Dr. B N Mandal


Dr. B N Mandal


Sr No.Title of the projectProject teamDurationFunding agency
1A-optimal block designs for comparing treatments with control treatment(s): An algorithmic approachBN Mandal, Rajender Parsad, Sukanta Dash2015-2018Institute
2Incomplete split-plot designs: construction and analysisB N Mandal, Sukanta Dash, Rajender Parsad2016-2019SERB, DST
3On construction of orthogonal and nested orthogonal Latin hypercube designsSukanta Dash, Rajender Parsad, B.N. Mandal Susheel Kumar Sarkar2015-2018Institute


Sr No.Title of the projectProject teamDurationFunding agency
1Planning, designing and analysis of data relating to experiments for AICRP on Long Term Fertilizer experimentsB N Mandal, L M Bhar, K L Kalra, D K Sehgal2012-2017AICRP-LTFE
2Application of optimization techniques for construction of incomplete block designsB N Mandal, Rajender Parsad, V K Gupta2011-2013Institute





  1. Das, S., Meher, P. K., Rai, A., Bhar, L.M. and Mandal, B. N.(2017). Statistical Approaches for Gene Selection, Hub Gene Identification and Module Interaction in Gene Co-expression Network Analysis: An Application to Aluminium Stress in Soybean (Glycine max L.), PLoS One, 12(1), 1-24.
  2. Mandal, B N and Dash, S. (2017). On balanced incomplete Latin square designs, Communications in Statistics-Theory and Methods, 46(13), 6258-6263.
  3. Parui, S., Mandal, B. N., Parsad, R., and Dash, S.. (2016). Orthogonal Latin Hypercube Designs for Three Columns, Utilitas Mathematica, accepted.
  4. Mandal, B. N., Dash, S., Parui, S. and Parsad, R.(2016). Orthogonal Latin hypercube designs with special reference to four factors, Statistics and Probability Letters, 119, 181-185.
  5. Mandal, B. N. and Ma, J.(2016). l1 regularized multiplicative iterative path algorithm for non-negative generalized linear models, Computational Statistics and Data Analysis, 101, 289-299.
  6. Mandal, B.N., Gupta, V.K. and Parsad, R (2017). Balanced Treatment Incomplete Block Designs through Integer Programming, Communications in Statistics-Theory and Methods, 46(8), 3728-3737.
  7. Mandal, B. N.(2015). Linear integer programming approach to construction of balanced incomplete block designs, Communications in Statistics-Simulation and Computation, 44(6), 1405-1411.
  8. Mandal, B. N., Gupta, V. K., and Parsad, R.(2014). Efficient Incomplete Block Designs Through Linear Integer Programming, American Journal of Mathematical and Management Sciences, 33(2), 110-124.
  9. Mandal, B.N., and Koukouvinos, C.(2014). Optimal multi-level supersaturated designs through integer programming, Statistics and Probability Letters, 84, 183-191.
  10. Malik, N, Biswas, A.K., Raju, C.B. and Mandal, B.N. (2011). Bio-monitoring of heavy metal pollution in a fishery reservoir of Central India, Fresenius Environmental Bulletin, 20(12), 3381-3386
  1. Mandal, B. N. (2017). Introductory R for Beginners. Brillion Publishers, New Delhi
  2.   Gupta, V. K., Parsad, R., Bhar, L. M. and Mandal, B. N. (2016). Statistical Analysis of Agricultural Experiments Part-I: Single Factor Experiments.  ICAR-IASRI, New Delhi.
  3.   Gupta, V.K., Mandal,  B.N., and Parsad, R. (2015). Significance of Experimental Designs in Agricultural Research.  ICAR-IASRI, New Delhi.
  4.   Gupta, V.K. Mandal, B.N. and Parsad, R. (2012). Combinatorics in sample surveys vis-a-vis controlled selection: Combinatorics in controlled survey sampling.  LAP LAMBERT Academic Publishing, Germany.
  5.   Muralidharudu, Y. Sammi Reddy, K., Mandal, B.N., Subba Rao, A., Singh, K.N. and Sonekar, S. (2011). GIS Based Soil Fertility Maps of Different States of India.  Indian Council of Agricultural Research, New Delhi, India
Skip to toolbar