit.gromacs.org/download/regressiontests-5.1.1.tar.gz 

tar xvzf regressiontests-5.1.1.tar.gz 

sudo apt-get install libfftw3-dev 

wget ftp://ftp.gromacs.org/pub/gromacs/gromacs-5.1.1.tar.gz 

tar xvzf gromacs-5.1.1.tar.gz 

cd gromacs-5.1.1/ 

mkdir build 

cd build 

sudo cmake .. -DGMX_BUILD_OWN_FFTW=OFF -

DREGRESSIONTEST_DOWNLOAD=OFF -DCMAKE_C_COMPILER=gcc -

DREGRESSIONTEST_DOWNLOAD=ON 

make 

make check 

sudo make install 

source /usr/local/gromacs/bin/GMXRC 

If the execution of above commands was successful, the installation is complete. You may 

check the version of your Gromacs with a command to make sure the installation finished as 

expected. 
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gmx pdb2gmx --versionource /usr/local/gromacs/bin/GMXRC 

MD Simulation protocol 

Following steps are involved in simulating a protein structure. 

 Create initial state 

i. Generate topology of protein 

ii. Add box and solvation to the system 

iii. Add ions to the solved system 

 

 Introduction to the interaction potentials 

iv. Energy minimization 

 

 Predict how the particles move 

v. Equilibration of system 

vi. MD Production run 

Now, we will see how to perform each step in more details. For the purpose of demonstrating 

simulation of protein, a small protein structure of ubiquitin (PDB code 1UBQ) was downloaded 

from RCSB PDB. 

1. Generate topology 

The obtained protein structure must be checked for the following things: 

 Remove the water molecules if present 

 Non-standard residues like heteroatoms must be removed 

 Residues with missing atoms must be fixed beforehand  

If water molecules are present, we can simply use the grep command to search for “HOH” in 

the PDB file and then remove them. The following command can be used for removing water 

molecules: 

grep -v HOH 1UBQ.pdb > 1UBQ_clean.pdb 

The next step is to use the pdb2gmx module of GROMACS. The pdb2gmx module generates 

three files: 

 The topology for the molecule. 
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 A position restraint file. 

 A post-processed structure file. 

The topology (topol.top by default) contains all the information necessary to define the 

molecule within a simulation. This information includes nonbonded parameters as well as 

bonded parameters. The following command was used to execute pdb2gmx: 

gmx pdb2gmx -f 1UBQ_clean.pdb -o 1UBQ_processed.gro -water spce 

The structure is processed by pdb2gmx, and we are prompted to choose a force field. We will 

use the all-atom OPLS force field, so ‘15’ was typed at the command prompt 

The force field will contain the information that will be written to the topology. 

2. Solvation 

To simulate proteins and other molecules we need to define the box dimensions around the 

protein and fill in the box with solvent. The box was defined using the following command: 

gmx editconf -f 1UBQ_processed.gro -o 1UBQ_newbox.gro -c -d 1.0 -bt cubic 

-c : centers the protein in the box 

-d 1.0 : places the protein at least 1.0 nm from the box edge 

-bt cubic : The box type is defined as a cube 

Specifying a solute-box distance of 1.0 nm will mean that there are at least 2.0 nm between any 

two periodic images of a protein. This distance will be sufficient for just about any cut off 

scheme commonly used in simulations. 

The box is filled with solvent (water) by using the command below: 

gmx solvate -cp 1UBQ_newbox.gro -cs spc216.gro -o 1UBQ_solv.gro -p topol.top 

-cp : this parameter takes as input the configuration of the protein which is contained in the 

output file obtained from the previous step 

-cs : configuration of the solvent is part of the standard GROMACS installation. We are using 

spc216.gro, which is a generic equilibrated 3-point solvent model. 
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3. Adding Ions 

Neutralizing a system is a practice carried out for obtaining correct electrostatic values during 

the simulation. This is done because under periodic boundary and using PME electrostatics - 

the system has to be neutral. Therefore, we are adding ions to neutralization purpose only. The 

tool for adding ions within GROMACS is called genion which reads through the topology and 

replace water molecules with the ions that the user specifies. The input is called a run input 

file, which has an extension of. tpr. The .tpr file contains all the parameters for all of the atoms 

in the system.ed by the GROMACS grompp module (GROMACS pre-processor).  

Assemble .tpr file with the following command: 

gmx grompp -f ions.mdp -c 1UBQ_solv.gro -p topol.top -o ions.tpr 

Now we have an atomic-level description of our system in the binary file ions.tpr. We will pass 

this file to genion: 

gmx genion -s ions.tpr -o 1UBQ_solv_ions.gro -p topol.top -pname NA -nname CL -neutral 

-s : input file given as structure/state file (.tpr file) 

-pname and -nname : define the positive and negative ion names 

-neutral : add only the ions necessary to neutralize the net charge on the protein by adding the 

correct number of negative ions (in this case will add 8 Cl- ions to offset the +8 charge on the 

protein) 

4. Energy minimization (EM) 

EM is done to ensure there that the system has no steric clashes or inappropriate geometry. 

First, we need to assemble structure, topology, and simulation parameters into a binary input 

file (.tpr file): 

gmx grompp -f minim.mdp -c 1UBQ_solv_ions.gro -p topol.top -o em.tpr 

Here, minim.mdp is the file containing information regarding molecular dynamics parameter. 

It is not inherently present in the GROMACS distribution; hence it needs to be created before 

the execution of above command. An mdp file contain following parameters, 
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; minim.mdp - used as input into grompp to generate em.tpr 

; Parameters describing what to do, when to stop and what to save 

integrator  = steep         ; Algorithm (steep = steepest descent minimization) 

emtol       = 1000.0        ; Stop minimization when the maximum force < 1000.0 kJ/mol/nm 

emstep      = 0.01          ; Minimization step size 

nsteps      = 50000         ; Maximum number of (minimization) steps to perform 

 

; Parameters describing how to find the neighbors of each atom and how to calculate 

the interactions 

nstlist         = 1         ; Frequency to update the neighbor list and long range forces 

cutoff-scheme   = Verlet    ; Buffered neighbor searching 

ns_type         = grid      ; Method to determine neighbor list (simple, grid) 

coulombtype     = PME       ; Treatment of long range electrostatic interactions 

rcoulomb        = 1.0       ; Short-range electrostatic cut-off 

rvdw            = 1.0       ; Short-range Van der Waals cut-off 

pbc             = xyz       ; Periodic Boundary Conditions in all 3 dimensions 

 

Next, we have to invoke mdrun to carry out the EM: 

gmx mdrun -v -deffnm em 

The output em.edr file contains all of the energy terms that GROMACS collects during EM. 

We can analyze any .edr file using the GROMACS energy module: 

gmx energy -f em.edr -o potential.xvg 

At the prompt, type "10 0" to select Potential (10); zero (0) terminates input. The average of 

Epot is shown, and a file called "potential.xvg" is written. To plot this data, we need the 

Xmgrace plotting tool. 

5. Equilibration 

Since the objective of MD simulation is to study the dynamics of a particular system, we have 

to suit the in-silico environment of our simulation system as close as possible to the real system 

(e.g. experimental job in wet laboratory). Therefore, in equilibration step we optimize the 
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temperature to 300K since we assumed that we do the experimental job at room temperature, 

and pressure value at 1 atm. 

Equilibration will be carried out in two steps. First, an NVT (constant Number of atoms, 

Volume, and Temperature) simulation will be performed in order to bring the system to the 

target temperature. Second, an NPT (constant Number of atoms, Pressure, and Temperature) 

simulation will be performed to allow the system to find the correct density.   

5. a) Temperature Equilibration 

We will call grompp and mdrun just as we did at the EM step and run the following two 

commands: 

gmx grompp -f nvt.mdp -c em.gro -r em.gro -p topol.top -o nvt.tpr 

gmx mdrun -deffnm nvt 

To analyze the temperature progression, using energy we use the command given below: 

gmx energy -f nvt.edr -o temperature.xvg 

Type "16 0" at the prompt to select the temperature of the system and exit and the 

temperature.xvg can be plotted by Xmgrace tool. 

5. b) Pressure Equilibration 

We had included the -t flag to include the checkpoint file from the NVT equilibration. This file 

contains all the necessary state variables to continue our simulation. To conserve the velocities 

produced during NVT, we must include this file. The coordinate file (nvt.gro) is the final output 

of the NVT simulation. 

gmx grompp -f npt.mdp -c nvt.gro -r nvt.gro -t nvt.cpt -p topol.top -o npt.tpr 

gmx mdrun -deffnm npt 

To analyze the pressure progression, again by using energy: 

gmx energy -f npt.edr -o pressure.xvg 

Type "18 0" at the prompt to select the pressure of the system and exit. ‘pressure.xvg’ file will 

be created which can be plotted through Xmgrace.  
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To take a look at density as well using energy, we need to enter "24 0" at the prompt while 

running the following command: 

gmx energy -f npt.edr -o density.xvg 

6. Production MD 

After running the two equilibration phases, the system is now well equilibrated at desired 

temperature and pressure. To run the production MD, we will make use of the checkpoint file 

to grompp and run a 1 ns MD simulation: 

gmx grompp -f md.mdp -c npt.gro -t npt.cpt -p topol.top -o md_0_1.tpr 

To execute mdrun: 

gmx mdrun -deffnm md_0_1 

Analysis 

GROMACS comes equipped with many analysis tools, a complete list of which can be found 

in the manual. Here you will be exposed to a few useful analysis tools: 'rms', 'rmsf', and 'gyrate. 

But first, it is useful to learn how to process the trajectory file to only keep the components of   

interest. Use trjconv, which is a post-processing tool to strip out coordinates, correct for 

periodicity, or manually alter the trajectory (time units, frame frequency, etc). trjconv accounts 

for any periodicity in the system. 

gmx trjconv -s md_0_1.tpr -f md_0_1.xtc -o md_0_1_noPBC.xtc -pbc mol –center  

Select 1 ("Protein") as the group to be centered and 0 ("System") for output. Downstream 

analyses will be conducted on this "corrected" trajectory. 

For checking the structural stability GROMACS has a built-in utility for RMSD calculations 

called rms. Root mean square deviation (RMSD) is used for measuring the difference between 

the backbones of a protein from its initial structural conformation to its final position. The 

command to plot rmsd graph is as follows: 

gmx rms -s md_0_1.tpr -f md_0_1_noPBC.xtc -o rmsd.xvg -tu ns 

When prompted choose 4 ("Backbone") for both the least-squares fit and the group for RMSD 

calculation. 
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The radius of gyration of a protein is a measure of its compactness. If a protein is stably folded, 

it will likely maintain a relatively steady value of Rg. If a protein unfolds, its Rg will change 

over time. The command to plot radius of gyration graph is as follows: 

gmx gyrate -s md_0_1.tpr -f md_0_1_noPBC.xtc -o gyrate.xvg 

When prompted choose group 1 (Protein) for analysis. 

With this, we have now completed molecular dynamics simulation of a protein with 

GROMACS, and analyzed some of the results. 
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Introduction 

Proteins are important large biomolecules or macromolecules performing a wide variety of 

functions. The word “proteome” is defined as the entire set of proteins translated and/ or modified 

within a living organism. The word “proteome” was coined by Marc Wilkins in 1994 in a 

symposium on “2D Electrophoresis: from protein maps to genomes” held in Siena in Italy while 

he was a Ph.D. student at Macquarie University. An organism’s genome is more or less constant 

whereas proteome is not constant. Proteomes differs from cell to cell and from time to time. That’s 

why proteomics is more complicated when compared to genomics.  

 Proteomics more generally refers to large-scale liquid chromatography (LC) coupled with 

mass spectrometry (MS) [LC-MS] based discovery studies designed to address both quantitative 

and qualitative aspects of the proteome research (Figure 1). 

 

Figure 1. Liquid chromatography coupled with mass spectrometry [LC-MS] 

Source: https://upload.wikimedia.org/wikipedia/en/f/f9/Liquid_chromatography_tandem_Mass_spectrometry_diagram.png 

 

 Now proteomics has emerged as a powerful tool across various fields such as biomedicine 

mainly applied to diseases, agriculture, and animal sciences. It is important for studying different 

aspects of plant functions such as identification of candidate proteins involved in the defensive 
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response of plants to biotic and abiotic stresses, effect of global climate changes on crop 

production, etc. In animal sciences, proteomics studies play important role in studying physiology, 

immunology, reproduction and lactational biology. The practical application of proteomics 

includes expression proteomics, structural proteomics, biomarker discovery, interaction 

proteomics, protein networks, etc. 

 

Basics Steps of Proteomics Data Analysis 

The proteomic abundance (expression) data are usually generated using high throughput 

technologies usually involving MS. LC-MS is used in proteomics as a method for identification 

and quantification of peptides and proteins in complex mixtures. There are two basic proteomics 

approaches, namely bottom-up and top-down. The most common proteomics approach is the 

bottom-up in which proteins in a sample are enzymatically digested into peptides and subjected to 

chromatographic separation, ionization and mass analysis. Conversely, top-down proteomics 

addresses the study of intact proteins and consequently is most often used to address purified or 

partially purified proteins. There are various steps involved in quantitative proteomics data 

analysis, viz., peptide and protein identification, protein abundance quantification, data cleaning, 

data normalization, handling of missing values by using imputation techniques, data visualization 

and interpretation, statistical analysis of proteomics data, etc.  

 

Peptide and protein identification 

There are two major approaches for determining the sequence of peptides.  

(i) Searching against fragmentation spectra databases 

(ii) de novo peptide sequencing 

 

Some of the software/ tools for peptide and protein identification are listed below: 

Category Name Description 

Searching against 

fragmentation spectra 

databases 

Andromeda (part of 

Mascot) 

A peptide search engine based on probabilistic 

scoring 

Mascot Probability-based database searching algorithm 
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SEQUEST Identifies collections of tandem mass spectra to 

peptide sequences that have been generated from 

protein sequence databases 

X!Tandem/X!!Tandem Searches tandem mass spectra with peptide 

sequences in database 

de novo peptide 

sequencing 

PEAKS Performs de novo sequencing for each peptide, 

confidence scores on individual amino acid 

assignments with manually assisted mode and 

automated de novo sequencing on an entire LC 

run processed data 

SHERENGA  Performs de novo peptide sequencing via tandem 

mass spectrometry 

PECAN Library free peptide detection for data-

independent acquisition of tandem mass 

spectrometry data 

 

Quantification of feature abundance 

The quantification of features (peptides or proteins) may be either label-free or labelled (metabolic, 

enzymatic, or chemical) to detect differences in feature abundances among different conditions. In 

label-free quantification, MS ion intensity (peak area) and spectral counting of features are the 

major approaches. In this article, we have considered MS ion intensity data obtained from label-

free bottom-up proteomics experiments.  

Software/Tools for label-based quantitative proteomics:  

 MaxQuant 

 Proteome Discoverer (Thermo Scientific) 

 XPRESS 

Software/Tools for label-free quantitative proteomics:  

 MaxLFQ - Label free quantification module available in MaxQuant 

 emPAI - Exponentially modified protein abundance index 

 Mascot Distiller (Matrix Science) 
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Problem of missing values and heterogeneity in proteomics data 

Various approaches exist for proteomics data analysis in which the first step is to summarize the 

intensities of all features using a quantitative summary followed by logarithmic transformation to 

approximate it to normal distribution. In spite of availability of various tools/methods, there are 

various challenges in analyzing proteomics data such as missing value (MV) and data 

heterogeneity. There are various drawbacks of the methods which can be studied by examining the 

statistical properties of these methods.  

 The variations in the biological data or technical approaches to data collection lead to 

heterogeneity for the samples under study. The data set usually consists of biological replicates 

only or both biological and technical replicates. Biological variability arises from genetic and 

environmental factors and it is intrinsic to all organisms. The technical approaches include sample 

collection and storage, sample preparation, extraction, LC separation and MS detection. 

 The data set is called balanced when it contains an equal number of subjects/ samples in 

each group, and the features have no missing observations. However, this is not always the 

condition. Sometimes the data can be unbalanced having unequal number of subjects, or missing 

observations, or both. MVs in proteomics data can occur due to biological and/or technical issues. 

These are of three types of MVs: (i) missing completely at random (MCAR) in which MVs are 

independent of both unobserved and observed data; (ii) missing at random (MAR) if conditional 

on the observed data, the MVs are independent of the missing measurements; and (iii) missing not 

at random (MNAR) when data is neither MCAR nor MAR. The data with missing observations 

can be analyzed either by excluding the features having missing observations, by using statistical 

methods that can handle unbalanced data, or by using imputation methods. If the features having 

missing observations are excluded, then there is loss of information from the experiment. 

Therefore, the use of methods that can handle MVs, such as imputation methods, are generally 

preferred. However, the use of imputation methods may lead to wrong interpretation and these 

methods are questionable in statistical terms.  

 

Statistical analysis of proteomics abundance data 

Differential abundance analysis is carried out to detect significant features in two or more 

conditions such as normal versus different disease conditions. However, data normalization is 

necessary before performing further analysis. There are various transformation and/ or 
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normalization methods such as logarithmic transformation, quantile normalization, variance 

stabilizing normalization, median scaling normalization, etc. In case of missing values, the user 

has to impute the data using imputation techniques such as singular value decomposition, k-nearest 

neighbor, maximum likelihood estimation, etc. The statistical approaches/ tests such as t-test, 

moderated t-test, ANOVA, linear mixed model, etc. can be used for detecting significant features. 

A general workflow of label-free quantitative proteomics data is given below: 

 

Figure 2. A general workflow of label-free quantitative proteomics data 

 

Various methods of normalizing proteomics expression data are given below: 

 Variance stabilizing normalization (VSN) 

 Quantile normalization (quantile) 

 Median normalization (median) 

 EigenMS normalization (EigenMS) 

 Local regression normalization (LoessF, LoessCyc) 

 

Various imputation methods can be categorized into the following: 

(i) Imputation by a single value: 

 Half of global minimum intensity among peptides - the minimal observed intensity value 

among all peptides 

 Half of minimal intensity of individual peptide 

 Random tail imputation 

(ii) Local-similarity-based imputation methods: 

 K-nearest neighbors (KNN) 
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 Local least-squares (LLS) imputation 

 Regularized expectation maximization (REM) algorithm 

(iii) Global-structure-based imputation methods 

 Probabilistic principal component analysis (PPCA) 

 Bayesian principal component analysis (BPCA) algorithm 

 

There are various tools and packages available for proteomics abundance data analysis such as 

DanteR, MSstats, RepExplore, PANDA-view, MSqRob, PANDA, DAPAR, ProStaR etc. Some of 

the important tools are discussed below: 

(i) DanteR: Taverner et al. (2012) developed DanteR, a graphical R package that features extensive 

statistical and diagnostic functions for quantitative proteomics data analysis, including 

normalization, imputation, hypothesis testing, interactive visualization and peptide-to-protein 

rollup. 

(ii) MSstats: Choi et al. (2014) developed an R package “MSstats” for statistical relative 

quantification of proteins and peptides in MS based proteomics. It (version 2.0) supports label-free 

and label-based experimental workflows and data-dependent, targeted and data-independent 

spectral acquisition. It performs differentially abundance/ expression analysis of features (peptides 

or proteins) based on linear mixed models. 

(iii) RepExplore: Glaab and Schneider (2015) developed a web server “RepExplore” to analyse 

the proteomics and metabolomics data with technical and biological replicates. The analysis is 

based on previously published statistical methods, which have been applied successfully to 

biomedical omics.  

(iv) PANDA-view: Chang et al. (2018) developed an easy-to-use tool “PANDA-view” for both 

statistical analysis and visualization of quantitative proteomics data and other -omics data. There 

are various kinds of analysis methods such as normalization, MV imputation, statistical tests, 

clustering and principal component analysis, an interactive volcano plot.  

(v) MSqRob: Goeminne et al. (2018) provided a tutorial on analysis of quantitative proteomics 

data. The tutorial discussed the key statistical concepts to design proteomics experiments and 

analyse label-free MS based quantitative proteomics data using their free and open-source R 

package MSqRob.  
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(vi) PANDA: Chang et al. (2019) developed a comprehensive and flexible tool named PANDA 

for proteomics data quantification. The tool supports both label-free and labeled quantifications 

and it is compatible with existing peptide identification tools and pipelines with considerable 

flexibility. 

(vii) DAPAR & ProStaR: Wieczorek et al. (2017) developed software tools, DAPAR and ProStaR 

that can perform the statistical analysis of label-free XIC-based quantitative discovery proteomics 

experiments. DAPAR is an R package that contains various functions such as filtering, 

normalization, imputation of missing values, aggregation of peptide intensities, differential 

abundance analysis of proteins, etc. ProStaR is a user-friendly graphical interface that allows 

access to the DAPAR functionalities through a web browser. 

 

Conclusion 

In this article, we have given the basic introduction of proteomics, various steps of proteomics data 

analysis, problem of MVs and heterogeneity in proteomics data and different methods for analysis 

of proteomics data. This article will be useful for the researchers working in the field of proteomics 

and bioinformatics. Furthermore, the methods for proteomics data analysis can further be used for 

analyzing the expression data obtained from similar experiments (e.g., microarray and 

metabolomics data).  
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Over-view of Post-Translational Modifications 
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Posttranslational modifications (PTMs) of proteins greatly expand proteome diversity, 

increase functionality, and allow for rapid responses, all at relatively low costs for the 

cell. PTMs play key roles in plants through their impact on signaling, gene expression, 

protein stability and interactions, and enzyme kinetics. Following a brief discussion of the 

experimental and bioinformatics challenges of PTM identification, localization, and 

quantification (occupancy), a concise overview is provided of the major PTMs and their 

(potential) functional consequences in plants, with emphasis on plant metabolism. Classic 

examples that illustrate the regulation of plant metabolic enzymes and pathways by PTMs 

and their cross talk are summarized. Recent large-scale proteomics studies mapped 

many PTMs to a wide range of metabolic functions. Unraveling of the PTM code, i.e. a 

predictive understanding of the (combinatorial) consequences of PTMs, is needed to convert 

this growing wealth of data into an understanding of plant metabolic regulation. 

The primary amino acid sequence of proteins is defined by the translated mRNA, often 

followed by N- or C-terminal cleavages for preprocessing, maturation, and/or activation. 

Proteins can undergo further reversible or irreversible posttranslational modifications (PTMs) 

of specific amino acid residues. Proteins are directly responsible for the production of plant 

metabolites because they act as enzymes or as regulators of enzymes. Ultimately, most 

proteins in a plant cell can affect plant metabolism (e.g. through effects on plant gene 

expression, cell fate and development, structural support, transport, etc.). Many metabolic 

enzymes and their regulators undergo a variety of PTMs, possibly resulting in changes in 

oligomeric state, stabilization/degradation, and (de)activation (Huber and Hardin, 2004), 

and PTMs can facilitate the optimization of metabolic flux. However, the direct in vivo 

consequence of a PTM on a metabolic enzyme or pathway is frequently not very clear, in part 

because it requires measurements of input and output of the reactions, including flux through 

the enzyme or pathway.  

 PTMs can occur spontaneously (nonenzymatically) due to the physical-chemical 

properties of reactive amino acids and the cellular environment (e.g. pH, oxygen, reactive 

oxygen species [ROS], and metabolites) or through the action of specific modifying enzymes 
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PTMs are also determined by neighboring residues and their exposure to the surface. The 20 

amino acids differ strongly in their general chemical reactivity and their observed PTMs . In 

particular, Cys and Lys can each carry many types of PTMs, whereas the N-terminal residue 

of proteins is also prone to multiple PTMs, ranging from N-terminal cleavage to N-terminal 

lipid modifications (acylation), acetylation, and ubiquitination . In addition to these PTMs 

that occur in vivo and presumably have physiological significance, several PTMs are often 

generated during sample preparation due to exposure to organic solvents (e.g. formic acid 

leading to the formylation of Ser, Thr, and N termini), (thio) urea (N-terminal or Lys 

carbamylation), reducing agents and oxygen, unpolymerized acrylamide (Cys propionamide), 

and low or high pH (cyclization of N-terminal Gln or Glu into pyro-Glu;). A large-scale 

proteomics study of Arabidopsis (Arabidopsis thaliana) leaf extracts did address the 

frequency of PTMs that do not require specific affinity enrichment based on a data set of 1.5 

million tandem mass spectrometry (MS/MS) spectra acquired at 100,000 resolution on an 

LTQ-Orbitrap instrument followed by error-tolerant searches and systematic validation by 

liquid chromatography retention time . This revealed, for example, that modification of Met 

and N-terminal Gln into oxidized Met and pyro-Glu, respectively, showed by far the highest 

modification frequencies, followed by N-terminal formylation, most likely induced during 

sample analysis, as well as deamidation of Asn/Gln (approximately 1.2% of all observed 

Asn/Gln). Several of these nonenzymatic PTMs (in particular deamidation, oxidation, and 

formylation) can also occur in vivo and, therefore, cannot be simply dismissed as artifacts but 

need to be considered as potential regulators. 

 Since many PTMs are reversible, specific residues can also alternate between PTMs 

(e.g. dependent on cellular conditions, protein configuration [folding], or protein-protein 

interactions), and one PTM can influence the generation of other PTMs. This can result in an 

explosion of possible proteoforms and in cross talk between PTMs occurring on the same 

protein. Cross talk between PTMs on the same protein can coordinately determine the 

activity, function, and/or interactions of a protein. Finally, cross talk also exists between 

PTMs located on interacting proteins. Time-resolved and quantitative determination of 

combinatorial PTMs is challenging, and understanding of the biological outcomes is only in 

its infancy.  Prominent examples of PTM cross talk are Lys ubiquitination and acetylation or 

Lys ubiquitination and phosphorylation . Phosphorylation can also directly promote substrate 

proteolysis by caspase (peptidase) during apoptosis.  Recent biochemical and proteomics 

studies suggested that most if not all enzymes of the Calvin-Benson cycle undergo redox 
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regulation through selective redox PTMs, including reversible disulfide bond formation, 

glutathionylation, and nitrosylation, with an interplay between these PTMs dependent on 

(sub)cellular conditions . Moreover, the regulators carrying out these PTMs (e.g. 

thioredoxins, glutaredoxins, etc.) themselves can also undergo some of these PTMs, making 

for a complex network of PTMs  

 The identification, localization, and quantification of different combinations of PTMs 

on the same protein can sometimes be better solved by so-called top-down or middle-down 

proteomics, as opposed to the more common bottom-up proteomics (. or chemical cleavage) 

prior to MS analysis. In contrast, in top-down proteomics, proteins are not digested into 

smaller fragments but rather injected and analyzed by a specialized mass spectrometer in its 

entirety. In middle-down proteomics, the intact proteins are cleaved into just a few fragments 

by limited proteolysis prior to injection into the mass spectrometer. Top-down and middle-

down proteomics are not high throughput and are best carried out on either purified proteins 

or protein mixtures of low complexity. Classic examples of studies using top-down, middle-

down, but also bottom-up proteomics on proteins with different PTMs involve histones) and 

the p53 tumor suppression protein. 
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@ Disclaimer 

The information contained in this reference manual has been taken from various web resources. 

The information is provided by “ICAR-IASRI” and whilst we endeavour to keep the 

information up-to-date and correct, we make no representations or warranties of any kind, 

express or implied, about the completeness, accuracy, reliability, suitability, or availability with 

respect to the website or the information, products, services, or related graphics contained in 

the reference manual for any purpose. Any reliance you place on such information is therefore 

strictly at your own risk. In no event will we be liable for any loss or damage including without 

limitation, indirect or consequential loss or damage, or any loss or damage whatsoever arising 

from loss of data or profits arise out of or in connection with the use of this manual. We have 

no control over the nature, content and availability of those sites. The inclusion of any links 

does not necessarily imply a recommendation or endorse the views expressed within them. 

@ Citation 

Srivastava Sudhir, Murmu Sneha, Jha Girish Kumar (2023). Omics Data Analysis: Genome to 

Proteome, Training under ICAR-Consortium Research Platform on Genomics, E-Manual, 

ICAR-Indian Agricultural Statistics Research Institute, New Delhi. 


	Coverpage_2023
	Preface_CRP_Hindi_SM
	Preface_CRP_ENG_SM
	Contents_2023_revised
	Manual1
	1. IntroBioinfo_16102023
	2. kkc_ASHOKA Super-Computing Facility
	3. sbl_Linux Overview_f
	4. kkc_Biological Databases_f
	5. DCM_Next Generation Sequencing
	6. DCM_NGS Data Pre-processing, Assembly and Quantification
	7. sbl_Sequence Analysis_f
	8. Sanjeevk_Genome Annotation of RNA-Seq Data _f
	9. GenomeAnnotPractical_SM
	10. Intro_R_Stat_Bioinf_Sudhir-Srivastava
	11. Neeraj_GS_Lecture
	12. soumya_GWAS
	13. soumya_GWAS_practical
	14. Samir_TranscriptomicDataAnalysis
	15. soumya_DEG_Analysis
	16. sarika_NonCodingRNA
	17. Samir_Metagenomics Data Analysis
	18. QIIME_AnuMam
	19. Ritwika_Statistical Analysis of Metagenomic Data_CAFT (1)
	20. Protein Structure Prediction_Sudhir Srivastava
	21. MolecularDynamics&Simulation_SM
	22. Overview of Proteomics Data Analysis_Sudhir Srivastava
	23. Protein Modifications_Dr. M. Grover

	Disclaimer



